
I

HARDWARE (IP) SECURITY FOR DSP AND

MULTIMEDIA APPLICATIONS

Ph.D. Thesis

By

MAHENDRA RATHOR

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
SEPTEMBER 2021

II

HARDWARE (IP) SECURITY FOR DSP AND

MULTIMEDIA APPLICATIONS

A THESIS

Submitted in partial fulfillment of the

requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

by

MAHENDRA RATHOR

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
SEPTEMBER 2021

III

INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE’S DECLARATION

 I hereby certify that the work which is being presented in the thesis entitled HARDWARE (IP)

SECURITY FOR DSP AND MULTIMEDIA APPLICATIONS in the partial fulfillment of the

requirements for the award of the degree of DOCTOR OF PHILOSOPHY and submitted in the

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING, INDIAN INSTITUTE OF

TECHNOLOGY INDORE, is an authentic record of my own work carried out during the time period

from DECEMBER, 2018 to SEPTEMBER 2021 under the supervision of Dr. ANIRBAN SENGUPTA,

Associate Professor, Indian Institute of Technology, Indore.

 The matter presented in this thesis has not been submitted by me for the award of any other degree

of this or any other institute.

 Signature of the student with date

(MAHENDRA RATHOR)

--

 This is to certify that the above statement made by the candidate is correct to the best of my/our

knowledge.

Signature of Thesis Supervisor with date

 (ANIRBAN SENGUPTA)

 MAHENDRA RATHOR has successfully given his/her Ph.D. Oral Examination held on

Signature of Chairperson (OEB) Signature of External Examiner Signature(s) of Thesis Supervisor(s)

Date: Date: Date:

Signature of PSPC Member #1 Signature of PSPC Member #2 Signature of PSPC Member #3

Date: Date: Date:

Signature of Convener, DPGC Signature of Head of Discipline

Date: Date:

IV

ACKNOWLEDGEMENTS

First and foremost, I wish to express my sincere gratitude to my supervisor Dr.

Anirban Sengupta for providing me the opportunity to do work under their

supervision. I wish to thank them for their persistence and faith in me, without

their relentless effort and guidance I would have not been to understand the

importance of research and the sacrifice it requires to reach a certain level. I

have learned a lot from their invaluable advice, kindness, profoundness and

experience. Under their supervision, I transformed into a person with more

values.

I also owe a mention to Dr. Abhishek Srivastava, Dr. Manish Goyal and Dr.

Puneet Gupta for their valuable feedbacks on my research work throughout

these years.

Further, I wish to express my deepest gratitude to my parents, for their strong

belief in me and for their continuous support all the way. I also wish to express

my gratitude to my dear wife, Lakshmi, for being the driving force of my

career and for her moral and emotional support throughout the PhD work.

Thank you for being with me every single moment to keep me always

prepared to work for the past three years.

I wish to thank all the faculty members and colleagues for their continuous

support. The time spent at IIT Indore will always remain the most valuable

memory of my life.

At last, I wish to thank IIT Indore, DST and CSIR to help financially and

providing me an opportunity to present my research at international grounds.

V

DEDICATED TO MY FATHER LATE SHRI

MOHANLAL RATHOR

VI

ABSTRACT

A core based design paradigm has become popular in the semiconductor

business market for the last few decades. The underlying reasons are the

increasing time to market pressure, design complexity and cost of system-on-

chip (SoC) designs. However, the contrast impact of core based design

paradigm is the susceptibility of the intellectual property (IP) cores towards

the hardware threats of IP piracy and hardware Trojan insertion. An adversary

in the untrusted SoC design house may infringe or misuse the IP core for

personal benefits. Moreover, the reliance of chip manufacturing on a distinct

offshore foundry also enhances the risks of IP piracy and potential Trojan

insertion.

The digital signal processing (DSP) and multimedia applications are thriving

in the modern consumer electronics (CE) market. The stringent performance

and low power demand have enforced the realization of DSP and multimedia

applications through their hardware accelerator or application specific IPs.

However, owing to the proliferating usage of DSP and multimedia IPs in the

SoCs, their security concerns cannot be undervalued. Hence, an IP core

designer needs to employ protection measures against the piracy and potential

Trojan insertion attacks to ensure trust in hardware. For highly complex

designs such as DSP and multimedia cores, a high level synthesis (HLS)

framework is amenable to employing security mechanisms. Towards the

security of IP cores, this thesis contributes the following novel methodologies:

(a) IP core steganography approaches to secure DSP cores against piracy, (b) a

hologram based obfuscation approach to thwart the potential Trojan insertion

attack, (c) double line of defense approaches based on structural obfuscation

and IP vendor’s secret mark to counter both Trojan insertion and IP piracy

attacks, (d) secured hardware accelerator design approach for various image

processing filter applications and a DFT processor.

VII

LIST OF PUBLICATIONS

PEER-REVIEWED JOURNALS (12):

1. A. Sengupta and M. Rathor, “Protecting DSP Kernels using Robust Hologram based

obfuscation”, IEEE Transactions on Consumer Electronics, vol. 65, no. 1, Feb

2019, pp. 99-108, Impact Factor: 2.947.

2. A. Sengupta and M. Rathor, “IP Core Steganography for Protecting DSP Kernels

used in CE Systems,” IEEE Transactions on Consumer Electronics, vol. 65, no. 4,

Nov. 2019, pp. 506 – 515, Impact Factor: 2.947.

3. M. Rathor and A. Sengupta, “IP Core Steganography Using Switch Based Key-

Driven Hash-Chaining and Encoding for Securing DSP Kernels Used in CE

Systems,” IEEE Transactions on Consumer Electronics, vol. 66, no. 3, pp. 251-

260, Aug. 2020, Impact Factor: 2.947.

4. A. Sengupta and M. Rathor, “Enhanced Security of DSP Circuits Using Multi-Key

Based Structural Obfuscation and Physical-Level Watermarking for Consumer

Electronics Systems”, IEEE Transactions on Consumer Electronics, vol. 66, no. 2,

May 2020, pp. 163-172, Impact Factor: 2.947.

5. A. Sengupta and M. Rathor, “Obfuscated Hardware Accelerators for Image

Processing Filters-Application Specific and Functionally Reconfigurable

Processors,” IEEE Transactions on Consumer Electronics, vol. 66, no. 4, pp. 386-

395, Nov. 2020, Impact Factor: 2.947.

6. A. Sengupta and M. Rathor, “Security of Functionally Obfuscated DSP core against

Removal Attack using SHA-512 based Key Encryption Hardware”, IEEE Access

Journal, vol. 7, pp. 4598-4610, 2019, Impact Factor: 3.367.

7. M. Rathor and A. Sengupta, “Robust Logic locking for Securing Reusable DSP

Cores,” IEEE Access, vol. 7, pp. 120052-120064, 2019, Impact Factor: 3.367.

8. A. Sengupta and M. Rathor, “Structural Obfuscation and Crypto-Steganography

based Secured JPEG Compression Hardware for Medical Imaging Systems”, IEEE

Access, vol. 8, pp. 6543-6565, 2020, Impact Factor: 3.367.

9. M. Rathor and A. Sengupta, “Low-Cost Robust Anti-Removal Logic for Protecting

Functionally Obfuscated DSP core against Removal Attack”, IET Electronics

Letters, vol. 55, no. 7, pp. 374-376, 2019, Impact Factor: 1.1316.

10. A. Sengupta and M. Rathor, “Crypto based Dual phase Hardware Steganography for

Securing IP cores,” IEEE Letters of the Computer Society, vol. 2, no. 4, pp. 32-35,

2019.

11. M. Rathor and A. Sengupta, “Design Flow of Secured N-Point DFT Application

Specific Processor Using Obfuscation and Steganography,” IEEE Letters of the

Computer Society, vol. 3, no. 1, pp. 13-16, 2020.

12. A. Sengupta, M. Rathor, S Patil, and NG Harishchandra, “Securing Hardware

Accelerators Using Multi-Key Based Structural Obfuscation,” IEEE Letters of the

Computer Society, vol. 3, no. 1, pp. 21-24, 2020.

VIII

BOOK CHAPTERS (6):

13. A. Sengupta and M. Rathor, “Designing Secured N-point DFT Hardware Accelerator

using Obfuscation and Steganography”, IET Book: Secured Hardware Accelerators

for DSP and Image processing applications, 2021, Print: 978-1-83953-306-8,

eBook: 978-1-83953-307-5.

14. A. Sengupta and M. Rathor, “Structural transformation and obfuscation frameworks

for Data-intensive IPs”, IET Book: Secured Hardware Accelerators for DSP and

Image processing applications, 2021, Print: 978-1-83953-306-8, eBook: 978-1-

83953-307-5.

15. A. Sengupta and M. Rathor, “Security of Functionally Obfuscated DSP cores”, IET

Book: Frontiers in Securing Hardware IP Cores: Forensic detective control and

obfuscation techniques, 2020, ISBN: 978-1-83953-031-9/978-1-83953-032-6.

16. A. Sengupta and M. Rathor, “Hologram based Structural Obfuscation for DSP

Cores”, IET Book: Frontiers in Securing Hardware IP Cores: Forensic detective

control and obfuscation techniques, 2020, ISBN: 978-1-83953-031-9/978-1-83953-

032-6.

17. A. Sengupta and M. Rathor, “Hardware (IP) Watermarking during Behavioural

Synthesis”, Springer Book: Behavioral Synthesis for Hardware Security, 2020,

Invited Chapter (Eds.Srinivas Katkoori, Sheikh Ariful Islam).

18. A. Sengupta and M. Rathor, “Design Space Exploration of DSP hardware using

Bacterial Foraging and Particle Swarm Optimization Algorithm for Power/Area-

Delay Tradeoff”, IET Book: Low Power Nanoscale IC Design, Invited Book

Chapter, 2020, Print ISBN: 978-981-15-7936-3.

PEER- REVIEWED CONFERENCE PUBLICATIONS (4):

19. M. Rathor, P. Sarkar, VK Mishra and A. Sengupta, “Securing IP Cores in CE

Systems using Key-driven Hash-chaining based Steganography”, Proceedings of

10th IEEE International Conference on Consumer Electronics- Berlin (ICCE

Berlin), Germany, 2020, pp. 1-4.

20. M. Rathor and A. Sengupta, “Obfuscating DSP Hardware Accelerators in CE

Systems Using Pseudo Operations Mixing”, Proceedings of 4th IEEE International

Conference on Zooming Innovation in Consumer Electronics 2020 (ZINC 2020),

Serbia, 2020, pp. 218-221.

21. M. Rathor and A. Sengupta, “Enhanced Functional Obfuscation of DSP core using

Flip-Flops and Combinational logic”, Proceedings of 9th IEEE International

Conference on Consumer Electronics (ICCE)- Berlin, Berlin, 2019, pp. 1-5.

22. A. Sengupta and M. Rathor, “Improved Delay Estimation Model for Loop Based

DSP Cores”, Proceedings of 37th IEEE International Conference on Consumer

Electronics (ICCE), Las Vegas, USA, Jan 2019, pp. 1-4.

IX

TABLE OF CONTENTS

 ABSTRACT VI

 LIST OF PUBLICATIONS VII

 LIST OF FIGURES XII

 LIST OF TABLES XVI

 NOMENCLATURE XIX

 ACRONYMS XXI

1. Chapter 1 1

 Introduction

 1.1 Semiconductor IP core and its various forms 3

 1.2 DSP and multimedia applications and corresponding

algorithmic representation

3

 1.3 Threats to IP cores 4

 1.4 Background on high level synthesis and its importance

in IP core security

7

 1.5 Organization of thesis 10

2. Chapter 2 11

 State of the art

 2.1 State of the art on handling IP piracy threat 11

 2.2 State of the art on thwarting hardware Trojan insertion

attack

15

 2.3 Objective of the thesis 17

 2.4 Summary of the contributions 18

3. Chapter 3 21

 Hardware steganography techniques for securing IP cores against

piracy

 3.1 Problem formulation 22

 3.2 Entropy based hardware steganography 22

 3.3 Key-driven hash chaining based IP core steganography 30

 3.4 Metric for evaluating impact of proposed steganography

techniques on design cost

40

 3.5 Summary 41

4 Chapter 4 42

 Hologram based structural obfuscation to thwart reverse

engineering based attacks

X

 4.1 Problem formulation 43

 4.2 Hologram based structural obfuscation approach 43

 4.3 Demonstration on generating hologram obfuscated FIR-

IIR filter integrated datapath

47

 4.4 Similarity of hologram obfuscated design with a

security image hologram

50

 4.5 Summary 51

5 Chapter 5 52

 Double line of defense approach using integrated structural

obfuscation and crypto-steganography to secure IP cores

 5.1 Problem formulation 52

 5.2 The double line of defense during high level synthesis

process for securing IP cores

52

 5.3 Demonstration of securing application specific

processors using double line of defense

60

 5.4 Summary 66

6 Chapter 6 67

 Double line of defense approach using integrated multi-key based

structural obfuscation and physical level watermarking to secure

IP cores

 6.1 Problem formulation 67

 6.2 The double line of defense during high level and

physical synthesis processes for securing IP cores

67

 6.3 Demonstration of securing IP cores using double line of

defense

73

 6.4 Summary 77

7 Chapter 7 78

 Secured hardware accelerator design approach for image

processing filters

 7.1 Problem formulation 79

 7.2 Design approach of a secured 3x3 filter hardware

accelerator

80

 7.3 Design approach of a secured 5x5 filter hardware

accelerator

90

 7.4 Summary 93

8 Chapter 8 94

 Techniques for securing functionally obfuscated DSP cores

against removal attack

XI

 8.1 Problem formulation 95

 8.2 Overview of ILB and its features 95

 8.3 SHA-512 based ILB-keys generation hardware to

secure against removal attack

96

 8.4 Anti-removal logic (ARL) unit to secure against

removal attack

102

 8.5 Summary 106

9 Chapter 9 107

 Robust logic locking technique for preventing IP piracy

 9.1 Problem formulation 107

 9.2 Logic locking technique for securing DSP cores

against IP piracy

107

 9.3 Addressing different Attacks Scenarios 116

 9.4 Summary 118

10 Chapter 10 119

 Experimental results and analysis

 10.1 Results and analysis: Hardware steganography

techniques for securing IP cores against piracy

119

 10.2 Results and analysis: Hologram based structural

obfuscation to thwart reverse engineering based attacks

124

 10.3 Results and analysis: Double line of defense approach

using integrated structural obfuscation and crypto-

steganography to secure IP cores

126

 10.4 Results and analysis: Double line of defense approach

using integrated multi-key based structural obfuscation

and physical level watermarking to secure IP cores

129

 10.5 Results and analysis: Secured hardware accelerator

design approach for image processing filters

132

 10.6 Results and analysis: Techniques for securing

functionally obfuscated DSP cores against removal

attack

134

 10.7 Results and analysis: Robust logic locking technique for

preventing IP piracy

138

11 Chapter 11 141

 Conclusion and future work

 11.1 Conclusion 141

 11.2 Future work 143

 REFERENCES 144

XII

LIST OF FIGURES

Figure 1.1 Potential hardware security threats in untrustworthy

houses

5

Figure 1.2 Counterfeiting and cloning attacks, where brand ‘A’

indicates the brand name of a genuine IP vendor and

brand ‘B’ indicates the brand name used by an adversary

6

Figure 1.3 (a) DFG of 4-point DCT (b) Scheduled and hardware

allocated 4point DCT using resource constraints of 1 (+)

and 2(×)

9

Figure 3.1 Overview of the implanting hardware steganography in

IP cores

22

Figure 3.2 Embedding process of hardware steganography for an IP

Core

23

Figure 3.3 CIG of the sample application 24

Figure 3.4 Final CIG after implanting all the edges 26

Figure 3.5 Proposed entropy based steganography detection

process

27

Figure 3.6 Scheduled and hardware allocated 8-point DCT using 1

(+) and 4 (×)

28

Figure 3.7 The stego-embedded scheduled and hardware allocated

8-point DCT

29

Figure 3.8 Overview of key-driven hash-chaining based

steganography

31

Figure 3.9 Details of proposed key-driven hash-chaining based

steganography

32

Figure 3.10 DFGsab of 8-point DCT using 1 A and 4 M before

implanting steganography

33

Figure 3.11 (a) CIG of 8-point DCT before steganography (b) CIG

of 8-point DCT after steganography

35

Figure 3.12 Scheduled and hardware allocated 8-point DCT after

implanting steganography

37

Figure 3.13 Detection process of key-driven hash chaining based

steganography

38

Figure 4.1 Overview of Hologram based obfuscation approach 43

Figure 4.2 Flow of generating a Hologram obfuscated DSP design 45

XIII

Figure 4.3 Scheduling of IIR filter based on 1 adder and 1

multiplier

48

Figure 4.4 Scheduled DFG of FIR filter based on 1 adder and 1

multiplier

49

Figure 4.5 Hologram based structurally obfuscated integrated RTL

design of IIR and FIR filter cores

50

Figure 5.1 Overview of double line of defense based security

mechanism for securing IP cores

53

Figure 5.2 Flow of the process of securing JPEG codec processor

using structural obfuscation (first line of defense) and

crypto-based steganography (second line defense)

54

Figure 5.3 Steps of stego-constraints generation process of crypto-

based steganography encoder system

55

Figure 5.4 Roles and various modes of stego-key1 to stego-key5 56

Figure 5.5 (a) DFG of JPEG compression application (b) THT

based obfuscated DFG

61

Figure 5.6 ODFGsab of obfuscated 4-point DFT based on 3M and

2A

63

Figure 5.7 ODFGsab of 4-point DFT post embedding stego-

information

64

Figure 5.8 Secured 4-point DFT processor at RTL 65

Figure 6.1 The flow of proposed key-driven structural obfuscation

and physical level watermarking based double line of

defense

68

Figure 6.2 (a) DFG representing 160-tap FIR filter (b) loop

unrolled FIR filter with UF=16

74

Figure 6.3 Post applying THT based obfuscation in all partitions 74

Figure 6.4 Obfuscated scheduled FIR filter with applied folding at

4 instances

75

Figure 6.5 Key-driven structurally obfuscated RTL datapath of FIR

filter

75

Figure 6.6 Early floorplan of obfuscated FIR filter 76

Figure 6.7 Watermarked floorplan of obfuscated FIR filter 76

Figure 7.1 Generating filtered image using secured hardware

accelerator of image processing filters

79

Figure 7.2 Loop unrolled DFG of 3×3 image filter application 82

Figure 7.3 THT obfuscated loop unrolled DFG of 3×3 image filter

application

82

XIV

Figure 7.4 Structurally obfuscated hardware accelerator

architecture for 3×3 image filter applications with

reconfigurable functionality

83

Figure 7.5 End to end demonstration of image blurring application

using 3x3 blur filter

85

Figure 7.6 End to end demonstration of image sharpening

application using a 3x3 filter

86

Figure 7.7 End to end demonstration of vertical embossment

application using 3x3 filter

87

Figure 7.8 End to end demonstration of horizontal embossment

application using 3×3 filter

89

Figure 7.9 End to end demonstration of edge detection using 3×3

edge detection filter

90

Figure 7.10 Partitioned DFG of 5×5 filter application post

performing THT based structural obfuscation

92

Figure 7.11 Structurally obfuscated RTL datapath of 5×5 image

filter hardware accelerator

92

Figure 8.1 A sample ILB structure requiring an 8-bit key ‘k1’ to

activate

95

Figure 8.2 Overview of securing a functionally obfuscated DSP

core against the removal attack using SHA-512 based

ILBs-key generation hardware

96

Figure 8.3 Block diagram of custom hardware for SHA-512 based

ILBs-key generation logic

97

Figure 8.4 Block diagram of custom SHA-512 based key

generation hardware

99

Figure 8.5 Round Function Computation hardware of custom SHA-

512

100

Figure 8.6 Example of a configured ILBy based on the output

“10110000” produced from ILB key selection logic

102

Figure 8.7 Overview of using ARL unit to protect a functionally

obfuscated DSP core against the removal attack

103

Figure 8.8 Overview of ARL block 105

Figure 8.9 Overview of an AND-OR network used in ARL block 105

Figure 9.1 Overview of proposed logic locking methodology for

DSP IP cores

108

Figure 9.2 Proposed sample reconfigured DLC structures (where,

“K1K2” is a two-bit key)

110

Figure 9.3 Waveforms showing that correct output is not obtained

unless the correct key is applied only in the first trial

111

XV

Figure 9.4 The process of DLCs insertion into RTL datapath of

DSP cores

114

Figure 10.1 Estimation of the number of effective constraints added

for both solutions (considering same number of

constraints) at different entropy threshold

120

Figure 10.2 Security comparison of proposed work with [36] 137

Figure 10.3 Gate count comparison of proposed work with [36] 137

XVI

LIST OF TABLES

Table 3.1 Storage variable assignment of a sample application 24

Table 3.2 Swapping pairs and corresponding entropies for the

potential edges to be added

25

Table 3.3 Storage assignment post implanting stego-constraints 26

Table 6.1 Roles and key-size of different keys used for proposed

structural obfuscation

69

Table 10.1 Impact on Pc using proposed IP steganography for

different entropy threshold

120

Table 10.2 Design cost of the proposed approach in terms of area

and latency

121

Table 10.3 Impact on storage overhead on increasing threshold

entropy

121

Table 10.4 Comparison of proposed approach with [25], [31] in

terms of the # of registers for the same # of constraints

121

Table 10.5 Variation in Pc for increasing size of stego-constraints

using proposed key-driven hash-chaining approach

122

Table 10.6 Security of proposed approach in terms of maximum

key size and attacker’s total effort

123

Table 10.7 Impact of increasing size of stego-constraints on the

design cost of proposed key driven hash chaining based

steganography approach

124

Table 10.8 Comparison of design cost of proposed approach with

respect to baseline

124

Table 10.9 Comparison of affected gate count between proposed

obfuscation and baseline

125

Table 10.10 Comparison of affected gate count between [45] and

baseline

125

Table 10.11 Comparison of security of proposed obfuscation and

[45]

125

Table 10.12 Comparison of JPEG compression hardware resources

pre and post obfuscation

127

Table 10.13 Security analysis in terms of strength of obfuscation for

4-point DFT processor

127

Table 10.14 Security analysis (in terms of Pc) of proposed crypto-

based steganography approach on varying size of

stego-constraints for different design solutions of JPEG

compression processor

128

XVII

Table 10.15 Comparison of security of 4-point DFT in terms of Pc

with the entropy based steganography approach

128

Table 10.16 Design cost analysis of proposed approach on varying

size of stego-constraints for different design solutions

of JPEG compression processor

129

Table 10.17 Comparison of design cost of DFT processor with

baseline and entropy based steganography

129

Table 10.18 Strength of multi-key structural obfuscation in terms of

gate count modified

130

Table 10.19 Total key size for the proposed obfuscated

watermarked design

130

Table 10.20 Security of proposed watermarking using probability of

coincidence (Pc)

130

Table 10.21 Tamper tolerance and brute-force attack analysis of

proposed obfuscated watermarked design

131

Table 10.22 Design cost analysis of proposed approach 131

Table 10.23 RTL components of image processing filters of size

3x3 and 5x5

133

Table 10.24 Gate count of proposed filter hardware accelerators 133

Table 10.25 Security analysis of proposed application specific

image processing filters

133

Table 10.26 Power and design cost of proposed application specific

3x3 filter hardware accelerators

133

Table 10.27 Comparison of security in terms of key-bits encrypted

for the ILBs of obfuscated design of proposed

approach and [36]

135

Table 10.28 Gate count comparison of baseline design with [36]

and proposed methodology

135

Table 10.29 Power comparison of baseline design, [36] and

proposed work

135

Table 10.30 Comparison of design cost of proposed work with [36] 136

Table 10.31 Comparison of the strength of the proposed logic

locking with [36] [37] in terms of the probability of

deducing correct key in exhaustive trials using eq. (9.3)

and (9.4)

139

Table 10.32 Attack time comparison of the proposed logic locking

with [36] [37]

139

Table 10.33 Comparison of the encryption strength of the proposed

logic locking with [36] [37]

139

XVIII

Table 10.34 Percent reduction in the resource count using proposed

work w.r.t. [36] [37]

140

XIX

NOMENCLATURE

Vi i
th
 storage variable

EVi,Vj Entropy of (Vi, Vj) storage variable pair

MEVi,Vj Maximum entropy of (Vi, Vj) storage variable pair

T
E
 Threshold entropy

Pc Probability of coincidence

G Number of registers in the design

f Number of stego-constraints embedded

𝐹𝑏
𝑎 b

th
 instance of functional unit of vendor type a

𝑀𝑏
𝑎 b

th
 instance of multiplier of vendor type a

𝐴𝑏
𝑎 b

th
 instance of adder of vendor type a

DFGsab Scheduled, allocated and binded DFG

N(Zi) Number of instances of functional unit Z of type i

keym
s Maximum possible size of the stego-key

U Total possible encodings for a DSP application

Am
sk Attacker’s max effort in terms of deducing the stego-key

Am
eb Attacker’s effort in terms of finding the encoded bits

𝐴𝑇
𝑆 Attacker’s total effort in determining the stego-constraints

Cf(Zi) Cost of the design scheduled using the resource constraints Zi

LT Design delay/latency

AT Design area

Amax Maximum area

Lmax

Maximum delay

β1, β2 Weights assigned to latency and area in calculating the cost

Sn Strength of obfuscation

𝐺𝑐
𝑓
 Number of gates affected due to applying obfuscation

𝐺𝑐
𝑇 Number of gates in the respective un-obfuscated design

∆𝐺𝑐
𝑓𝑏

Difference in gate count between obfuscated design and un-obfuscated

version

𝐺𝑐
𝑖𝑝

 Number of gates altered in terms of input connectivity post obfuscation

ODFGsab Obfuscated scheduled, allocated and binded DFG

u Number of instances of FU type Ur, where r is the total types of FUs

XX

x
Number of Muxes of size Xv, where v indicates various sizes of Mux in

the design

d
Number of Demuxes of size De, where e indicates various sizes of

Demux in the design

α, β, γ Signature variables for physical level watermarking

TS Tamper tolerance

Q
Number of distinct variables in the chosen signature for physical level

watermarking

Z Size of the signature in physical level watermarking

[A](I×J) A pixel matrix of image of size I×J

Xij
A pixel value of the input image where i and j vary from 0 to I-1 and 0 to

J-1 respectively

[F](n×m) Kernel matrix of size n×m

fpq Kernel values

Ow Output pixel value

[O] Output matrix

F
B
 kernel matrix of a 3×3 blur filter

F
S
 kernel matrix of a 3×3 sharpening filter

F
VE

 kernel matrix of a 3×3 vertical embossment filter

F
HE

 kernel matrix of a 3×3 horizontal embossment filter

F
ED

 kernel matrix of a 3×3 edge detection filter

TILB Total ILBs in a functionally obfuscated design

TDLC Total DLCs in a functionally obfuscated DSP core

ω Designer specified tuning variable for DLCs insertion

Pv Probability of obtaining valid key in exhaustive trials

Kb Total number of key-bits in DLC based logic locking

 𝐸𝑛𝑠 Encryption strength

𝑁𝑜𝑝
𝐴𝐸𝑆 Number of encrypted output bits generated from AES128

𝑁𝑘𝑏𝑖𝑡𝑠
𝑡𝑜𝑡𝑎𝑙 Total number of DLC key bits in a design

XXI

ACRONYMS

HLS High Level Synthesis

VLSI Very Large Scale Integration

IP Intellectual Property

DSP Digital Signal Processor

CE Consumer Electronics

IC Integrated Circuits

SoC System on Chip

RTL Register Transfer Level

VHDL Very High Speed Integrated Circuit Hardware Description Language

GDS Graphic Database System

ALU Arithmetic Logic Unit

DFG Data Flow Graph

CDFG Control Data Flow Graph

SDFG Scheduled Data Flow Graph

FSM Finite State Machine

RE Reverse Engineering

CS Control Step

CIG Colored Interval Graph

UF Unrolling Factor

3PIP 3
rd

 party Intellectual Property

ASIC Application Specific Integrated Circuit

PSO Particle Swarm Optimization

DSE Design Space Exploration

FU Functional Unit

HLT High Level Transformation

opn Operation

LU Loop Unrolling

THT Tree Height Transformation

ROE Redundant Operation Elimination

LICM Loop Invariant Code Motion

SOK Structural Obfuscation Key

XXII

RFC Round Function Computation

FF Flip-Flop

DCT Discrete Cosine Transform

IDCT Inverse Discrete Cosine Transform

DWT Discrete Wavelet Transform

DIT Decimation In Time

FFT Fast Fourier Transform

FIR Finite Impulse Response

IIR Infinite Impulse Response

DFT Discrete Fourier Transform

JPEG Joint Photographic Expert Group

MPEG Moving Picture Expert Group

AES Advanced Encryption Standard

SHA Secure Hash Algorithm

MDS Maximum Distance Separable

ARL Anti-Removal Logic

ILB IP core Locking Block

DLC DSP Locking Cell

Mux Multiplexer

Demux Demultiplexer

CLLC Combinational Logic Locking Cell

SLLC Sequential Logic Locking Cell

1

Chapter 1

Introduction

We are fortunate enough for living in an era where internet speed is touching

5G, 8D audio effects are mesmerizing us, high definitional (HD) videos and

graphics are fascinating our generation; thanks to electronics. The ubiquitous

applications of electronics have led it in becoming an integral part of

consumer’s life [1]. At the heart of the consumer electronics (CE) systems

such as laptops, tablets, and smart phones etc., there functions a system-on-

chip (SoC). A SoC is designed using various modules such as functional

blocks, memory units and memory controller and different peripherals for

wireless and wired communication etc. Instead of designing a SoC from

scratch, its various modules are purchased from third party vendors or

designers. The pre-designed and pre-verified modules of a SoC, procured from

distinct design houses (fabless), also referred to as third party intellectual

property (3PIP) cores. And, this kind of system design paradigm is called as

core based design paradigm. The core based design paradigm results in

benefits in terms of reduced cost, alleviated design complexity and lower time

to market pressure. This is because, designing a SoC from scratch is not only

cumbersome due to higher design complexity, but also involves higher

investment in terms of time and resources or cost. Further, in the design

supply chain, the SoC design file is sent to a distinct offshore manufacturing

house (also referred to as a foundry) for the chip fabrication. Relying on

distinct foundry for the chip fabrication is economic, because building and

maintaining a foundry require billions of dollar investment. Thereby, different

entities (third party IP vendors, system integrator, and foundry) get

involvement in the IC design chain. This helps in sustaining the IC design

process at lesser cost, lower design complexity and lower time requirement

[2]-[5].

In the SoC designs of consumer electronic systems, digital signal processing

(DSP) and multimedia cores play a pivotal role owing to their utility in various

applications such as de-noising, image compression-decompression and video

encoding-decoding etc. Because of the vital role of DSP and multimedia

2

applications in modern electronic systems, their usage has been proliferating

for the past few decades [6]. Since the DSP and multimedia applications are

intended to be executed in the systems where stringent performance and power

requirement are imperative, therefore these applications are designed as

application specific processors or hardware accelerators to be integrated in the

SoCs [1], [2], [7].

Besides consumer applications, the DSP and multimedia processors also claim

their utility in some critical applications such as military and healthcare. For

example, in military and defense applications, DSP cores integrated in the

SoCs facilitate live video streaming from unmanned aerial vehicles (UAVs).

Further, in the healthcare and medical systems, joint photographic experts

group (JPEG) processors are used for compression-decompression of medical

images to enable low storage requirement and low-bandwidth transmission.

However, the involvement of distinct entities (or houses) in the design chain

raises the issue of untrustworthiness. This is because an adversary or attacker

in an untrustworthy house may realize his/her malicious intents of IP

infringement or misuse [3], [4]. This invites different hardware security threats

which can be broadly of two types: (i) IP piracy [1], [2] (ii) hardware Trojan

insertion [1], [2]. As the DSP and multimedia based IP cores possess

significant role in consumer, military and healthcare applications, therefore

their security perspective cannot be overlooked. A fake or infringed IP used in

military systems or medical devices can even endanger the human’s life.

Hence, security of IP cores is of paramount importance to ensure secure, safe

and reliable functioning of electronic systems. Additionally, securing IP cores

is also indispensable from the vendor’s perspective in order to save him/her

from huge revenue and reputation loss due to IP piracy [8].

This chapter briefly discusses the background on the various key aspects that

the proposed IP core (or hardware) security techniques are developed around.

The first section puts the background on IP cores. Further, the second section

provides an overview of DSP and multimedia applications and corresponding

algorithmic representations. The third section discusses the various threats to

IP cores. The fourth section provides a background on high level synthesis

3

(HLS) process and discusses its role in hardware (IP) security. Finally, the

fifth section presents the thesis organization.

1.1. Semiconductor IP Core and its Various Forms

In the electronics domain, a reusable logic block which is an intellectual

property of the designer or owner is termed as intellectual property (IP) core.

An IP core is designed and sold into the market in its various forms such as (i)

soft IP core (ii) firm IP core (iii) hard IP core [9],[10]. A synthesizable register

transfer level (RTL) code in a hardware description language (such as VHDL

or Verilog) or schematic design is referred to as a soft IP core. With the soft IP

cores, a chip designer has the flexibility to modify the design parameters as

per the requirement. The performance of a soft IP core can vary considerably

as it gets transformed into lower levels of design abstractions. Further, a firm

IP core is another type which is a technology dependent gate level netlist of

the design. It is lesser modifiable than a soft IP core. Further, a hard IP core is

a GDS-II design database or layout file of the design. It cannot be substantially

modified by the designers as it has lower-level physical description that is

specific to a particular process node. The core based design paradigm is based

on the reusable IP cores, hence playing a pivotal role in alleviating the design

complexity and helping in satisfying time-to-market requirement [10], [11]. A

typical SoC is composed of various kinds of IP cores such as a general

purpose processor core for addressing general purpose functionality, DSP

cores to perform application specific functionality, memory controller IP cores

to manage the data exchanged between the memories and other modules and

interface IP core such as UART, SPI, I2C to facilitate serial communication

and so on.

1.2. DSP and Multimedia Applications and Corresponding Algorithmic

Representation

The digital signal processing (DSP) algorithms such as finite impulse response

(FIR) filter, infinite impulse response (IIR) filter, discrete cosine transform

(DCT), inverse discrete cosine transform (IDCT), fast Fourier transform (FFT)

and discrete wavelet transform (DWT) etc. have wide applications in modern

electronic systems. Additionally, processors used in multimedia applications

4

such as joint photographic experts group (JPEG) compression-decompression

(codec), moving picture experts group (MPEV) etc. are also dominating in

today’s consumer electronic systems. The DSP and multimedia cores are

employed to perform various functionalities such as filtering, image

compression-decompression, image enhancement, audio/ video encoding-

decoding etc. [1], [2], [8].

In order to generate an application specific processor of a DSP or multimedia

application, its high level or algorithmic or behavioral description is taken as

input to the synthesis process. The algorithmic description can be of various

forms such as a C/C++ code or a mathematical representation (an equation

representing input-output relationship) etc. For example, an algorithmic

description in the form of a mathematic representation of a 4-point DCT

application is given as follows [2]:

X[0]=c1*x[0]+ c2* x[1] + c3* x[2] + c4* x[3] (1.1)

Where, x[0] to x[3] are input variables, c1 to c4 are input coefficients and X[0]

is an output.

1.3. Threats to IP Cores

As discussed earlier, the various offshore entities such as a 3PIP vendor, a

system integrator and a contract foundry participate in the current

semiconductor business model, leading to the globalization of the design

supply chain. However, in this semiconductor business model, the design data

transfer is asymmetric. More explicitly, an IP design is transferred or sold to a

system integrator however there is no transfer of intellectual property the other

way around. Similarly, the design file is sent to a contract foundry for chip

fabrication where the design data is transparent to the foundry. In these cases,

the design IP is transferred only in one direction [3]. Hence, this globalization

of the design supply chain and asymmetric nature of this business model

render the participating entities untrustworthy, resulting in the emergence of

various hardware threats in the semiconductor market. Fig. 1.1 depicts the

potential threat scenario in the untrustworthy houses (SoC design house and

foundry) where the IP cores designs are vulnerable to hardware threats of IP

piracy and hardware Trojan insertion [8], [11].

5

In 2010, the first case against a counterfeit-chip broker was prosecuted by the

United States. Thousands of counterfeit chips, many of which were intended

to be used in military products, were sold by the company VisionTech [14].

Further, the data provided by IHS (Information Handling Services,

Englewood, CO, USA) displays that reports of counterfeit parts have

quadrupled since 2009. Legitimate electronics enterprises lose out on about

$100 billion of global revenue per year because of counterfeiting. Around 1%

of semiconductor sales are projected to be those of fake components [15].

Additionally, in 2007, Syrian radar botched to warn of an incoming air strike

[16]. A backdoor (hardware Trojan) built into the system’s chips was rumored

to be responsible. This raises questions as to just how much the global supply

chain for ICs can be relied [16]. A brief discussion on the IP piracy and

hardware Trojan insertion threats is as follows:

1.3.1 IP Core Piracy

IP piracy [3], [4], [12], 13] may take various forms such as IP counterfeiting,

IP cloning and false claim of IP ownership which may cause adverse effects in

the form of huge financial loss for the genuine IP vendor/designer and harm of

IP vendor’s brand and reputation. Fig. 1.2 depicts the potential IP piracy threat

scenario.

IP counterfeiting: In this threat, a potential adversary sells a low quality or

fake IP into the market under the brand name of an authentic or genuine IP

vendor. The adversary can have various objectives of doing so, such as: (i) the

adversary may have malicious intents of sabotaging authentic vendor’s

reputation by enabling the integration of low quality counterfeit IPs as genuine

IC fabrication

house

SoC design

house

Attacker in

untrustworthy

houses

IP Piracy Hardware threats

Fig. 1.1. Potential hardware security threats in untrustworthy houses

Trojan

insertion

Untrustworthy

house

IP

cores

6

ones into the SoCs (ii) the adversary may be intending earning illegal income

under the brand name of an authentic vendor (iii) the adversary may supply

fake IPs to the offshore system integrators because of some national interests.

The counterfeit IPs may not be rigorously tested in terms of their functionality,

safety and reliability. Additionally, they may also contain some secret

malicious logic (hardware Trojan) to adversely affect the system operation,

performance and security. Therefore, detection of counterfeit IPs and ensuring

integration of only authentic IPs in SoCs is vital for safe, reliable and secure

functioning of electronic systems.

IP cloning and false claim of IP ownership: In this threat, an adversary (rouge

system integrator) instantiates the third party vendor’s IP more number of

times in the SoC designs than specified in the agreement of IP use. Moreover,

the adversary (rouge system integrator or foundry) may steal the vendor’s IP

and sell it illegally into the market as his/her own. Thus an adversary may

clone the true vendor’s IP to earn the illegal income. Moreover, he/she may

claim the ownership of stolen/cloned IP fraudulently. The IP cloning and false

claim of IP ownership threat harms the genuine IP designer in terms of both

revenue loss and ownership loss. The potential adversaries could be an

untrustworthy SoC designer and an untrustworthy foundry. Therefore a true IP

designer needs to secure his IPs against the cloning to save from the illegal

revenue loss and the fraudulent claim of IP ownership.

1.3.2. Hardware Trojan Insertion

Original

IP/IC

Brand ‘A’

Counterfeited ICs/IPs

 IP/IC

Brand ‘A’

 IP/IC

Brand ‘A’

 IP/IC

Brand ‘A’

Cloned ICs/IPs

 IP/IC

Brand ‘B’

 IP/IC

Brand ‘B’

 IP/IC

Brand ‘B’

Counterfeiting

(Imitating original design/brand)

Cloning

(Pirating and cloning original

design)

Fig. 1.2. Counterfeiting and cloning attacks, where brand ‘A’ indicates the brand name of

a genuine IP vendor and brand ‘B’ indicates the brand name used by an adversary

7

Hardware Trojan [17], [18] is a malicious/intended modification in the design

to cause different kinds of adverse effects such as compromising secret

information from the system, wrong functional output, excessive power

consumption and degraded performance etc. The hardware Trojan insertion is

a back door entry of malicious logics/components into the design by an

adversary in an untrustworthy design house or foundry. The hardware Trojan

is intentionally designed to be stealthy in nature so that it cannot be readily

detected during the validation process. Further, it is designed to be triggered

only upon certain rare events at particular nodes in the design. The

globalization of IC design chain has given the opportunity of inserting

hardware Trojans to rouge elements. Hence, in this globalized design chain,

the IP core designer needs to employ some preventive control against the

possible Trojan insertion in an untrustworthy house by an adversary, to ensure

the trust in hardware [2], [8].

1.4. Background on High Level Synthesis and its Importance in IP Core

Security

The synthesis is a design process whose objective is to find a structure that

implements the behavior required, for a given input specification with a set of

constraints and goals to be fulfilled. Here, the mapping from inputs to outputs

(i.e. the way components of the system interact) defines the behavior and the

set of interconnected components that composes the system defines the

structure. The synthesis can be performed at different levels of design

abstraction as a design can be represented at different levels of detail. The high

level synthesis (HLS) [19]-[22] also referred to as behavioral or architectural

synthesis is a high level design process to convert an algorithmic description

of a system into a structure implemented in the form of datapath and

controller. Thus obtained structure is also called as register transfer level

(RTL) design which is composed of high level components such as functional

units (FUs), registers, interconnect units such as multiplexers (Muxes) and

demultiplexers (Demuxes) etc.

Let’s discuss the internal details of the HLS process in brief [8], [19]-[22]. The

HLS process first takes the algorithmic representation such as C/C++ code or

a mathematical function as an input and generates a corresponding

8

intermediate representation called data flow graph (DFG) or a control data

flow graph (CDFG). For example, the algorithmic description of a 4-point

DCT application has been given in eq. (1) and its corresponding DFG

representation is shown in Fig. 1.3(a). Further, the DFG can be subjected to

various kinds of high level transformations such as loop unrolling (LU),

redundant operation elimination (ROE), tree height transformation (THT) and

loop invariant code motion (LICM) etc., depending on the nature of the

application or the applicability of the transformation. Thus obtained DFG is

subjected to different phases of the HLS process viz. scheduling, allocation

and binding. In the scheduling phase, different operations of the application

(nodes of the DFG) are assigned to a particular time stamp or control step (CS)

to be executed within. An algorithm chosen to perform the scheduling depends

upon the given constraints on timing or resources. Post scheduling, hardware

or resource allocation phase is performed where the resources are allocated to

the operations to be executed and to the variables to stored, from the HLS

library. A particular kind of resource (of certain specifications) to be allocated

depend on the latency, power and area constraints of the design. For example,

if the higher performance requirement is more important than the compact

area for a given design then a faster resource (e.g. adder/multiplier) consuming

higher area is preferred over a slower resource consuming lower area. Post

allocating resources, binding phase is performed which decides which

operation is to be assigned to which instance of the respective functional unit

(FU) and which variable is to be assigned to which register. This determines

the sharing of FU resources to execute a number of operations and that of

registers to execute a number of storage variables, in the different control

steps. Thus the binding phase provides the information of interconnect

resources such as Muxes and Demuxes required for sharing of FUs and

registers. Fig. 1.3(b) shows the scheduled, allocated and binded DFG of the 4-

point DCT core, where s0 to s10 are the storage variables, T0 to T4 are the

control steps, R, I, G and O are the four different registers, M1 and M2 are two

multiplier resources and A1 is an adder resource. Post scheduling, allocation

and binding phases, datapath and controller synthesis phase of the HLS

process is performed. This phase synthesizes the RTL datapath of the design

using the allocated FU resources, registers, and latches and using the Muxes

9

and Demuxes (determined through the binding phase) and that the controller

using the scheduling and dependency information of the operations. The

controller provides the various control signals to enable the different units of

the datapath in the respective control steps as per the scheduling. Post HLS,

the design is subjected to the lower level design processes such as logic

synthesis to obtain the corresponding gate level netlist and physical synthesis

to obtain the respective layout design. Post obtaining the layout, it sent to a

contract foundry for the chip fabrication.

Importance of HLS in IP core security: The IP core security for DSP and

multimedia applications during the HLS process has a paramount importance.

This is because applying a security mechanism may results into excessive

area, power or delay overhead, violating the given design constraints [23].

However, the HLS integrated with the design space exploration (DSE) process

[24] offers the flexibility of exploring an optimal architecture that satisfies the

given area, power and latency constraints. This helps achieve a low cost secure

architecture post employing the security mechanism during the HLS.

Moreover, employing the security mechanism at lower abstraction levels for

the DSP and multimedia applications is arduous due to their higher design

complexity and non-availability of the designs (such as gate level netlist) at

the lower levels. On the contrary, the DSP applications are readily available in

the form of their algorithmic descriptions and their high level synthesis can

easily be automated using the commercial or non-commercial tools to generate

Fig. 1.3(b) Scheduled and hardware allocated 4point

DCT using resource constraints of 1 (+) and 2(×)

× ×

× × +

+

+

R I s0 s1 s3 G O

R I s4 s5

𝑀2

R
G O s6 s8 s7

R s9

s10

1 2

3 4 5

6

R

T0

T1

T2

T3

T4

𝑀1

𝐴1

7

s2

𝑀2 𝑀1

𝐴1

𝐴1

Fig. 1.3(a) DFG of 4-point DCT

× ×
× ×

+

+

+

s4 s5
s6

s8

s7

s9

s10

1 2 3 4

5

6

7

s0 s1 s2 s3

10

the corresponding RTL counterparts. Therefore, the security mechanisms can

easily be integrated with the computer-aided-design (CAD) tools of HLS to

generate the secured designs for the DSP and multimedia IP cores.

Furthermore employing security during the HLS process also secures the

various other forms of an IP at lower design levels such as firm IPs and hard

IPs, along with the soft IPs. And we also have the security constraints more

distributed throughout the design post synthesis, if we apply the security

during the HLS [24], [25].

1.5. Organization of Thesis

The chapters of the thesis are organized as follows. Chapter 2 discusses the

state-of-art with respect to proposed techniques. Chapter 3 discusses the

proposed hardware steganography techniques for securing IP cores against

piracy. Chapter 4 discusses the proposed hologram based structural

obfuscation to thwart reverse engineering based attacks. Chapter 5 discusses

the proposed double line of defense approach using integrated structural

obfuscation and crypto-steganography to secure IP cores. Chapter 6 discusses

the proposed double line of defense approach using integrated multi-key based

structural obfuscation and physical level watermarking to secure IP cores.

Chapter 7 discusses the proposed secured hardware accelerator design

approach for image processing filters. Chapter 8 discusses the proposed

techniques for securing functionally obfuscated DSP cores against removal

attack. Chapter 9 discusses the proposed robust logic locking technique for

preventing IP piracy. Chapter 10 discusses the experimental results of the

proposed techniques and compares with the state-of-the-arts. Chapter 11

concludes the thesis and briefly discusses the future work.

11

Chapter 2

State of the Art

Some techniques have been proposed to counter the threats of IP piracy and

hardware Trojan insertion for the past few years. This chapter discusses the

state of the art techniques alongwith their limitations. This builds up the

foundation for the proposed methodologies presented in this thesis. The first

section presents state-of-the-art on handling IP piracy threat. The second

section presents state-of-the-art on thwarting hardware Trojan insertion attack

on DSP IP cores. The third section presents the objective of this thesis. The

fourth section highlights the contributions of this thesis.

2.1. State of the Art on Handling IP Piracy Threat

The IP piracy threat results into huge impact on (i) the revenue and reputation

of the IP creator/designer/owner and (ii) the system in which the IP core is

deployed and its user. The IP piracy threat has been discussed in the section

1.3.1 of the chapter 1. The threat of IP piracy has been combated using either

preventive or detective control mechanisms in the literature [1], [2].

2.1.1. Preventive control mechanism: To prevent the IP/IC piracy from

happening, Roy et al. [35], proposed the EPIC (ending piracy of integrated

circuits) technique which requires an external key generated by the IP owner

to activate the chips. In this approach, the circuit is locked by inserting

additional XOR gates on chosen non-critical paths. These XOR gates are

controlled through an external key value. The normal functionality of the

design is available only upon applying actual unlocking key value [35].

Further, the logic locking techniques were proposed by Yasin et al. [37], and

Sengupta et al. [36]. In these logic locking based preventive controls over

piracy, the IP core design functionality is locked by inserting an additional

locking circuitry into the design. Logic locking, also referred to as functional

obfuscation, techniques have been proposed for both combinational circuits

and DSP circuits. The logic locking of combinational circuits is performed by

inserting key gates (XOR and XNOR gates) [35], [37] or key driven

multiplexers [38] at appropriate places into the design. And, the logic locking

12

of DSP circuits is performed by inserting IP core locking blocks (ILBs) at

some chosen output bits of the functional units into the design [36].

Performing logic locking results in a locked gate level netlist of the design. An

adversary in the SoC design house or in a foundry cannot misuse or pirate the

IP core without unlocking the design using a correct key value, thus thwarting

the IP piracy.

Limitations: The logic locking technique is vulnerable to various kinds of

popular attacks such as key sensitization attack [36], [37], removal attack [39],

Boolean satisfiability (SAT) based attack [40], [41] and brute force attack. By

launching the aforementioned attacks, the adversary or attacker aims at

deriving the unlocked netlist. In the key sensitization, SAT and brute force

attack, the attacker attempts to find the correct key value to unlock the design.

However, the SAT attack is not applicable on complex DSP circuits because

of multiplication operations involved [36]. Further in the removal attack, the

attacker tries to remove the locking logic/circuitry from the locked netlist to

obtain the unlocked version. If the attacker becomes successful in obtaining

the unlocked design/netlist, the purpose of preventive control is defeated and

the IP piracy becomes realizable.

2.1.2. Detective control mechanism: To enable the detection of IP piracy,

hardware or IP watermarking technique was proposed by Hong and Potkonjak

[26]. In this technique, the vendor’s secret mark or signature is implanted into

the IP core during the design process. During the verification or authentication

process, the presence of vendor’s watermark is detected into the design to

identify whether the IP is pirated or authentic. The process of embedding

watermark into a design can be performed at various levels of VLSI design

abstraction, depending on the nature of the target circuits. For example, the

watermarking for combinational circuit is performed during logic synthesis

process. Kirovski et al. [27] proposed a watermarking method for implanting

user and tool specific information into a combinational circuit during a pre-

processing step of traditional logic synthesis. Design constraints for

watermarking are generated using hashing such as SHA-256 and pseudo-

random number generation. Further, Cui et al. [28] proposed a constraint-

based adaptive watermarking method at logic synthesis level. In this method,

13

some closed cones in an originally optimized combinational circuit are

modulated for technology mapping. Furthermore, Cui and Chang [29] embeds

watermark in combination circuits by substituting template. In order to embed

watermark, this method replaces some specific cells with another template

(that have the equivalent function) in the library without altering the topology

and original functionality.

However in case of watermarking of DSP circuits, it is more efficient to

embed signature constraints during the high level synthesis (HLS) process.

There are few techniques in the literature which perform watermarking of DSP

circuits during the HLS. Koushanfar et al. [30] proposed an IP protection

technique based on hardware watermarking to combat IP piracy. This

technique embeds watermark in the pre-synthesis phase of HLS or behavioral

synthesis, thus influencing the end design. The watermark is embedded in the

form of additional design constraints. The added extra constraints encode the

author’s signature into a binary number (combination of 0s and 1s) which is

further represented in the 7-bit ASCII characters. To embed the author’s

signature during behavioral synthesis, high level description of the design is

first converted in the control data flow graph (CDFG) representation. Further,

CDFG is scheduled in control steps (CS). Thereafter, an interval graph (IG) is

created wherein each node indicates a storage variable, and an edge between

two nodes indicates overlapping of life time of two storage variables. Register

allocation to these variables is performed by coloring the graph. The author

signature is embedded by imposing the extra constraints during the register

allocation of storage variables in the form of extra edges in the interval graph.

This technique is more effective for large DSP applications. This approach

assesses the protection strength in terms of probabilities of coincidence and

resilience against tampering. Sengupta and Bhadauria [25], [31] proposed

multi-variable watermarking for protecting DSP hardware accelerators against

counterfeiting, cloning and false claim of ownership threats. This approach

exploits particle swarm optimization based design space exploration (PSO-

DSE) during HLS to obtain low cost optimal watermark. In this approach,

authors signature is a combination of four distinct variables viz. ‘i’, ‘I’, ‘T’

and ‘!’. Hardware security constraints corresponding to the designer’s chosen

14

signature are embedded during the register allocation phase of HLS. Since the

watermarking constraints are imposed during the single phase i.e. register

allocation of HLS, hence referred as single phase watermarking. To embed the

constraints, colored interval graph (CIG) framework is exploited, where each

distinct color represents a distinct register, nodes indicates storage variables

and an edge between two nodes indicates overlapping of life time of two

storage variables. Each digit of multivariable signature is embedded as an

additional edge between a node-pair in the CIG. In order to do so, this

approach mapped each signature digit to hardware security constraints based

on following encoding of aforementioned four signature variables: ‘i’ is

encoded as an edge between node-pair of two prime nodes in the CIG, ‘I’ is

encoded as an edge between node-pair of two even nodes, ‘T’ is encoded as an

edge between node-pair of odd and even node and ‘!’ is encoded as an edge

between node-pair of node number 0 and any integer. While forming node

pairs to embed all signature digits, nodes are traversed in the increasing order

of their number. Further, Le Gal and Bossuet [32] exploits in-synthesis phase

of HLS for watermarking of DSP circuits. This approach targets the hardware

that performs computationally intensive tasks in audio and video applications.

This technique automatically inserts author’s watermark in order to reduce

design overhead. In this concept of watermarking, empty time slots between

successive high levels of data valid output are exploited to embed author’s

signature. Therefore, this approach is viable for circuits having free output

slots. The entire watermark is a set of sub-marks where each sub-mark is given

by a mathematical relation. Input values, initial values and intermediate values

of circuit compose the mathematical relation of a sub-mark. During the unused

time slots of output, when data valid signal is dormant, the sub-marks are read

as output values. The watermark remains invisible during static analysis

because the sub-marks appear at output as dynamic transient values.

Furthermore, Sengupta and Roy proposed a multi-phase watermarking

technique [33], [34] based on seven variables author-signature. Signature

combination comprising of seven variables is embedded during three different

phases of HLS process viz. scheduling phase, hardware allocation phase and

register allocation phase. Owing to large number of signature variables and

embedding at three different phases, this watermarking technique is highly

15

tamper tolerant and offers extremely low Pc. This is because the complex

signature combination embedded at three phases of HLS renders the

identification process of watermarking constraints into the design highly

complicated and it is very less probable that the same watermarking solution is

identified in an unsecured version.

Limitations: The detective control is a passive protection measure of IP cores.

It does not actively prevent IP piracy by an adversary. Further, the signature

used in the existing watermarking approaches is vulnerable to theft and misuse

by the adversary [26]. If the chosen signature length, signature digit and their

encodings into security constraints are compromised by the adversary then

he/she can duplicate the true vendor’s signature to cause the following impacts

[2]: (i) misusing the compromised signature to fraudulently claim the

ownership, thereby hindering the true IP vendor from proving his/her

ownership (ii) evading IP counterfeiting detection by embedding the vendor’s

authentic signature (or secret mark) in counterfeit designs. Hence, this entails

developing robust authentication marks (or secret marks) to enable strong

detection of IP piracy.

2.2. State of the Art on Thwarting Hardware Trojan Insertion Attack

If an attacker becomes able to successfully reverse engineer the design to

know its exact structure and internal details, he/she can insert the Trojan

secretly into the design. Therefore, the designer’s effort should be to hinder

the attacker from knowing the correct structure of the design through reverse

engineering (RE) [42] to secure against the hardware Trojan insertion attack

[43]. By making the design structure un-obvious or un-interpretable to an

adversary, the RE based attack of potential Trojan insertion can be thwarted

[2], [8]. Structural obfuscation mechanism was proposed to obfuscate (make

un-obvious) the design structure of an IP core to prevent against the possible

Trojan insertion in an untrustworthy house [44], [45]. The potential sites for

Trojan insertion could be a SoC design house or a foundry.

Lao and Parhi [44] utilized hierarchical contiguous folding (HCF) to

performing the structural obfuscation. In this folding, all operations of one

stage are performed before starting to perform next stage operations. More

16

explicitly, Lao and Parhi [44] applied the obfuscation by varying the number

of stages in the cascaded structure, resulting into several variation modes. For

obfuscating DSP circuits, different variation modes can be implemented.

Some modes produce functionally invalid outputs, however, the output can be

meaningful from a signal processing point of view. Other modes can produce

non-meaningful outputs. Manifold meaningful and non-meaningful modes

(resulting from folding) have been utilized for obfuscation in this technique.

Various modes of operations are regulated through configure data. The

functional mode of a DSP design is configured by a reconfigurator which is

enabled by a finite state machine (FSM). Further, this FSM is controlled by a

key. If an invalid key/wrong configure data is applied, it results into either a

meaningful but non-functional or non-meaningful mode. Thus folding based

obfuscation results in many equivalent circuits to incur obscurity in the

structure of a DSP design. The probability that a correct mode is activated is

considerably reduced for achieving higher security through obfuscation. This

approach mainly targets loop based DSP applications such as finite impulse

response (FIR) filters etc. Further, Sengupta et al. [45] leveraged compiler

based high level transformations (HLTs) to structurally obfuscate DSP

hardware accelerators. Following compiler based high-level transformations

have been exploited [45], [46]: redundant operation elimination (ROE), logic

transformation, tree height transformation (THT), loop unrolling and loop

invariant code motion. ROE technique eliminates those operations (or nodes in

CDFG) whose inputs and operation type match with another operations/nodes

in the CDFG. Logic transformation alters some operation types in the CDFG,

maintaining the design functionality intact. THT technique causes some

operations to be executed as parallel sub-computation rather than sequential

execution. Thus it leads to either increase or decrease in the tree height. Loop

unrolling technique unrolls the loop body based on unrolling factor. This

changes the number of times reuse of FUs and also reduces design latency

because of allowing parallelism. Loop invariant code motion technique moves

those operations out of the loop which are not dependent on the loop

iterations. Applying aforementioned complier based techniques significantly

transform the CDFG of DSP application without affecting original

functionality. These high level transformations considerably alter the RTL

17

datapath of the DSP application post HLS. This alteration includes changes in

size and number of Muxes and Demuxes, changes in interconnectivity of

functional units (FUs) with Muxes, Demuxes and change in number of storage

elements (registers) etc. In addition, Sengupta et al. [45] explored low-cost

solution by integrating PSO-DSE framework with the HLS process. This PSO-

DSE provides optimal resource constraints to schedule transformed/obfuscated

graph which in turn leads to minimal design cost of structurally obfuscated

design. Furthermore, Sengupta et al. [47] proposed THT based structural

obfuscation for protecting JPEG codec hardware accelerators. And, Sengupta

et al. [48] proposed hybrid transformations based structural obfuscation to

protect fault secured DSP designs. A structurally obfuscated design is arduous

to be successfully reverse engineered, hence thwarting hardware Trojan

insertion attack.

Limitations: The applicability of existing structural obfuscation approaches

rely on the nature of the intended application to be secured. The high level

transformations employed in existing approaches may not be universally

applied to all target applications. This demands alternative techniques which

can be applied to wide variety of applications. Furthermore, the strength of

obfuscation value needs to be enhanced /improved in order to achieve higher

security against the potential Trojan insertion attack.

2.3. Objective of the Thesis

This thesis aims at developing novel techniques/methodologies for securing

DSP and multimedia based IP cores against the foregoing hardware threats.

This is achieved by setting out the following objectives:

1. To develop robust detective control mechanisms using IP core

steganography for securing DSP and multimedia IP cores against the threat

of IP piracy.

2. To develop a robust preventive control mechanism against the potential

hardware Trojan insertion attack using hologram based structural

obfuscation.

3. To develop double line of defense mechanisms to secure the DSP and

multimedia IP cores to handle both the IP piracy and Trojan insertion

18

threats simultaneously by integrating structural obfuscation techniques

with the hardware watermarking/steganography.

4. To develop a methodology for designing secured (obfuscated) and

reconfigurable image processing filters hardware accelerators and a

secured DFT processor.

5. To develop robust countermeasures against the potential removal attack to

secure functionally obfuscated DSP cores.

6. To develop a robust preventing control mechanism against the threat of IP

piracy using logic locking of DSP and multimedia IP cores.

2.4. Summary of the Contributions

 A novel detective control approach for securing against IP piracy using

proposed entropy based IP core steganography. (publications: #2)

- Proposes a novel ‘IP core steganography’ for enabling detection of piracy

of DSP kernels.

- The extent to which secret stego-information could be implanted is

designer controlled through an ‘entropy threshold’ value.

- Achieves reduced typical register overhead while improving the

robustness of the IP core protection.

 A novel detective control approach for securing against IP piracy using

proposed key-driven hash chaining based IP core steganography.

(publications: #3, #19)

- Proposes a novel key-driven hash-chaining based IP steganography to

secure against ‘counterfeit ICs/IPs with copied stego-mark’. This

impedes an adversary from copying and misusing the authentic stego-

mark to escape counterfeit detection process.

- The proposed approach exploits manifold encoding schemes, switch

based hash blocks (driven through stego-keys) alongwith regular hash

blocks in the hash-chaining process.

- Yields stronger security in terms of robust digital evidence (stego-mark)

and larger key size at trivial area overhead.

 A novel methodology of hologram based structural obfuscation to secure

DSP cores against reverse engineering based attacks. (publications: #1,

#16)

19

- Proposed work leverages a security image hologram feature to

introduce a novel hologram based structural obfuscation technique for

securing DSP cores at register transfer level.

- Presents multiple algorithms for generating hologram based obfuscated

design by integrating two DSP cores.

 A novel double line of defense methodology using proposed integrated

tree height transformation based structural obfuscation and Crypto-

steganography approach for securing JPEG processor and DFT processor.

(publications: #8, #10, #11, #13)

- Proposes first work towards securing JPEG codec hardware using

double line of defense based on structural obfuscation and crypto-

steganography to provide enhanced security.

- Presents a design flow of generating a secured N-point DFT application

specific processor using the proposed double line of defense.

- The structural obfuscation is employed as 1
st
 line of defense against

Trojan insertion and the 2
nd

 line of defense is deployed by embedding

proposed crypto-based dual phase hardware steganography.

- The hardware steganography as a second line of defense uses following

security modules/properties to generate a robust stego-mark:

substitution using S-box (confusion property), diffusion property,

alphabetic encryption, alphabet substitution, byte concatenation and bit-

encoding.

 A novel double line of defense methodology using proposed integrated

multi-key based structural obfuscation and physical level watermarking

approach (publications: #4, #12)

- Proposes a design methodology for generating secured DSP circuits

using double line of defense via key based structural obfuscation as

preventive control and physical level watermarking as detective control

- The obfuscation is performed using key-driven partition and key-driven

folding knob based transformations combined with key-driven loop

unrolling, key-driven ROE and key-driven THT.

- The proposed physical-level watermarking is performed through early

floorplanning of obfuscated DSP circuits.

20

 A novel HLS driven secured hardware accelerator design methodology for

image processing filters (publication: #5)

- Proposes a methodology of designing a hardware accelerator

architecture using HLS process for 3×3 and 5×5 kernel filters of image

processing applications.

- Designs structurally obfuscated hardware accelerator architecture using

high level transformations for both 3×3 and 5×5 filters.

- Designs structurally obfuscated architectures of five types of 3×3 filters

such as blurring, sharpening, vertical embossment, horizontal

embossment and Laplace edge detection.

- Proposes an obfuscated 3×3 filter hardware accelerator design in

reconfigurable functionality mode.

 Novel SHA-512 based key generation hardware and anti-removal logic

(ARL) hardware based techniques for securing functionally obfuscated

DSP cores (publications: #5, #9, #15).

- Proposes for the first time key-generation logic for ILBs

reconfiguration using a custom SHA-512, to be used for larger size

designs secured using functional obfuscation.

- Also proposes key-generation logic using a lightweight ARL unit, to be

used for smaller size designs secured using functional obfuscation.

- Proposed logics are capable to reconfigure larger number of ILBs at

lower design overhead than AES128 logic.

 A novel methodology for generating secured DSP cores using proposed

robust logic locking (functional obfuscation) approach to thwart IP piracy

(publications: #7, #21)

- Proposes a robust DSP locking cell (DLC) structure to lock the DSP

circuits against IP piracy.

- Proposes re-configurability of DLCs based on AES128 output to

enhance the resilience against removal attack.

- Proposed DLCs render the brute force attack of extracting the actual

key ineffective by enabling the true operation of DLCs only upon

applying correct key in the first trial.

21

Chapter 3

Hardware Steganography Techniques for Securing IP

Cores against Piracy

For the past few decades, the intellectual property (IP) piracy has posed a

serious threat to the security of IP cores. The illegitimate use of IPs not only

causes a revenue loss to a true IP vendor but also raises a grave concern about

the reputation of the genuine IP vendor. This is because, an adversary may sell

the counterfeit/fake components into the market as authentic ones under the

brand name of the genuine vendor. Since a counterfeit IP may contain a

hidden malicious logic inside and not be fully tested for reliable and safe

operations, hence results in sabotaging the true vendor’s reputation [1]-[3].

This entails developing a robust mechanism for enabling the detection of IP

piracy. The detective control based security of IP cores can be employed

during the design process at various levels of design abstraction. However in

case of DSP and multimedia applications, the high level synthesis (HLS)

process offers an effective and efficient way of integrating the security

mechanism. The HLS process has various design phases viz. scheduling,

allocation, binding and datapath synthesis, which can be exploited for

applying the security. Moreover, the HLS process possesses the flexibility of

controlling the design cost overhead and parametric constraints such as area,

power and delay that may be affected due to integrating the security

mechanism. IP watermarking is a very popular mechanism of detective control

over IP piracy, which embeds the IP vendor’s signature into the design in the

form of hardware security constraints [8]-[11]. The details on IP piracy threat

and the state of the art security mechanisms have been discussed in the

chapters 1 and 2.

Novel techniques for detecting the piracy using IP core steganography are

presented in this chapter. Following two proposed IP core steganography

techniques are discussed in this chapter: (i) entropy based hardware

steganography (ii) key-driven hash-chaining based hardware steganography.

The first section of the chapter formulates the problem. The second section

discusses the proposed entropy based IP core steganography technique under

22

the following sub-sections: overview, the proposed steganography

methodology with a motivational example, entropy based steganography

detection process, demonstration of the entropy based steganography using a

DSP application, the measure used for evaluating the security and limitations

of entropy based steganography. The Third section discusses the proposed

key-driven hash-chaining based IP core steganography methodology under the

following sub-sections: overview, the proposed key-driven hash-chaining

based steganography methodology with demonstration using a DSP

application, steganography detection process, and the measure used for

evaluating the security. Subsequently, the fourth section presents the metric

for evaluating the impact of proposed steganography techniques on design

cost. Finally, the fifth section concludes the chapter.

3.1. Problem Formulation

Given a data flow graph (DFG) representation of a target DSP application,

module library, resource constraint Zi, along with the objective of securing IP

cores against piracy and false claim of IP ownership, generate a secured stego-

embedded design.

3.2. Entropy based Hardware Steganography

The proposed entropy based steganography methodology is discussed under

the following sub-sections.

3.2.1. Overview

Data Flow Graph

(DFG) of DSP

Resource

Constraints

Input Block

Stego DSP IP Core

Output Block

High Level Synthesis Framework

Module

Library

Storage

assignment

phase in

Scheduling

(Phase 1)

Edge set

determination

phase in CIG

(Phase 2)

Swapping pair

determination

phase

(Phase 3)

Maximum

Entropy

determination

phase

(Phase 4)

Shortlisted

Edge Sets

determination

phase

(Phase 5)

Stego-constraints

embedding phase

in IP core at RTL

(Phase 6)

Fig. 3.1. Overview of the implanting hardware steganography in IP cores

23

The overview of the proposed steganography framework is shown in Fig. 3.1.

As shown, the HLS framework is used to accomplish the process of IP

steganography. Input to the HLS framework is a DFG of the intended DSP

application and output is the steganography embedded IP core (Stego IP core).

Further, the process of embedding steganography using the HLS framework is

allocated to six different phases. Phase 1 takes the DFG of the target

application as input and accomplishes the storage assignment process post

scheduling. Phase 2 first forms a colored interval graph (CIG) [25] where the

storage variables are denoted using different nodes in the graph and then

performs determination of edge set where all the edges between two nodes of

same colors in the CIG are listed. Further, phase 3 takes this edge set as input

and performs the determination of swapping pairs for each edge in the set.

Fig. 3.2. Embedding process of hardware steganography for an IP Core

DFG

Resource
constraints

i/p Block

Scheduled

DFG

Assign

storage

variables

Create

CIG

Determine all

possible edge sets

that could be added

in CIG between same

colors

Compute

Entropy of

each swapping

pair

Find max

for each set

All

edge

sets

Implant

constraints

in CIG

Implant

constraints

in Register

Allocation

Generate

Modified

Register

Allocation

Stego

DSP IP

Core

o/p

Block

No

Yes

Determine

swapping pair

to embed edge

for each set

Apply

Entropy

Thresholding

Shortlist edge sets
𝑀𝐸𝑉𝑖,𝑉𝑗

 ≤ TE

Evaluate

Cost
Stego

implanted

in IP Core

Phase 1 Phase 2 Phase 3

Phase 4

Phase 5

Phase 6

Module

library

24

Next, phase 4 determines the maximum entropy for each edge in the set. Then

a sub-set of edges is shortlisted in the phase 5 based on the designer’s chosen

entropy threshold value. In the last, phase 6 embeds the shortlisted edges into

the design in the form of constraints edges added to the CIG to generate a

stego-IP core.

3.2.2. Elaborating entropy based IP core steganography with a

motivational example

The proposed methodology is elaborated in this section using a motivational

example. Fig. 3.2 highlights the details of the proposed methodology and its

various phases are explained as follows:

Phase 1: Storage variables assignment in the scheduled DFG

The phase 1 takes the DFG of the DSP IP core to be secured as input and

performs the scheduling step of HLS based on the resource constraints to

generate the corresponding scheduled DFG (SDFG). Further, in this phase,

storage variable assignment in the SDFG is performed wherein storage

variables are assigned to the inputs and output of each operation. Successively,

a colored interval graph (CIG) is created to show the binding of storage

variables (nodes) to the minimum number of registers (colors). The storage

variable assignment of a sample application is shown in Table 3.1, where V0

to V7 indicate the storage variables and Red (R), Blue (B) and Green (G)

indicate the three distinct registers. The corresponding graphical

representation in the form of CIG is shown in Fig. 3.3.

Phase 2: Edge set determination in the CIG

Fig. 3.3. CIG of the sample application

Table 3.1 Storage variable assignment

of a sample application

Control step Red Blue Green

CS 0 V0 V1 V2

CS 1 V3 V4 V5

CS 2 V6 --- V5

CS 3 V7 --- --

https://www.draw.io/#G1cp6HakEI4x_U5_Tb3lanjPvSoaZsFAyf

25

An edge between two nodes in the CIG shows that the life time of two storage

variables are overlapping, hence the colors (register assignment) of both nodes

in such pairs are distinct. This also indicates that the edges between same color

nodes in the CIG can never be drawn. In this phase, all the possible edges

(constituting the edge set) that could be added between the nodes of same

colors are identified. For the sample application being explained, the set of all

possible edges between the nodes of same colors is as follows: D= {<V0,

V3>, <V0, V6>, <V0, V7>, <V1, V4>, <V2, V5>, <V3, V6>, <V3, V7>,

<V6, V7>}.

Phase 3: Swapping pair determination

The input for phase 3 becomes all the edges mentioned in the set ‘D’ obtained

Table 3.2 (a): Swapping pairs and corresponding

entropies (EVi,Vj
) for the edge (V0, V3)

CS
Swapping

pair

Swapping
colors

(Registers)

(𝐸𝑉𝑖,𝑉𝑗
)

CS0 (V0 ⇔ V1) (R ⇔ B) 2

CS0 (V0 ⇔ V2) (R ⇔ G) 2

CS1 (V3 ⇔ V4) (R ⇔ B) 2

CS1
(V3 ⇔ V5)

(V6 ⇔ V5)

(R ⇔ G)

+

(R ⇔ G)

3
CS2

Table 3.2 (b): Swapping pairs and

corresponding entropies for the edge (V0, V6)

CS
Swapping
pair

Swapping

colors

(Registers)

(𝐸𝑉𝑖,𝑉𝑗
)

CS0 (V0 ⇔ V1) (R ⇔ B) 2

CS0 (V0 ⇔ V2) (R ⇔ G) 2

CS2 (V6 ⇒ --) (R ⇒ B) 1

CS2

(V6 ⇔ V5)

+

(V3 ⇔ V5)

(R ⇔ G)

3

Table 3.2 (c): Swapping pairs and

corresponding entropies for the edge (V0, V7)

CS
Swapping
pair

Swapping

colors

(Registers)

(𝐸𝑉𝑖,𝑉𝑗
)

CS0 (V0 ⇔ V1) (R ⇔ B) 2

CS0 (V0 ⇔ V2) (R ⇔ G) 2

CS3 (V7 ⇒ --) (R ⇒ B) 1

CS3 (V7 ⇒ --) (R ⇒ G) 1

Table 3.2 (d): Swapping pairs and

corresponding entropies for the edge (V1, V4)

CS
Swapping

pair

Swapping

colors
(𝐸𝑉𝑖,𝑉𝑗

)

CS0 (V1 ⇔ V0) (B ⇔ R) 2

CS0 (V1 ⇔ V2) (B ⇔ G) 2

CS1 (V4 ⇔ V3) (B ⇔ R) 2

CS1

CS2

(V4 ⇔ V5)

+

(V5 ⇒ --)

(R ⇔ G)

+

(R ⇒ G)

2

Table 3.2 (e): Swapping pairs and

corresponding entropies for the edge (V2, V5)

CS
Swapping

pair
Swapping

colors
𝐸𝑉𝑖,𝑉𝑗

CS0 (V2 ⇔ V0) (B ⇔ R) 2

CS0 (V2 ⇔ V1) (G ⇔ B) 2

CS1 (V5 ⇔ V4) (G ⇔ B) 2

CS1

CS2

(V5 ⇔ V3)

+

(V5 ⇔ V6)

(G ⇔ R)

+

(G ⇔ R)

3

Table 3.2 (f): Swapping pairs and

corresponding entropies for the edge (V3, V6)

CS
Swapping

pair
Swapping

colors
𝐸𝑉𝑖,𝑉𝑗

CS1
(V3 ⇔

V4)
(R ⇔ B) 2

CS2 (V6 ⇒ --) (R ⇒ B) 1

Table 3.2 (g): Swapping pairs and

corresponding entropies for the edge (V3, V7)

CS
Swapping

pair
Swapping

colors
𝐸𝑉𝑖,𝑉𝑗

CS1 (V3 ⇔ V4) (R ⇔ B) 2

CS1

(V3 ⇔ V5)

+

(V5 ⇔ V6)

(R ⇔ G) 3

CS3 (V7 ⇒ --) (R ⇒ B) 1

CS3 (V7 ⇒ --) (R ⇒ G) 1

Table 3.2 (h): Swapping pairs and

corresponding entropies for the edge (V6, V7)

CS
Swapping

pair
Swapping

colors
𝐸𝑉𝑖,𝑉𝑗

CS2 (V6 ⇒ --) (R⇒ B) 1

CS2

(V6 ⇔ V5)

+

(V5 ⇔ V3)

(R ⇔ G) 3

CS3 (V7 ⇒ --) (R ⇒ B) 1

CS3 (V7 ⇒ --) (R ⇒ G) 1

26

in the previous phase. This phase determines the possible swapping pairs in

the CIG for enabling the addition of an edge <Vi, Vj> between the node pairs

Vi and Vj in the set ‘D’. Essentially, the conflict in inserting an edge between

node pair Vi and Vj can be resolved using multiple such possible swapping

pairs. For the all edges determined in the previous phase, the possible

swapping pairs are shown in Table 3.2.

Phase 4: Maximum entropy determination

This phase finds the entropy for each swapping pair of each edge mentioned in

the edge set D. The entropy E(Vi,Vj) of a swapping pair of the edge <Vi, Vj>

represents the number of color transformations needed to enable embedding of

that particular edge in the CIG. Further, for all edges in the set ‘D’, the

maximum value of entropy (ME(Vi,Vj)) among all the possible swapping pairs

for an edge <Vi, Vj> is determined.

Phase 5: Eligible edges determination as stego-constraints

The eligible edges are those edges in the edge set D which qualify for

embedding into the CIG as steganography constraints. These edges become

eligible based on a vendor specified threshold entropy value (T
E
) following the

given eligibility criteria:

Edge eligibility = {
yes, ME(Vi,Vj) ≤ TE

no, ME(Vi,Vj) > TE (3.1)

For the sample application being discussed in this section, the eligible edges

for T
E
 = 2 are as follows: <V0, V7>, <V1, V4>, and <V3, V6>.

Phase 6: Stego-constraints embedding

Table 3.3 Storage assignment

post implanting stego-constraints

CS Red Blue Green

CS 0 V0 V1 V2

CS 1 V3 V5 V4

CS 2 --- V5 V6

CS 3 --- --- V7

Fig. 3.4. Final CIG after implanting all the edges

https://www.draw.io/#G1cp6HakEI4x_U5_Tb3lanjPvSoaZsFAyf

27

In this phase, all the eligible edges are embedded into the design in the form of

adding constraint edges to the CIG of the target DSP application. Since an

edge cannot be directly added between the nodes of same colors, therefore the

proposed algorithm seeks for the corresponding possible swapping pairs to

enable the addition of the edge. For example, eligible edges obtained in the

previous phase are implanted in the CIG using the following solutions:

(a) The embedding of edge <V0, V7> requires the color transformation of V7

from R to G in the CS3 as shown in Table 3.2(c).

(b) The embedding of edge <V1, V4> requires the color transformations of

V4 from R to G and V5 from G to R in the CS1 as shown in Table 3.2(d).

(c) The embedding of edge <V3, V6> requires the color transformation of V6

from R to B in the CS2 as shown in Table 3.2(f).

Using the above solutions, the vendor’s entropy controlled stego-constraints

are embedded into the design during the register binding step of the HLS

process. Post embedding the constraints, the modified CIG of the sample

application and the corresponding modified storage variable assignment are

shown in Fig. 3.4 and Table 3.3 respectively. Thus generated a specific

register binding of storage variables hides the vendor’s secret stego-

information which enables the detection of IP piracy and resolution of IP

ownership conflict during the verification process.

3.2.3. Steganography detection

Scheduling Register

Allocation
Generate

CIG

Determine list of

all possible edges

Calculate E(Vi,Vj)
for each possible

edge

Collect the

correspondi
ng edges of

the satisfied

condition

Inspect Muxes of

all Registers

(inputs)

Datapath of the

application

If
ME(Vi,Vj)<= TE

Input DFG

Based on Zi

TE

IP
counterfeiting

detected

NO

YES
Ownership

Proved

Storage variable
mapped to register Verification

Block

Fig. 3.5. Proposed entropy based steganography detection process

28

Detection of the stego-information in the DSP IP core is a vital and essential

process for resolving IP ownership conflict and detecting piracy. The detail of

the proposed steganography detection process is highlighted in Fig. 3.5. As

shown, the detection is performed by extracting the hidden information from

the design and verifying it with the stego-constraints obtained using the

claimant’s steganography process based on the entropy threshold value ‘T
E
.

3.2.4. Demonstration of the entropy based steganography using 8-point

DCT core

An 8-point DCT is a DSP algorithm which is used in the JPEG compression

process to convert the pixel intensities from spatial domain to the frequency

domain representation [54]. The scheduled DFG of 8-point DCT based on the

resource constraints of 1 adder (A1) and 4 multipliers (M1, M2, M3 and M4)

is shown in Fig. 3.6. As shown in the scheduled DFG, total eight control steps

(CS) are required to schedule all the operations, and total eight registers viz.

Violet, Indigo, Blue, Green, Yellow, Orange, Red, and Black are used to

execute 23 storage variables (V0-V22) of the design. Further, a CIG is created

from the scheduled DFG and the edge set ‘D’ is determined. The potential

Fig. 3.6. Scheduled and hardware allocated 8-point DCT using 1 (+) and 4 (×)

29

edges in the set ‘D’ are as follows: <V0, V8>, <V0, V16>, <V0, V17>, <V0, V18>,

<V0, V19>, <V0, V20>, <V0, V21>, <V0, V22>, <V1, V9>, <V2, V10>, <V3, V11>, <V4,

V12>, <V5, V13>, <V6, V14>, <V7, V15>, <V8, V16>, <V8, V17>, <V8, V18>, <V8,

V19>, <V8, V20>, <V8, V21>, <V8, V22>, <V16, V17>, <V16, V18>, <V16, V19>, <V16,

V20>, <V16, V21>, <V16, V22>, <V17, V18>, <V17, V19>, <V17, V20>, <V17, V21>,

<V17, V22>, <V18, V19>, <V18, V20>, <V18, V21>, <V18, V22>, <V19, V20>, <V19,

V21>, <V19, V22>, <V20, V21>,<V20, V22>, < V21, V22>. Further, as per the

proposed approach, maximum entropy for each edge in the set is determined.

The corresponding maximum entropy values for all edges in the set ‘D’ are 4,

7, 7, 7, 7, 7, 7, 3, 2, 3, 4, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7, 4, 3, 4, 4, 5, 6, 7, 4, 4, 5, 6,

7, 4, 5, 6, 7, 5, 6, 7, 6, 7, 7 respectively. Further, the aforementioned edge

eligibility criteria is applied to shortlist the eligible edges based on the entropy

threshold value T
E
=5. This provides the eligible edges to be embedded into the

CIG in the form of stego-constraints. The embedding of stego-constraints

leads to a modified register binding of storage variables, indicating the

vendor’s secret information hidden into the design. Post embedding stego-

constraints, the scheduled DFG of 8-point DCT is shown in Fig. 3.7. Further a

stego-embedded RTL datapath is generated after the HLS process, thus

Fig. 3.7. The stego-embedded scheduled and hardware allocated 8-point DCT

30

enabling the detection of IP piracy.

3.2.5. Metrics for evaluating security of entropy based steganography

The effectiveness of the proposed approach is measured using the security

achieved and its impact on design cost. The security is measured in terms of a

probability of coincidence (Pc) metric which indicates the probability of

coincidently detecting the same stego-information into a design of the same

application which is not secured using the proposed steganography approach.

Hence, it is expected to be as low as possible. The following formula is used

to compute the Pc metric [25], [30]:

𝑃𝑐 = (1 −
1

𝐺
)

𝑓

 (3.2)

Where, G denotes the number of registers before embedding steganography,

and f denotes the number of stego constraints added to the CIG. The Pc can be

minimized by adding larger number of security constraints into the design,

indicating higher strength of the stego-mark.

3.2.6. Limitations of entropy based steganography

The entropy based steganography approach generates the stego-constraints

using the secret design data (the initial edge set) and a key-parameter

(entropy). If this information is compromised to an adversary, then s/he can

regenerate or duplicate the stego-constraints to misuse them for IP piracy or

fraudulently claiming the IP ownership. The compromised/copied stego-mark

can be misused in a counterfeit design by the adversary to evade the

counterfeiting detection process. This entails developing a robust

steganography approach which should be arduous to be compromised/

attacked by the adversary.

3.3. Key-driven Hash Chaining based IP Core Steganography

The proposed key-driven hash-chaining based steganography is a robust

approach for securing the IP cores against piracy. In this approach, the stego-

constraints generation process involves a robust hash-chaining process and a

larger size key in order to counter the attacker’s malicious intent of copying

and misusing the vendor’s authentic stego-mark. This gets rid of the limitations

of entropy based steganography approach. Further, the stego-constraints are

31

embedded into the design during two distinct phases of HLS, rendering the

stego-mark highly strong. The proposed key-driven hash-chaining based

steganography methodology is discussed under the following sub-sections.

3.3.1. Overview

This steganography approach generates the stego-constraints using a robust

hash-chaining process which is regulated using a larger size vendor’s key

(stego-key). Once the stego-constraints are obtained, they are imposed onto

the target DSP design during register binding phase and functional unit (FU)

vendor allocation phases of HLS. Embedding stego-constraints during dual

phases of HLS enhances the quality of vendor’s stego-mark hidden into the

design. Fig. 3.8 shows the overview of the proposed dual-phase key-driven

hash chaining based steganography approach. The inputs and output of the

proposed approach are highlighted in the figure itself. The generic flow of the

proposed approach is as follows: (i) performing the scheduling, allocation and

binding steps on DFG of the target DSP application using the module library

and resource constraints, (ii) generating various encoded bitstreams of the

DSP application using proposed encoding rules (ii) performing key-driven

Inputs

Generating bitstream representation

Proposed key-driven Hash-chaining

Stego-

keys

Output

Resource

constraints

Module

library

Scheduling, allocation and binding steps of

HLS

Fig. 3.8. Overview of key-driven hash-chaining based steganography

Encoding

rules

Mapping into secret stego-constraints

DFG

Steganography embedded DSP Core

Embedding stego-constraints during

HLS

32

hash-chaining process taking the encoded bitstreams as inputs (ii) mapping the

output bitstream of hash-chaining process to stego-constraints using the

mapping rules (iii) embedding the secret stego-constraints into the design

during dual phases (register binding phase and FU vendor allocation phase) of

HLS. The embedded stego-constraints into the design act as a vendor’s secret

digital evidence to proving the authenticity of the genuine IP and identifying

the fake ones.

3.3.2. Details of key-driven hash chaining based IP core steganography

with demonstration using 8-point DCT core

Figure 3.9 shows the details of the proposed methodology and it is elaborated

with a demonstration on 8-point DCT core under the following steps.

DSP application (DFGsab)

Fig. 3. 9. Details of proposed key-driven hash-chaining based steganography

Pre-processing Bits padding

Hash

block-1
Hash

block-2
Hash

block-n

Hash
block-
n+1

Hash
block-
n+2

Hash
block-

2n

512

512 512 512

512

Bits

padding

Mux-1
n:1

log2n

bits
log2n

bits
log2n

bits

Mux-2
n:1

Mux-n
n:1

380 1024 380

Bits

padding
Bits

padding
Bits

padding

Stego-

Key-2

Stego-

Key-n

380 380 380

x

Bitstream (512 bits)
truncation to designer
selected constraints

size

Converting

bitstream into

stego-constraints

Embedding constraints corresponding to bit ‘0’

during register allocation phase of HLS

Embedding Steganography

Embedding constraints corresponding to bit ‘1’

during resource allocation phase of HLS

Steganography embedded DSP core

. . .

.

. . .

. . .

512

Encoding ‘E1’ Encoding ‘E2’ Encoding ‘En’ . . .

Stego-

Key-1

Stego-constraints generation through proposed Hash-chaining

x x

x x x

33

(a) Scheduling, allocation and binding of input DFG

This step performs scheduling, allocation and binding of DFG of the input

DSP application using the resource constraints of one adder and four

multipliers and the given module library. For example, Fig. 3.10 shows the

DFG post performing scheduling, allocation and binding phases of HLS. Here,

the vendor allocation to FUs has been performed using the two-vendor

allocation scheme in which an FU instance 𝐹𝑏
𝑎 (e.g. 𝑀𝑏

𝑎 𝑜𝑟 𝐴𝑏
𝑎) bears the

vendor type ‘a’ and instance number ‘b’. In the two vendor allocation scheme,

the variable ‘a’ can take up only two possible values either 1 or 2. Further, in

the scheduled, allocated and binded DFG (abbreviated as DFGsab), V0 to V22

are the storage variables, P, I, V, G, Y, O, R and B are the eight distinct

registers as shown in Fig. 3.10. Thus obtained DFGsab is used for generating

various encoded bitstreams.

(b) Generating encoded bitstreams

The DFGsab is encoded into various bitstream representations using the

vendor’s encoding rules. The encoding rules encode each operation of DFGsab

into either bit ‘0’ or ‘1’, hence the length of the encoded bitstream is same as

the number of operations (nodes) in the application (DFG). Some proposed

P I V G V0 V1 V2 V3 Y O R B V4 V5 V6 V7

P I G V V8 V9 V10 V11
𝑀1

1

P Y O R B V12 V16 V13 V14 V15

P V17

V18

V19

P

P

P

P

P

V20

V21

V22

1 2 3 4

5 6
7

8 9

10

11

12

13

14

15

CS0

CS1

CS2

CS3

CS4

CS5

CS6

CS7

CS8

Fig. 3.10. DFGsab of 8-point DCT using 1 A and 4 M before implanting steganography

𝑀2
1 𝑀1

2 𝑀2
2

𝑀1
1 𝑀2

1 𝑀1
2 𝑀2

2 𝐴1
1

𝐴1
1

𝐴1
1

𝐴1
1

𝐴1
1

𝐴1
1

𝐴1
1

34

encoding rules are as follows:

1. Encoding rule E1: If operation number (opn#) and respective CS# are both

even then the opn is encoded as bit ‘0’ otherwise bit ‘1’.

2. Encoding rule E2: If operation number and respective CS number both

bear the same parity (both either even or odd) then the opn is encoded as

bit ‘0’. However, if both bear the different parity then the opn is encoded

as bit ‘1’.

3. Encoding rule E3: If operation number and respective CS# are both odd

then the opn is encoded as bit ‘0’ otherwise bit ‘1’.

4. Encoding rule E4: If operation number and respective CS number both

bear the different parity then the opn is encoded as bit ‘0’. However, if

both bear the same parity then the opn is encoded as bit ‘1’.

5. Encoding rule E5: If operation number and respective CS# are both prime

then the opn is encoded as bit ‘0’ otherwise bit ‘1’.

6. Encoding rule E6: If operation number and respective CS# are both prime

then the opn is encoded as bit ‘1’ otherwise bit ‘0’.

7. Encoding rule E7: If the greatest common divisor of operation number and

the respective CS number is one then the opn is encoded as bit ‘0’.

However, if the greatest common divisor of operation number and the

respective CS number is not one then the opn is encoded as bit ‘1’

8. Encoding rule E8: If the operation number modulo respective CS number

is zero then the opn is encoded as bit ‘0’. However, if the operation

number modulo respective CS number is not zero then the opn is encoded

as bit ‘1’.

9. Encoding rule E9: If the CS number is equal to second odd sequence of

operation number then the opn is encoded as bit ‘0’ otherwise bit ‘1’.

For demonstration, the encoded bitstream representations of DFGsab of 8-point

DCT (shown in Fig 3.10) for the aforementioned nine encoding rules are

respectively as follows:

“E1: 111110101111111”, “E2: 010110101111111”, “E3: 010111111111111”,

“E4: 101001010000000”, “E5: 111101011111111”, “E6: 000010100000000”,

“E7: 000001010000010”, “E8: 000010101111101”, “E9: 111111111111111”

However, an application having x operations can have 2
x
 possible encoded

bitstream presentations using the same number of encoding rules.

35

(c) Generating a hashed bitstream using key-driven hash-chaining

process

The encoded bitstreams of the DSP application are fed to the key-driven hash

chaining process to generate a hashed bitstream. If there are n number of

encoded bitstreams then 2×n hash blocks are used in the hash chain. Each hash

block performs a SHA-512 algorithm on 1024-bit input data where the 1024-

bit data is formed using the following procedure:

 Fig. 3.11 (a). CIG of 8-point DCT

before steganography

V3

V1

V0
V2

V4

V6

V7

V9

V17

V12

V13

V14

V16

V15

V18

V19

V20

V21

V22

V10

V11

V5

V8

 Fig. 3.11 (b). CIG of 8-point DCT

after steganography

V3

V1

V0
V2

V4

V6

V7

V9

V17

V12

V13

V14

V16

V15

V18

V19

V20

V21

V22

V10

V11

V5

V8

36

For the 1
st
 hash block in the hash chain: the encoded bitstream of length x-bit

is first appended with ‘1’ followed by sequence of ‘0’ bits to form a 896-bit

chunk. Further, the 128-bit representation of the length ‘x’ of encoded

bitstream is appended to the 896-bit chunk to form 1024-bit input to the 1
st

hash block.

For the remaining hash blocks in the chain: the 512-bit output of previous

hash-block is concatenated with a 4-bit chunk “1000” followed by 380-bit

output of bits-padding block and 128-bit representation of the length ‘512 bits’

of previous hash, to form 1024-bit input to the remaining hash blocks. The

380-bit output of bits-padding block is generated by padding designer’s

chosen (380-x) bits before the x-bit long encoded bitstream.

Further, in the hash-chaining process, the i
th

 hash block uses the i
th

 bitstream

where ‘i’ varies from 1 to n (the number of encoded bitstreams). However, the

remaining n- hash blocks are key driven where the encoded bitstreams used by

a key-driven hash block is determined by the stego-key value of size ⌈log2n⌉

bits. The total stego-key size is computed to be is n×⌈log2n⌉ bits as there are n

number of key-driven hash blocks in the hash-chain. The output of final hash-

block is 512-bit hashed bitstream.

For the 8-point DCT application being demonstrated, nine (n=9) encoding

rules are used to generate the 9 encoded bitstreams which are processed by

2n=18 hash blocks through the hash-chain process. The hash block number 10

to 18 are the key driven hash blocks which use the following keys

respectively: “1000, 0111, 0110, 0101, 0100, 0011, 0010, 0001, 0000”.

(d) Mapping the hashed bitstream into stego-constraints

The 512-bit long hashed bitstream is first truncated to the designer selected

size of stego-constraints. For the demonstration on DCT core, let’s say the

chosen constraints size is 24 bits and the truncated bitstream is as follows:

“111100010011101000011000” which contains 13 zeros and 11 ones. The bits

of the truncated hashed bitstream are mapped to the stego-constraints using the

following mapping rules:

‘0’: An edge added between node pair (even, even) of the CIG

‘1’: Odd operations are assigned to FU of vendor type 1 and even

operations are assigned to FU of vendor type 2.

37

Where, the CIG corresponding to the DFGsab of a DSP application graphically

represents the register binding of storage variables.

For the 8-point DCT application, the corresponding CIG is shown in Fig.

3.11(a) which is exploited to embed secret stego-constraints into the design.

(e) Embedding stego-constraints into the design

The obtained stego-constraints are embedded into the design in the form of

extra edges added to the CIG and a specific FU vendor allocation to the

respective operation. The stego-constraints corresponding to bit ‘0’ and bit ‘1’

are implanted in the design during register binding and FU vendor allocation

phase respectively of HLS. The constraint edges added to the CIG

corresponding to the 13 zeros (obtained in the previous step) are as follows:

<V0,V2>, <V0,V4>, <V0,V6>, <V0,V8>, <V0,V10>, <V0,V12>, <V0,V14>, <V0,V16>,

<V0,V18>, <V0,V20>, <V0,V22>, <V2,V4>, <V2,V6>. These edges are deliberately

added to the CIG one by one, indicating the vendor’s stego-information

embedded into the design during register binding phase of HLS. Sometimes,

adding extra edges may result into conflict as no edge can exist between two

nodes of similar color. This conflict is resolved through local valid alterations

P I V G V0 V1 V2 V3 Y O R B V4 V5 V6 V7

P I G V V8 V9 V10 V11
𝑀1

1

I Y O R B V12 V16 V13 V14 V15

P V17

V18

V19

I

P

I

P

I

V20

V21

V22

1
2

3 4

5 6 7 8 9

10

11

12

13

14

15

CS0

CS1

CS2

CS3

CS4

CS5

CS6

CS7

CS8

Fig. 3.12. Scheduled and hardware allocated 8-point DCT after implanting steganography

𝑀1
2 𝑀2

1 𝑀2
2

𝑀1
1 𝑀1

2 𝑀2
1 𝑀2

2 𝐴1
1

𝐴1
1

𝐴1
1

𝐴1
1

𝐴1
1

𝐴1
1

𝐴1
1

38

in the colors of the nodes. However, in some cases, additional colors

(registers) may be needed to accommodate the constraints. The CIG post

embedding stego-constraints corresponding to bit 0 are shown in Fig. 311(b).

Further, the constraints corresponding to bit ‘1’ specify the constraint-based

allocation of FU vendor type to the respective operations in the DFGsab. Post

embedding all the constraints, the DFGsab is shown in Fig. 3.12. Thus obtained

stego-DFGsab is transformed into the stego-RTL by performing datapath and

controller synthesis phases of HLS. The stego-RTL is a secured soft IP core of

the respective DSP application, enabling the detection of IP piracy.

In the proposed steganography approach, the amount of digital evidence

hidden into the design is higher because of inserting constraints during two

distinct phases of HLS process. This results in a stronger stego-mark leading

to the robust detection of IP piracy.

3.3.3. Steganography detection

The detail of the key-driven hash chaining based steganography detection

process is highlighted in Fig. 3.13. As shown, the detection is performed by

Inspect muxes

(inputs)
 of all

registers and

vendor type of

FUs

Datapath of
the DSP

core

Scheduling

Encodings/
bitstream

representations

of DSP

application

(designer’s
chosen)

Proposed key-
driven Hash-

chaining

Conversion of

truncated
bitstream to

stego-constraints

DSP application

(DFG)

Detection of tampered/cloned/

counterfeited IPs/ICs

NO

YES

Detection of

genuine IPs/ICs

Extracting storage variable

mapped to registers and vendor

type of FUs

Feeding designer’s stego-

constraints

Stego-keys

Bitstream
truncation to

designer’s

chosen size

Stego-

constraints

size

Resource

constraints

Verification

Block

Fig. 3.13. Detection process of key-driven hash chaining based steganography

39

extracting the hidden information from the design and verifying it with the

stego-constraints obtained using the key-driven hash chaining process.

3.3.4. Metrics for evaluating security of key-driven hash-chaining based

steganography

Security of key-driven hash chaining based steganography is evaluated using

the following metrics: (i) probability of coincidence (Pc) metric (ii) maximum

possible size of stego-key (iii) the attacker’s maximum effort of decoding the

valid stego-key (iv) attacker’s effort in terms of finding encoded bits (v)

attacker’s total effort in determining the stego-constraints.

(i) Probability of coincidence of key-driven hash-chaining based

steganography: This metric is measured using the following formula:

Pc = (1 −
1

G
)

f1

× (1 −
1

π
i=1
y

N(Zi)
)

f2

 (3.3)

Where, the first term in the equation corresponds to the Pc due to embedding

constraints in the register binding phase and the second term corresponds to

the Pc due to embedding constraints in the FU vendor allocation phase. Here,

in the first term, G denotes the number of registers before embedding

steganography, and f1 denotes the number of stego constraints added to the

CIG. Further, in the second term, ‘y’ denotes the types of resources in the DSP

application, N(Zi) denotes the number of instances of each FU type and f2

denotes the number of stego constraints added during the FU vendor allocation

phase.

(ii) Maximum possible size of stego-key: The maximum possible size of the

stego-key (𝑘𝑒𝑦𝑚
𝑠) is computed as follows:

keym
s = U × ⌈log2U⌉ bits (3.4)

Where, ‘U’ denotes the total possible encodings for a DSP application. The

value of U is computed to be 2
x
, where ‘x’ is the number of operations in the

DSP application. The U=2
x
 also represents the total number of key-driven

hash blocks that can be chained in the hash-chaining process. Further, ⌈log2U⌉

is the size of the stego-key used to drive each key-driven hash block.

40

(iii) Attacker’s maximum effort of decoding the valid stego-key: This metric is

given by the following equation:

Am
sk = 2U×⌈log2U⌉ (3.5)

Where, Am
sk denotes attacker’s max effort in terms of deducing the stego-key.

(iv) Attacker’s effort in terms of finding encoded bits: This metric is given by

the following equation:

Am
eb = 2380×2n (3.6)

Where, Am
eb denotes the attacker’s effort in terms of finding the encoded bits,

380 bits is the output of a padding block and 2n is the total number of hash

blocks in the hash-chaining process.

(v) Attacker’s total effort in determining the stego-constraints: This metric is

given as follows using eq. (3.5) and eq. (3.6):

AT
s = Am

sk × Am
eb

 AT
s = 2U×⌈log2U⌉ × 2380×2n

 AT
s = 2(U×⌈log2U⌉+(380×2n)) (3.7)

Where, 𝐴𝑇
𝑆 denotes the attacker’s total effort in determining the stego-

constraints imposed onto the intended design.

3.4. Metric for Evaluating Impact of Proposed Steganography

Techniques on Design Cost

Embedding stego-constraints to the designs may impact the design cost. This

is because, adding the constraints may require additional hardware or control

steps to accommodate them. Therefore, to evaluate the feasibility of the

proposed steganography approach, the design cost post embedding stego-

constraints is required to be computed. The following function is used to

compute the design cost:

𝐶𝑓(𝑍𝑖) = 𝛽1
𝐿𝑇

𝐿𝑚𝑎𝑥
+ 𝛽2

𝐴𝑇

𝐴𝑚𝑎𝑥
 (3.8)

Where, Cf(Zi) is the cost of the design scheduled using the resource

constraints Zi, further, LT and AT denote the design delay and area at the given

resource constraints, Amax and Lmax denote the maximum design area and

41

delay within the possible design space, β1 and β2 denote the weights which are

kept to be 0.5 to assign equal preference to both delay and area.

3.5. Summary

The IP core piracy threat was handled using the proposed IP core

steganography methodologies. The proposed entropy based steganography

approach offers the flexibility of controlling the amount of stego-information

to be inserted into the design using an entropy threshold value. The IP

designer/vendor can vary the entropy threshold from low to high value to

achieve the higher strength of the stego-mark. Additionally, the proposed

approach is measured in terms of its security and design cost to evaluate its

effectiveness. Further, the key-driven hash-chaining based hardware

steganography approach was discussed in this chapter. This approach involves

vendor’s large size stego-key and a robust hash-chaining process to generate

the stego-constraints. This approach overcomes the potential threat of evading

IP counterfeiting due to a copied stego-mark in the fake designs. Achieving a

robust security against IP piracy, while incurring negligible cost overhead, is

the strength of the proposed steganography approaches. The experimental

results of the entropy based steganography and key-driven hash chaining

based steganography have deeply been analyzed in the chapter 10 of this

thesis.

42

Chapter 4

Hologram based Structural Obfuscation to Thwart

Reverse Engineering based Attacks

Reverse engineering (RE) is a process of extracting a desired higher level of

abstraction from a given lower level of abstraction of an intended design by

analyzing its internal details. It can be performed at following various levels:

(i) to extract the layout of the design from the IC through de-packaging,

delayering, imaging and pattern recognition technique (ii) to extract the gate

level netlist from the layout of the design through analyzing transistors

interconnectivity and matching it against the standard cells (logic gates) in the

library (iii) to extract high level functionality (e.g. datapath and controller)

from a given gate level netlist by partitioning it into sub-circuits and then

matching them against the RTL components in the module library. RE can be

legally performed for the aim of teaching, analyzing, or evaluating the ideas or

methods applied in the intended circuitry. This is supported by the

Semiconductor Chip Protection Act, USA. However, reverse engineering has a

darker side as well. An adversary in an untrustworthy design house or foundry

may perform the RE to realize his/her ill intentions of stealing the design

intents or inserting a malicious logic (hardware Trojan) inside the design.

More explicitly, the RE can result into IP piracy and Trojan attack which may

not only harm the vendor’s or designer’s revenue but also ruin his/her

credibility. The RE based attack can be thwarted by making RE as hard and

time consuming as possible. Considering the today’s attacker competence, the

absolute security against RE cannot be deployed. However, rendering the

illegal actions by the attacker/adversary highly expensive through RE is

considered as enough security. Towards the protection against RE by a

potential adversary, structural obfuscation is a technique of internal

architecture concealment which makes the design structure unobvious to be

interpreted by the adversary hence hindering the RE process [1]-[4].

This chapter presents a novel structural obfuscation technique based on the

security image hologram feature to secure the DSP circuits against the RE

based attack of IP piracy and potential hardware Trojan insertion. The first

section formulates the problem. The second section discusses the hologram

43

based structural obfuscation approach under the following sub-sections:

overview, elaborating hologram based obfuscation technique and metric for

evaluating the security achieved. Next, the third section demonstrates the

generation of hologram obfuscated design. Further, the fourth section

highlights the similarity between the hologram obfuscated design and a

security image hologram. Finally, the fifth section summarizes the chapter.

4.1. Problem Formulation

Given the data flow graph (DFG) representations of two target DSP

applications, module library, resource constraint, along with the objective of

securing IP cores against RE based attacks, generate a secured (structurally

obfuscated) integrated RTL design of DSP cores.

4.2. Hologram based Structural Obfuscation Approach

This section discusses the proposed hologram based structural obfuscation

approach under the following sub-sections:

4.2.1. Overview

The overview of the hologram based structural obfuscation technique is

depicted in Fig. 4.1. This obfuscation technique takes inputs in the form of

Perform hologram based obfuscation during high level synthesis (HLS)

Hologram obfuscated RTL

design

Scheduled Data Flow Graph (DFG) of two DSP applications

Rule #2: Multiplexing of all inputs of both applications

Rule #1: Multiplexing of inputs of only similar portions of both applications

Rule #3: Multiplexing of inputs of only similar components of both applications

Input

Fig. 4.1. Overview of Hologram based obfuscation approach

Output

44

data flow graph (DFG) of two DSP applications and generates a hologram

obfuscated design at the output. Thus generated obfuscated design is a

camouflaged integrated RTL datapath of the input DSP applications. To

perform the hologram based obfuscation technique, following three rules

(highlighted in Fig. 4.1) are applied:

(i) The first rule: only a sub-set of inputs of two DSP applications are

subjected to multiplexing to generate the obfuscated datapath.

(ii) The second rule: all inputs of two DSP applications are subjected to

multiplexing to generate the obfuscated datapath.

(iii) The third rule: only inputs of similar operations of both DSP

applications are subjected to multiplexing.

To produce a hologram obfuscated design, the application of the above

mentioned rules depends on the level of similarity of two intended DSP

applications.

4.2.2. Elaborating hologram based obfuscation technique

This section elaborates the proposed approach of generating a hologram based

obfuscated design. Fig. 4.2 shows the details of the process of deploying

hologram based structural obfuscation which employs three different rules

during the datapath synthesis phase of the HLS process. As shown in the

figure, the DFG forms of two DSP applications (DSP-1 and DSP-2) are first

subjected to pre-synthesis phase of HLS where scheduling, allocation and

binding are performed. The pre-synthesis phase produces scheduled, allocated

and binded DFG (DFGsab) of two DSP applications. Further, DFGsab-1 and

DFGsab-2 are subjected to datapath synthesis phase of HLS where proposed

hologram based obfuscation is applied to generate a structurally obfuscated

integrated RTL datapath of DSP-1 and DSP-2. The elaboration of proposed

rules for hologram based obfuscation is as follows:

(i) The first rule: multiplexing sub-set of inputs of two DSP

applications:

If a portion of DFGsab-1 of DSP-1 matches with the DFGsab-2 of DSP-2 (the

matched portions of DSP-1 and DSP-2 contain similar operations with similar

45

input-output connectivity), then the datapath synthesis phase undergoes

following actions:

1. The inputs of only matched portions of DSP-1 and DSP-2 applications

are multiplexed using multiplexers (Muxes) in the integrated datapath.

2. The outputs of DSP-1 and DSP-2 applications are also multiplexed

using a multiplexer in the integrated datapath.

In the obfuscated integrated datapath, switching between two designs is

executed using multiplexers of size 2×1. And, the switching is regulated using

a designer control input ‘C’ which acts as a select line for the switching

DFG-1 representing

DSP application -1

DFG-2 representing

DSP application -2

Scheduling, Resource

Allocation and Binding

Scheduling, Resource

Allocation and Binding

Resource

constraints

Scheduled DFG-1 Scheduled DFG-2

 A portion of two designs is

similar?

 Two Designs have similar

Scheduled DFG/CDFG?

Two Designs have some similar

components?

Perform multiplexing of inputs of only similar

portion

Perform Multiplexing of inputs of two

designs

Multiplexing of inputs of similar components

having different input paths

Rule #1

Fig. 4.2. Flow of generating a Hologram obfuscated DSP design

Datapath

Synthesis

phase of

HLS

Pre-

Synthesis

phase of

HLS

Yes

Yes

No

No

Yes

Hologram based obfuscated RTL design

Datapath synthesis complying with three rules

Rule #2

Rule #3

46

Muxes. At control input ‘C’=0, one DSP core becomes functional by taking

inputs through switching Muxes whereas at ‘C’=1, another DSP core becomes

functional in the obfuscated integrated datapath. This rule of hologram based

obfuscation is demonstrated in section 4.3 by selecting finite impulse response

(FIR) filter application as DSP-1 and infinite impulse response (IIR) filter

application as DSP-2.

(ii) The second rule: multiplexing of all inputs of two DSP

applications:

If the DFGsab-1 of DSP-1 fully matches with the DFGsab-2 of DSP-2 (i.e.

possessing identical number of inputs and outputs and same operations with

the same input-output connectivity), then the datapath synthesis phase

undergoes following action:

1. All inputs of DSP-1 and DSP-2 are multiplexed using Muxes in the

integrated datapath.

At control input ‘C’=0, one DSP core becomes functionally active whereas at

‘C’=1, another DSP core becomes functionally active.

(iii) The third rule: multiplexing of the inputs of same operations in

two DSP applications:

The applicability of this rule depends on the presence of similar operations

(nodes) in the DFGsab-1 of DSP-1 and DFGsab-2 of DSP-2 with different inputs

and output. If some operations are similar in two DSP applications then the

datapath synthesis phase undergoes following action:

1. The inputs of the functional modules corresponding to the similar

operations of two DSP applications are multiplexed using Muxes in the

integrated datapath. The functional modules of DSP-1 get inputs when

the control signal ‘C’ is =0 whereas the functional modules of DSP-2

get inputs when the control signal ‘C’ is =1. In this fashion,

functionality of one of the application is activated at a time using the

control input ‘C’.

Post applying these rules of hologram based obfuscation on DFGsab-1 of DSP-

1 and DFGsab-2 of DSP-2 during the datapath synthesis phase of HLS

47

framework, a structurally obfuscated integrated RTL design is produced. The

structurally obfuscated RTL design acts as a common datapath for both DSP

cores. The hologram based obfuscation approach enables the camouflaging of

two DSP cores into a single RTL datapath to ensure the internal architecture

concealment or structural obfuscation. Thus produced structurally obfuscated

design is harder to be reverse engineered by an adversary, hence thwarting the

theft of original design intents and also the potential insertion of hardware

Trojan in an untrustworthy design house or foundry.

4.2.3. Metric for evaluating security of hologram based obfuscation

A strength of obfuscation (Sn) metric is used to analyze the security achieved

using the proposed hologram based obfuscation technique. The Sn metric is

given as follows:

𝑆𝑛 =
𝐺𝑐

𝑓

𝐺𝑐
𝑇 (4.1)

Where, 𝐺𝑐
𝑓
 denote the number of gates affected due to applying obfuscation

and 𝐺𝑐
𝑇 denote total number of gates in the respective un-obfuscated design.

Further, the number of gates affected (𝐺𝑐
𝑓
) post structural obfuscation is

computed using the following equation:

𝐺𝑐
𝑓

= ∆𝐺𝑐
𝑓𝑏

+ 𝐺𝑐
𝑖𝑝 (4.2)

Where, ∆𝐺𝑐
𝑓𝑏

denotes the difference in gate count between obfuscated design

and un-obfuscated version and 𝐺𝑐
𝑖𝑝

 denote the number of gates altered in terms

of input connectivity post obfuscation.

4.3. Demonstration on Generating Hologram Obfuscated

FIR-IIR Filter Integrated Datapath

This section elaborates the process of generating structurally obfuscated FIR-

IIR filter integrated datapath using the proposed hologram based obfuscation

approach. The hologram based structural obfuscation mechanism is a

promising solution to protect both the IIR and the FIR filter cores concurrently

at low cost, against the RE based attacks. The first rule of the hologram based

48

obfuscation is applied to generate the structurally obfuscated integrated

datapath of FIR-IIR filter. The generic equation of IIR and FIR filters are as

follows:

(i) IIR filter equation:

Y[n]=b0*X[n]+ b1*X[n-1]+ b2*X[n-2]+b3*X[n-3]- a1*Y[n-1]- a2*Y[n-

2]-a3*Y[n-3] (4.3)

Where, Y[n] is the output of IIR filter, a1 to a3 and b0 to b3 are the input

coefficients of IIR filter, X[n] is the current input, X[n-1], X[n-2] and X[n-3]

are the previous inputs of IIR filter and Y[n-1], Y[n-2] and Y[n-3] are the

previous outputs of IIR filter.

(ii) FIR filter equation:

Y’[n]=h0*X’[n]+h1*X’[n-1]+h2*X’[n-2]+h3*X’[n-3] (4.4)

Where, Y’[n] is the output FIR filter, h0 to h3 are the input coefficients of FIR

filter, X’[n] is the current input and X’[n-1], X’[n-2] and X’[n-3] are the

Fig. 4.3. Scheduling of IIR filter based on 1 adder and 1 multiplier

13

-a1

4

2

6

8

10

11

3

5

9

7

12

A1

A1

*

*

*

*

*

*

b0
x[n]

b1
X[n-1]

b3 b2 -a2 -a3

M1

X[n-2]

M1

M1

M1

M1

M1

+

+

+

Y[n]

X[n-3] Y[n-1] Y[n-1] Y[n-3]

M1

A1

A1

A1

A1

+

+

+

1

*

CS 0

CS 1

CS 2

CS 3

CS 4

CS 5

CS 6

CS 7

CS 8

49

previous inputs of FIR filter.

Firstly, the algorithmic representations of IIR and FIR filters in their given

mathematical form are converted into the corresponding DFG representations.

Thereafter DFGs are subjected to the pre-synthesis phase of HLS where

scheduling, allocation and binding are performed using the resource

constraints of one adder (A1) and one multiplier (M1), resulting into DFGsab-1

and DFGsab-2. The Fig. 4.3 and Fig. 4.4 show the DFGsab-1 of IIR filter and

DFGsab-2 of FIR filter respectively, where CS denotes the control step.

Post obtaining the DFGsab-1 and DFGsab-2, they are subjected to the first rule

of hologram based obfuscation approach during the datapath synthesis phase

of HLS process. As per the rule, inputs of only matched portions of DFGsab-1

and DFGsab-2 are subjected to multiplexing using 2:1 Muxes (switching

elements of the hologram) and output of both DFGsab are also subjected to

multiplexing using a single 2:1 Mux (another switching element of the

hologram) during the datapath synthesis phase of HLS. Activation of either of

the filter application in the integrated datapath depends on the value of control

input ‘C’. In other words, the specific bit value of the control input ‘C’

manifests the respective datapath architecture in the hologram design.

Specifically, the functionality of IIR and FIR filter in the hologram obfuscated

Fig. 4.4. Scheduled DFG of FIR filter based on 1 adder and 1multiplier

X’[n-2]

*

*

*

*

h0 X’[n]
h1 X’[n-1] h3

A1

h2

M1

M1

M1

+

+

+

Y’[n]

X’[n-3]

M1

A1

A1

CS 1

CS 3

CS 4

CS 5

1

2

 4

 6

3

5

7

CS 0

CS 2

50

datapath is enabled at IP designer controlled input ‘C’=0 and ‘C’=1

respectively. Post applying the first rule of proposed hologram based

obfuscation during the datapath synthesis phase of HLS, we obtain an

obfuscated integrated RTL datapath of both IIR+FIR filter cores

simultaneously as shown in Fig. 4.5.

4.4. Similarity of Hologram Obfuscated Design with a Security

Image Hologram

The proposed structurally obfuscated hologram design is motivated from the

security image hologram feature. In a security image hologram, switching or

Fig. 4.5. Hologram based structurally obfuscated integrated RTL design of IIR and FIR filter

cores (note: switching Muxes are highlighted in red dotted ovals)

51

flipping elements are embedded during their creation. These flipping elements

execute the switching between two (or more) images when the image is

viewed from different viewing angles [55]. Similarly in a structurally

obfuscated hologram design, a number of additional multiplexers (acting as

flipping elements) are exploited to realize the hologram feature. These

multiplexers execute the switching between two designs integrated in the

single RTL datapath, when a specific bit (control input ‘C’) value is applied.

4.5. Summary

The hardware threats of potential Trojan insertion and stealing the original

design intents can be realized by an adversary if the RE can be performed

successfully. The potential RE based attacks can be handled by performing the

concealment of internal architecture of the design using a structural

obfuscation technique. We proposed a novel hologram based structural

obfuscation technique which makes the RE arduous for an attacker, hence

preventing against the potential Trojan insertion and IP theft attacks. We

proposed multiple rules of generating hologram based obfuscated designs

during the datapath synthesis phase of the HLS process. The security using the

proposed structural obfuscation was evaluated using strength of obfuscation

metric which measure the total affected gate count post obfuscation w.r.t. the

un-obfuscated counterpart.

52

Chapter 5

Double Line of Defense Approach using Integrated

Structural Obfuscation and Crypto-steganography to

Secure IP Cores

This chapter presents a double line of defense approach to secure IP cores

against IP piracy and potential hardware Trojan insertion (resulting from

reverse engineering) by an adversary in an untrustworthy design house or

foundry. A structural obfuscation mechanism is performed during high level

transformation to deploy the first line of defense to counter the threat of

potential hardware Trojan insertion. Further, crypto based steganography is

performed during high level synthesis (HLS) to deploy the second line of

defense to counter the threat of IP piracy. The chapter also demonstrates the

structural obfuscation and crypto-steganography based double of defense

approach on joint photographic expert group (JPEG) compression processor

and a discrete Fourier transform (DFT) processor.

Outline of the chapter is as follows. The first section formulates the problem.

The second section discusses the double line of defense approach under the

following sub-sections: overview, elaborating structural obfuscation acting as

a first line of defense and crypto-steganography acting as a second line of

defense, detection of steganography and metric for evaluating the security

achieved using double line of defense. Further, the third section demonstrates

the securing of application specific processors using double line of defense for

the following two applications (i) JPEG compression (ii) DFT. Finally, the

fourth section summarizes the chapter.

5.1. Problem Formulation

Given the data flow graph (DFG) representation of a target application,

module library, resource constraint, along with the objective of securing IP

cores against IP piracy and hardware Trojan insertion attacks, generate a

secured (structurally obfuscated and stego-embedded) IP core.

5.2. The Double Line of Defense during High Level Synthesis

Process for Securing IP Cores

53

In an untrustworthy design house or foundry, the IP cores are susceptible to

both piracy and hardware Trojan insertion threat. We employ a double line of

defense mechanism to counter both threats simultaneously. The double of

defense approach for securing the IP cores is discussed under the following

sub-sections:

5.2.1. Overview

An overview of the proposed double line of defense approach is shown in Fig.

5.1. As highlighted in the figure, the double line of defense technique is

unified with the HLS process, leading to a security aware HLS framework. In

the security aware HLS framework, the primary input is a high level

description (e.g. C/C++ code or mathematical function) of input application.

The major steps of securing the IP cores by performing double line of defense

during the HLS process are as follows: (i) converting algorithmic description

of the input application into corresponding data flow graph (DFG) (ii)

subjecting the DFG to tree height transformation (THT) based structural

D
o

u
b

le lin
e o

f d
efen

ce a
w

a
re H

L
S

A high level representation of input

application

DFG

Perform tree high

transformation (THT) based

structural obfuscation

Module library

Fig 5.1. Overview of double line of defense based security mechanism for securing IP cores

Perform crypto-based

steganography

Scheduling, allocation and binding

Structurally obfuscated and stego-

embedded IP core

Resource

constraints

Stego-keys

1
st
 line of

defense

2
nd

 line of

defense

54

obfuscation that works as first line of defense (iii) performing scheduling,

allocation and binding of structurally obfuscated DFG using resource

constraints and module library (iv) performing crypto-based steganography (as

a second line of defense) on the obfuscated scheduled, allocated and binded

DFG (ODFGsab) using a large size stego-key. Post applying structural

obfuscation and crypto-steganography as double line of defense during HLS

process, a secured RTL design of intended application is produced at the

output. The first and second line of defense is discussed in more detail as

follows:

5.2.2. Elaborating structural obfuscation and crypto-steganography

C
ry

p
to

-b
a

sed
 S

teg
a

n
o
g

ra
p

h
y
 E

n
co

d
er

Stego-

keys

Fig. 5.2. Flow of the process of securing JPEG codec processor using structural obfuscation

(first line of defense) and crypto-based steganography (second line defense)

Colored

interval graph

(CIG) 1
st
 line of defense

2
nd

 line of defense

Secret design

data

Secret stego-

constraints

Input

application

in form of

DFG

Structurally

transformed

DFG

Resource

Constraints

Module

Library

Obfuscated design

in the form of

scheduled allocated

and binded DFG

(ODFGsab)

Stego-embedded obfuscated

RTL design

Cover

design

data

Tree Height

Transformation

(THT) based

structural

obfuscation

Scheduling &

hardware

allocation of

DFG

Secret design

data extraction

process

Stego-constraints

generation

processes

Embedding stego-

constraints

55

based double line of defense approach

The double line of defense approach is elaborated in Fig. 5.2. The details are

discussed as follows:

(i) Structural obfuscation as a first line of defense

Applying structural obfuscation in designs conceal their internal architectures

to thwart reverse engineering (RE), thus hindering backdoor (Trojan) insertion

and IP theft. We applied a high level transformation to realize the structural

obfuscation where tree height of DFG is transformed to create an obfuscated

DFG. In order to apply the tree height transformation (THT), the serial

execution flow of addition operations in the DFG is broken and parallel sub-

computations are enabled. Thus applied THT based structural obfuscation

incurs considerable alterations in the structure of the design in terms of the

following: (a) alterations in the interconnectivity of high level components

such as adders, and multipliers etc. (b) alterations in the total count of

interconnect binding units such as Muxes and Demuxes (c) alterations in the

total count of storage units such as registers. These alterations makes the

design structure unobvious to be interpreted (through RE) by an attacker. This

prevents an attacker from launching RE based attacks of backdoor insertion

into hardware and the design theft.

 Generating Stego-constraints

Stego-constraints

Fig. 5.3. Steps of stego-constraints generation process of crypto-based steganography encoder

system

State-matrix creation Byte substitution

Row diffusion Multi-layered Trifid cipher

Alphabet substitution

Matrix transposition

Mix column diffusion Byte concatenation

Bitstream truncation Bit-mapping

Secret design data

Stego-

Key1

Stego-

Key2
Stego-

Key3

Stego-

Key4

Stego-

Key5

56

Fig. 5.2 shows the flow of applying first line of defense using structural

obfuscation. As shown in the figure, the DFG of input application is first

subjected to THT based transformation to create a corresponding obfuscated

DFG. Further it is subjected to scheduling allocation and binding steps of HLS

to produce an obfuscated scheduled, allocated and binded DFG (ODFGsab).

Further, ODFGsab of input application is fed to the process of applying second

line of defense based on crypto-steganography technique.

(ii) Crypto-steganography as a second line of defense

The crypto-steganography technique embeds secret stego-constraints into the

design during two distinct steps of HLS process viz. register allocation step

and functional unit (FU) vendor allocation step. The embedded stego-

constraints into a design enable the identification of authentic and pirated

(counterfeited or cloned) designs during the detection process. In the proposed

approach, the stego-constraints (or stego-information) are generated through

various steps of crypto-steganography encoder system. As shown in Fig 5.2,

the crypto-steganography encoder system requires following inputs to generate

the stego-information: (a) secret design data and (b) stego-key. The secret

design data is extracted from the colored interval graph (CIG) which in turn is

created from the ODFGsab of input application as shown in Fig. 5.2. The secret

design data is defined as follows. It is a set ‘S’ of indices pairs of nodes of

same colors in the CIG. The details of stego-constraints generation and

Fig. 5.4. Roles and various modes of stego-key1 to stego-key5

57

embedding process are discussed below.

(1) Stego-constraints generation

The crypto-steganography encoder system performs the steps shown in Fig.

5.3 to generate the stego-information in the form of a bitstream. These steps

are elaborated as follows:

(i) State-matrix creation

A state matrix is formed using selected elements of the set representing the

secret design data. The elements are selected based on stego-key1 and the state

matrix is created by arranging four selected elements in each row. There are

various modes of choosing the elements depending on the value of 3-bit stego-

key1 as shown in Fig. 5.4.

(ii) Byte substitution

Each element of the state matrix is subjected to the byte substitution or

nonlinear bit-manipulation performed using forward S-box. The relationship

of final stego-constraints with the stego-key is obscured (Shannon’s property

of confusion) using this process.

(iii) Row diffusion

The row diffusion process obscures the relationship of stego-constraints with

the input secret design data in the matrix (Shannon’s property of diffusion).

The row diffusion is driven through stego-key2. The value of stego-key2

determines the amount of circular right shift to be performed in each row.

Let’s say the number of rows in the matrix are ‘W’, then the stego-key2 size is

2×W bits. The role of stego-key2 and its various modes are highlighted in Fig.

5.4. As per the definition of different modes, the rows of the state matrix are

subjected to diffusion.

(iv) Trifid cipher based encryption

The Trifid cipher provides certain amount of confusion and diffusion to

obscure the relationship of the stego-constraints with the secret design data

and stego-keys. The Trifid cipher based encryption is accomplished on each

unique alphabet of the matrix. The encryption key for each unique alphabet is

determined by the stego-key3. The chosen encryption key contains 27 unique

58

characters to encrypt each unique alphabet. Because of total 27! possible

permutations of 27 characters, the number of bits needed to indicate the key

for an alphabet is ┌(log2(27!)┐. If the number of unique alphabets in the

matrix post diffusion is NA then the total size of stego-key3 to encrypt all

unique alphabets is = NA×┌(log2(27!)┐. To perform the encryption of an

alphabet, the 27 characters of the key are divided into three 3x3 matrices. An

encrypted alphabet is represented in the form of a 3-digit value “xyz”, where

x, y and z denote the row number, column number and the matrix number in

which the input alphabet is located.

(v) Alphabet substitution

Post obtaining encrypted alphabets in the form of 3-digit value “xyz”, the

equivalent single digit is calculated based on stego-key4. There are various

modes of stego-key4 which decide the mathematical expression to be used to

calculate the equivalent single digit for each encrypted alphabet, as shown in

Fig. 5.4. Therefore, the size of the stego-key4 is computed to be

NA×┌(log2(number of modes for calculating single digit equivalent)┐. Post

obtaining the equivalent single digits, they are used to substitute the

corresponding alphabets of state matrix.

(vi) Matrix transposition

In this step, the matrix is transposed.

(vii) Mix column diffusion

Each column of the transposed matrix is subjected to mix column diffusion to

incur the Shannon’s property of diffusion. A circulant MDS (Maximum

Distance Separable) matrix is used to perform the mix column diffusion.

(viii) Byte concatenation

To generate a sequence of bytes, the elements (bytes) of each column in the

updated matrix are concatenated. However, the concatenation for each column

is performed based on the value of stego-key5. There are different modes of

concatenation based on the value of stego-key5 as shown in Fig. 5.4. The size

of stego-key5 is computed to be (number of columns)×┌ (log2(number of

modes for concatenation)┐. Post concatenating all bytes of the state matrix,

59

the obtained byte sequence is converted into a bitstream. Further, the bitstream

can be truncated to the designer’s specified size.

(ix) Bit mapping

The bit ‘0’ and bit ‘1’ in the truncated bitstream are mapped into respective

stego-constraints to enable the embedding into the design during the HLS

process. The mapping of bit ‘0’ and bit ‘1’ is given below.

‘0’ add an edge between node pair (even, even) of CIG

‘1’ odd operations are allocated to FU of vendor type 1 and even operations

are allocated to FU of vendor type 2

(2) Stego-constraints Embedding during HLS

The stego-constraints corresponding to bit ‘0’ and bit ‘1’ are embedded into

the design during register allocation and FU vendor allocation phase

respectively. As per the mapping of bit ‘0’ into stego-constraints, the obtained

constraint edges are embedded into the CIG as additional edges. The

embedding of constraint edges, in some cases, may require additional

colors/registers, thus resulting into design overhead. Further as per the

mapping of bit ‘1’ into stego-constraints, the operations of the ODFGsab are

allocated to the particular FU vendor type specified through the mapping rule.

Thereby, the stego-information is implanted into the design during two

different phases of HLS process. The embedded stego-information enables the

detection of IP theft/piracy.

5.2.3. Detection of IP piracy using crypto-steganography

The detection of steganography in the intended designs enables the

identification of counterfeiting and cloning. The three major processes are

involved in detecting steganography information: (i) secret stego-constraints

generation process (ii) concealed stego-constraints extraction from stego-

embedded RTL datapath of the design (iii) matching of generated and

extracted stego-information to confirm the existence of vendor’s stego-mark

into the design.

5.2.4. Metric used to evaluate the security of double line of defense

60

Following metric are used to evaluate the security achieved using structural

obfuscation and crypto-steganography based double line of defense:

1. Strength of structural obfuscation:

The measure of strength of structural obfuscation is the amount of gates

affected owing to change in overall gate count and the alterations in the

interconnectivity of gates. It is important to note that the modification in the

number and size of RTL components affects the gates of the design; therefore

the change in amount of gates does not follow any fix pattern hence hindering

the attacker in deducing the correct structure of the design.

2. Probability of coincidence of crypto based dual phase steganography:

This metric is measured using the following formula:

Pc = (1 −
1

G
)

f1

× (1 −
1

π
i=1
y

N(Zi)
)

f2

 (5.1)

Where, the first term in the equation corresponds to the Pc due to embedding

constraints in the register binding phase and the second term corresponds to

the Pc due to embedding constraints in the FU vendor allocation phase. Here,

in the first term, G denotes the number of registers before embedding

steganography, and f1 denotes the number of stego constraints added to the

CIG. Further, in the second term, ‘y’ denotes the types of resources in the DSP

application, N(Zi) denotes the number of instances of each FU type and f2

denotes the number of stego constraints added during the FU vendor allocation

phase.

3. Total stego-key size:

Total stego-key size (ST) (in bits) of the crypto-based steganography is given

as follows:

ST= 3 bits+ 2×W+ (NA)×┌(log2(27!)┐+ (NA) ×┌(log2(number of modes for

calculating single digit equivalent)┐+ (number of columns) ×┌(log2(number

of modes for concatenation)┐ (5.2)

5.3. Demonstration of Securing Application Specific

Processors using Double Line of Defense

61

The proposed double line of defense approach is applied on following two

application specific processors for demonstration: (i) JPEG compression

processor (ii) DFT processor.

5.3.1. Securing JPEG compression processor

The application specific processor of the JPEG compression application can be

designed in the RTL form using the HLS process. The HLS process first takes

the algorithmic description of the computational intensive portion of the JPEG

compression application as input and creates a DFG. The computational

intensive portion of a JPEG application is the DCT transformation using the

2D-DCT coefficient matrix followed by compression using the quantization

matrix. The equations that compute the DCT transformation and quantization

are presented in detail in [8], [47]. The corresponding DFG is shown in Fig.

5.5(a).

Fig. 5.5. (a) DFG of JPEG compression application (b) THT based obfuscated DFG

(a) (b)

62

To secure the JPEG compression processor using structural obfuscation and

crypto-steganography based double line of defense against the threats of

potential backdoor insertion and IP piracy, following steps are performed:

(1) Applying structural obfuscation based first line of defense

The DFG of JPEG compression application is subjected to THT based

structural transformation technique to produce obfuscated DFG as shown in

Fig. 5.5(b). This obfuscated DFG is further subjected to scheduling, allocation

and binding steps of HLS using the resource constraints of 3 multipliers and 3

adders, resulting into ODFGsab. Further, this ODFGsab is fed to the crypto-

steganography process for deploying second line of defense.

(2) Applying crypto steganography based second line of defense

The ODFGsab of JPEG compression application is applied with crypto-based

steganography in the following steps:

(i) Obtain a register allocation information or CIG from the ODFGsab.

(ii) Extract the secret design data from the register or color assignment of

ODFGsab.

(iii) Apply the various steps of crypto-steganography based on the

following values of stego-keys:

Stego-key1: “001” (mode-2: select 4 elements and skip 4 elements)

Stego-key2: “11-10-00-01-00-10-10-10-11-10-00-00-10-01-11-11-11-

11-10-00-00-10-10-11-01-11-11-01-11-01-00-11-11-11-00-11-01-11”

Stego-key3:

To encrypt the alphabet ‘a’ = v$qawsedrftgyhujikolpzmxncb

To encrypt the alphabet ‘b’ = qawsedrftgyhujik$olpzmxncbv

To encrypt the alphabet ‘c’ = olpzmxncbv$qawsedrftgyhujik

To encrypt the alphabet ‘d’= gyhujik$olpzmxncbvqawsedrft

To encrypt the alphabet ‘e’= ftgyhujikolpzmxncbv$qawsedr

To encrypt the alphabet ‘f’= lpzmxncbvqawsedrftgyhujik$o

Stego-key4: “010-001-100-101-011-001”

Stego-key5: “000-001-010-011-100-101-001-011-010-100-100-000-

100-100-011-010-001-000-100-101-011-010-001-000-101-011-001-

000-100-101-011-010-001-011-101-011-011-100”

63

The total size of stego-key is computed to be 775 bits using eq. (5.2).

(iv) Post applying the crypto-steganography, the generated bitstream is

truncated to the size of 400.

(v) Post mapping the bits of truncated bitstream into stego-constraints

(using the mapping rules discussed in section 5.2.2), the constraints are

added during the register allocation and FU vendor allocation phase of

HLS.

Post adding the stego-constraints to the design, datapath is synthesized to

generate the stego-embedded and obfuscated RTL design of application

specific processor of JPEG compression application. Because of applying the

proposed double line of defense, the processor becomes secured against the

hardware threats of potential backdoor insertion and piracy.

5.3.2. Securing DFT processor

Discrete Fourier Transform (DFT) is a conversion of a signal from its discrete-

time representation to a discrete-frequency representation. In order to design a

secured application specific processor for a DFT application, the proposed

double line of defense mechanism is integrated with the HLS design process.

In the security aware HLS design flow, the mathematical form of a DFT

application is first subjected to conversion into corresponding DFG

𝑤[0] 𝑤[1] 𝑤[2] 𝑤[3]

𝑊[0]

𝑊[1]

1

2 3

7

11

9

1 1
1

𝑀1
1 𝑀2

1 𝑀1
2

𝑀1
1 𝑀2

1 𝑀1
2 𝐴1

1 𝐴1
2

𝐴1
1

𝐴1
2

𝐴1
1

𝐴1
1

Note: For an FU resource Fb
𝑎, superscript ‘a’ indicates the vendor type and subscript ‘b’ indicates the instance

number

𝑒
−𝑗𝜋

2
𝑤[0] 𝑤[1] 𝑤[2] 𝑤[3] 𝑒−𝑗𝜋

𝑒
−𝑗3𝜋

2

4 5 6

8

12

10

Fig. 5.6. ODFGsab of obfuscated 4-point DFT based on 3M and 2A

V13 V9 V3 V1
V2 V4 V5 V6 V7 V8 V10 V11 V12 V14 CS0

CS1

CS2

CS3

CS4

CS5

V16 V15 V17

V18 V19 V21 V22 V23

V20
V24

V25

V26

×

+ +

+ +

+

+

× ×

× × ×

64

representation. In the proposed approach, the DFG of 4-point DFT application

is constructed to enable the computing of two output values (W[0] and W[1])

concurrently to accelerate the execution. Further the DFG is subjected to

following double line of defense mechanism during HLS process.

(1) Applying structural obfuscation based first line of defense

The DFG of 4-point DFT application is subjected to THT based structural

transformation technique to produce obfuscated DFG. This obfuscated DFG is

further subjected to scheduling, allocation and binding steps of HLS using the

resource constraints of 3 multipliers and 2 adders, resulting into ODFGsab of

DFT application as shown in Fig. 5.6. Further, this ODFGsab is fed to the

crypto-steganography process.

(2) Applying crypto steganography based second line of defense

The ODFGsab of DFT application is applied with crypto-based steganography

in the following steps:

(i) Obtain a register allocation information or CIG from the ODFGsab of

DFT application.

(ii) Extract the secret design data from the register or color assignment.

(iii) Apply the various steps of crypto-steganography based on the

𝑤[0] 𝑤[1] 𝑤[2] 𝑤[3]

𝑊[0]

𝑊[1]

1 2 3

7

11

9

1 1 1

𝑀1
1 𝑀1

2 𝑀2
1

𝑀1
2 𝑀2

1 𝑀1
1 𝐴1

1 𝐴1
2

𝐴1
1

𝐴1
2

𝐴1
2

𝐴1
2

𝑒
−𝑗𝜋

2
𝑤[0] 𝑤[1] 𝑤[2] 𝑤[3] 𝑒−𝑗𝜋 𝑒

−𝑗3𝜋
2

4 5 6

8

12

10

Fig. 5.7. ODFGsab of 4-point DFT post embedding stego-information

CS1

CS2

CS3

CS4

CS5

CS0
V13 V9 V3 V1 V2 V4 V5 V6 V7 V8 V10 V11 V12 V14

V16 V15 V17

V18 V19 V21 V22 V23

V20
V24

V25

V26

×

+ +

+ +

+

+

× ×

× × ×

65

following values of stego-keys:

Stego-key1: “001” (mode-2: select 4 elements and skip 4 elements)

Stego-key2: “01 00”

Stego-key3:

To encrypt the alphabet ‘a’ = v#qawsedrftgyhujikolpzmxncb

To encrypt the alphabet ‘b’ = qawsedrftgyhujik#olpzmxncbv

To encrypt the alphabet ‘d’= gyhujik#olpzmxncbvqawsedrft

To encrypt the alphabet ‘f’= lpzmxncbvqawsedrftgyhujik#o

Stego-key4: “001 001 100 100”

Stego-key5: “001 000”

(iv) Post applying the crypto-steganography, the generated bitstream is

truncated to the size of 27.

Fig. 5.8. Secured 4-point DFT processor at RTL (note: red ovals highlight the change in

input of Muxes due to embedded stego-information)

66

(v) Post mapping the bits into stego-constraints (using the mapping rules

discussed in section 5.2.2), the constraints are added during the register

allocation and FU vendor allocation phase of HLS. Post adding the

stego-constraints, the ODFGsab is shown in Fig. 5.7. Due to adding the

stego-constraints, the storage variables are subjected to constraint

based register allocation and the operations are subjected to constraints

based FU vendor allocation as shown in Fig. 5.7.

Further, datapath is synthesized to generate the stego-embedded and

obfuscated RTL design of application specific processor of DFT

application. Fig. 5.8 shows the RTL design of secured (structurally

obfuscated and stego-embedded) DFT processor.

5.4. Summary

Backdoor insertion and piracy both pose serious threats to hardware security.

This chapter discussed a double line of defense mechanism where structural

obfuscation is applied to combat the potential backdoor insertion threat and

crypto-steganography is applied to combat the IP piracy threat. The metrics

employed to measure the security using the double line of defense approach

were also discussed in the chapter. Further, we demonstrated the process of

generating secured application specific processor IPs for JPEG compression

and DFT applications.

67

Chapter 6

Double Line of Defense Approach using Integrated

Multi-key based Structural Obfuscation and Physical

Level Watermarking to Secure IP Cores

This chapter presents a double line of defense approach employing multi-key

based structural obfuscation as preventive control against potential backdoor

insertion and physical level watermarking as detective control against IP

piracy. The chapter also demonstrates the structural obfuscation and physical

level watermarking based double of defense approach on a finite impulse

response (FIR) filter core. Outline of the chapter is as follows. The first

section formulates the problem. The second section discusses the double line

of defense approach under the following sub-sections: overview, elaborating

multi-key based structural obfuscation acting as a first line of defense and

physical level watermarking acting as a second line of defense, detection of

watermark and metric for evaluating the security achieved using double line of

defense. Further, the third section demonstrates the securing of FIR filter core

using the double line of defense. Finally, the fourth section summarizes the

chapter.

6.1. Problem Formulation

Given the data flow graph (DFG) representation of a target application,

module library, resource constraint, along with the objective of securing IP

cores against IP piracy and hardware Trojan insertion attacks, generate a

secured (structurally obfuscated and watermark embedded) IP core.

6.2. The Double Line of Defense during High Level and

Physical Synthesis Processes for Securing IP Cores

The proposed double line of defense mechanism is employed to counter both

backdoor (Trojan) insertion (resulting from reverse engineering attack) and IP

piracy threats simultaneously. We exploited two different design synthesis

processes to employ the double line of defense viz. high level synthesis and

physical synthesis. The double of defense approach for securing the IP cores is

discussed under the following sub-sections:

68

6.2.1. Overview

The overview of the proposed double line of defense approach is shown in

Fig. 6.1. As highlighted in the figure, the structural obfuscation based first line

of defense technique is unified with the HLS process, rendering the HLS

framework security aware. In the security aware HLS framework, the primary

input is a DFG form of input application. The major steps of applying first line

of defense during the HLS process are as follows: (i) subjecting the DFG to

the key driven five different structural obfuscation technique viz. key driven

loop unrolling, key driven partitioning, key driven redundant operation

elimination, key driven tree height transformation, and key driven folding

transformation alongwith performing scheduling, allocation and binding using

resource constraints and module library to obtain obfuscated scheduled,

allocated and binded DFG (ODFGsab) (ii) synthesizing the obfuscated RTL

datapath secured against the potential backdoor insertion. Thereafter, we

perform the extraction of the list of RTL components from the structurally

obfuscated datapath. Further, the major steps of applying second line of

defense during the physical synthesis process are as follows: (i) creating an

HLS

Key driven structural

obfuscation

Early Floorplanning

Watermarking

DFG representing

DSP application

Structurally obfuscated

RTL design

Obfuscated

watermarked

floorplan

Resource

constraints

Module

library

Extraction of modules list

Logic

synthesis

Gate-level design

(netlist)

Final Floorplan, Placement, routing and layout synthesis

Fig.6.1. The flow of proposed key-driven structural obfuscation and physical level

watermarking based double line of defense

Keys

Author’s

signature

comprising of

α, β and γ

digits

Loop

unrolling

DFG

partitioning

ROE

THT

Folding

Key-1

Key-2

Key-3

Key-4

Key-5

1
st
 line of defense

2
nd

 line of defense

69

early floorplan using the RTL components (ii) applying IP vendor’s signature

(composed of multiple variables viz. α, β and γ) to the early floorplan to obtain

a watermarked floorplan. Post applying the watermarking, subsequent phases

of physical synthesis such as creating final floorplan, placement and routing

are performed to obtain the structurally obfuscated and watermarked IP.

6.2.2. Elaborating multi-key driven structural obfuscation and physical

level watermarking based double line of defense approach

The double line of defense approach is elaborated as follows:

(i) Multi-key based structural obfuscation as a first line of defense

The DFG of input DSP application is subjected to structural obfuscation by

applying five different key-driven techniques. Table 6.1 shows the role of each

structural obfuscation key (SOK) and the corresponding size in bits. The

applied key-driven techniques for structural obfuscation are elaborated as

follows:

(a) Key-driven loop-unrolling technique

The loop body of a DSP application is unrolled in this technique, as per

designers’ chosen SOK-1 indicating the loop unrolling [49] factor (UF) value.

Table 6.1 highlights the role and size of SOK-1. This structural obfuscation

technique results into alterations in the architecture in terms of change in size

of Mux/Demux, number of functional units (FUs) in case of unconstrained

resources, and number of storage elements in the RTL design, thus rendering

the reverse engineering harder to an attacker.

(b) Key-driven DFG partitioning technique

This technique applies m cuts to the unrolled DFG of DSP application in order

to partition it into total ‘m+1’ partitions. The number of cuts applied is driven

Table 6.1 Roles and key-size of different keys used for proposed structural obfuscation

Keys Role Key size in bits

Key-1 To regulate the Unrolling Factor (UF) ┌log2(UFmax)┐

Key-2 To regulate the number of cuts applied

to partition the DFG

┌ (log2 (Max. cut) ┐

Key-3 To regulate ROE across the partitions ┌ (log2 (Max. RO) ┐

Key-4 To regulate THT across the partitions ┌ (log2 (Max. THT) ┐

Key-5 To regulate the folding of resources

across the partitions

┌ (log2 (Max. folding) ┐

70

through the SOK-2. The DFG is portioned in such a way that each resulting

partition holds atleast two connected nodes (operations). Table 6.1 highlights

the role and size of SOK-2. The partitioning based structural obfuscation

technique incurs massive changes in terms of interconnectivity of

Muxes/Demuxes and FU resources, adding to significant obscurity in the RTL

structure of the intended DSP circuit.

(c) Key-driven redundant operation elimination technique

An operation/node is considered to be redundant if its parent and operation

type are same as an existing node in the DFG. This structural obfuscation

technique is applied to the partitions of the DFG, where the redundant

operations are removed based on the value of SOK-3. Table 6.1 highlights the

role and size of SOK-3. This type of obfuscation affects the size and

complexity of the Mux/Demux interconnections in the RTL.

(d) Key-driven tree height transformation technique

The key-driven tree height transformation technique alters the data dependency

of addition operations by converting serial computations into parallel

computations, based on the value of SOK-4. Table 6.1 highlights the role and

size of SOK-4. This technique adds in the obfuscation by incurring the

variations in the interconnectivity of FUs and Muxes/Demuxes inputs/outputs.

(e) Key-driven folding transformation technique

Post performing the scheduling of each individual obfuscated partition

(generated after applying above four structural obfuscation techniques), the

key-driven folding transformation technique is applied to enhance the

obscurity. In an obfuscated scheduled partition, the folding with factor 2 is

performed on two operations of same type executing in different control steps

to enable their execution through the same respective FU resource. The

number of instances where the folding transformation is applied is driven

through the value of SOK-5. Table 6.1 highlights the role and size of SOK-5.

This technique adds in the obfuscation by incurring the structural variation in

terms of reduction in FUs and increase in size of several Mux/Demux and

storage elements.

71

Once the key-driven structural obfuscation techniques are applied, the

datapath of individual obfuscated partitions are synthesized. Further, the

individual obfuscated datapaths are integrated together to generate the single

obfuscated RTL datapath of the target DSP application. This process is

followed by extraction of following RTL modules from the structurally

obfuscated datapath: adders, multipliers, subtractors, comparator, Muxes and

Demuxes. A sorted list ‘T’ of RTL modules is prepared based on their

decreasing size [56]. This list ‘T’ of RTL modules is used in the physical

synthesis process to construct an early floorplan.

(ii) Physical level watermarking as a second line of defense

The early floorplanning stage of physical synthesis process [57] is exploited to

embed the vendor’s watermark that enables detection of IP piracy. The early

floorplan is constructed using the RTL modules. To do so, the list ‘T’ of RTL

modules is traversed from left to right to fetch the modules one by one and

place them so as to grow the floorplan diagonally. Once the early floorplan is

constructed, following steps are performed to embed the watermark.

(a) Choosing vendor’s signature composed of three variables viz. α, β and γ.

The variables have following mapping into corresponding watermarking

constraints:

α  Odd FU module takes the position on the top of even FU module, by

swapping two FU modules of same type.

β Odd Mux takes the position on the top of even Mux, by swapping two

Muxes of same size.

γ Odd Demux takes the position to the right of even Demux, by

swapping two Demuxes of same size.

(b) Three different sorted lists T1, T2 and T3 of FU, Mux and Demux

modules respectively are prepared.

(c) For embedding, α, β and γ digits of the signature, the sorted lists T1, T2

and T3 respectively are traversed. During embedding, if swapping of

modules (FUs or Muxes or Demuxes) satisfies the watermarking

constraints (or participates in implanting a signature digit (α or β or γ))

then the module pair is removed from the respective list (T1 or T2 or T3).

72

Further, the updated lists are exploited to embed remaining respective

digits of the signature.

Post embedding the signature digits, we obtain the watermarked floorplan of

the obfuscated design of target DSP application.

6.2.3. Detection of IP piracy using watermark

The detection of watermark is accomplished in the final floorplanned design

file generated through the physical design tool. The following inputs are

required to generate the final floorplanned design file during the physical

design phase: (i) Verilog file of the design netlist (ii) obfuscated watermarked

early floorplan file (iii) configuration file (iv) library files (f) other applicable

files. Further, the arrangement (positions) of modules in the floorplanned

design file is checked according to the vendor’s signature digits. By examining

the presence of secret watermark in the design, IP piracy can be detected.

6.2.4. Metric used to evaluate the security of double line of defense

Following metrics are used to evaluate the security achieved using multi-key

based structural obfuscation and physical level watermarking based double

line of defense:

1. Strength of structural obfuscation:

The strength of structural obfuscation is measured in terms of change in gate

count. The change in overall gate count due to obfuscation depends on the

change in size and number of the Muxes and Demuxes and number of storage

elements which in turn depends on the potential resource sharing and type of

the application (i.e. number of operations and their dependency) as well as the

applicability of each design transformation technique of obfuscation. More

explicitly, the gate count changes due to applying various techniques of

structural obfuscation. Moreover, alteration in the interconnectivity of various

RTL resources also adds in considerable structure modification in the design.

This makes the design structure unidentifiable for an adversary, thus hindering

malicious effort of backdoor insertion and IP theft.

2. Total structural obfuscation key size:

Total size of structural obfuscation key (SSOK) (in bits) is given as follows:

73

SSOK= (┌log2(UFmax)┐)+(┌ (log2 (Max. cut)┐)+(┌(log2 (Max. RO) ┐)+(┌

(log2(Max. THT)┐)+(┌(log2(Max. folding)┐) (6.1)

3. Probability of coincidence of physical level watermarking:

This metric is measured using the following formula:

𝑃𝑐 = (∏
1

(∑
𝑢(𝑢−1)

2
)−𝑎++𝑢∈𝑈𝑟

α
𝑎=1) ∗ (∏

1

(∑
𝑥(𝑥−1)

2
)−𝑏++𝑥∈𝑋𝑣

β
𝑏=1) ∗ (∏

1

(∑
𝑑(𝑑−1)

2
)−𝑐++𝑑∈𝐷𝑒

γ
𝑐=1) (6.2)

Where, ‘u’ indicates number of instances of FU type Ur, where r is the total

types of FUs; ‘x’ indicates number of Muxes of size Xv, where v indicates

various sizes of Mux in the design; ‘d’ indicates number of Demuxes of size

De, where e indicates various sizes of Demux in the design. Further, the

variables a, b and c vary in the following range: 0≤ a≤ α-1, 0≤ b≤ β-1, 0≤ c≤ γ-

1, where a, b and c represent the corresponding count of swapping pairs

embedded for α, β and γ digits respectively. In the eq. (6.2), the first term

indicates the Pc corresponds to embedding α digits, the second term indicates

the Pc corresponds to embedding β digits and the third term indicates the Pc

corresponds to embedding γ digits.

4. Tamper tolerance:

The proposed watermark is tamper tolerant or resilient against the removal

attack as it covertly inserts vendor’s signature consisting of three distinct

variables (α, β and γ) in the early floorplan of the design. The following metric

is used to measure the tamper tolerance (TS) ability of the watermark:

 TS =Q
Z
 (6.3)

Where, Q denotes the number of distinct variables in the chosen signature and

Z denotes the size of the signature. The value of TS also represents the total

signature space. Larger the signature space, higher is resilience of watermark

against the removal attack.

6.3. Demonstration of Securing IP Cores using Double Line

of Defense

The demonstration of the proposed double line of defense is performed using

FIR filter application. The following equation represents the 160-tap FIR

filter:

74

𝑌[𝑛] = ∑ ℎ[𝑖] ∗ 𝑋[𝑛 − 𝑖]160
𝑖=1 (6.4)

Here, Y[n], h[i] and X[n-i] are the output, constant and input to FIR filter

respectively, where variable ‘i’ is varied from 1 to 160. The corresponding

DFG is shown in Fig. 6.2(a). The multi-key driven structural obfuscation and

physical level watermarking based double line of defense is applied as

follows:

(1) Applying multi-key based structural obfuscation on DFG of FIR filter

The multi-key based structural obfuscation is applied in following steps: (i)

the DFG is unrolled based on UF=16 as shown in Fig. 6.2(b), to perform

unrolling based structural transform. (ii) The unrolled DFG is partitioned into

5 partitions by applying 4 cuts. The applied cuts are highlighted in Fig. 6.2(b)

using red dotted lines. (iii) Further, THT based structural obfuscation

technique is performed on all five partitions as shown in Fig. 6.3 (note: ROE is

not applicable due to absence of redundant nodes). (iv) All partitions are

scheduled followed by applying folding transformation at four different

instances (highlighted in red dotted ovals) of the scheduled obfuscated DFG as

shown in Fig. 6.4.

Fig. 6.2(a) DFG representing 160-tap FIR filter (b) loop unrolled FIR filter with UF=16

 (a) (b)

Fig. 6.3 Post applying THT based obfuscation in all partitions

75

Post performing various key driven techniques of structural obfuscation, the

datapaths of individual partitions is synthesized followed by integrating into a

single obfuscated RTL datapath of FIR filter core as shown in Fig. 6.5.

Further, a following list ‘T’ of RTL modules (arranged in the decreasing order

of their size) is extracted: T={M1, M2, M3, M4, d1, x1, x2, C, d2, d3, d4, d5,

d6, d7, d8, d9, d10, x3, x4, x5, x6, x7, x8, x9, 10, x11, x12, x13, x14, x15,

Fig. 6.4. Obfuscated scheduled FIR filter with applied folding at 4 instances

Fig. 6.5. Key-driven structurally obfuscated RTL datapath of FIR filter

76

x16, x17, x18, 19, x20, A1}. Using this list of RTL modules, an early

floorplan is created as shown in Fig. 6.6.

(2) Applying physical level watermarking on structurally obfuscated FIR filter

core

The physical level watermarking is applied on the early floorplan of the

structurally obfuscated FIR filter core. Let’s assume the designer’s signature

to be “αβαβγγ”. As per the mapping of signature digits into watermarking

constraints, the embedding of watermark is performed on early floorplan. Post

Fig. 6.6. Early floorplan of obfuscated FIR filter

Fig. 6.7. Watermarked floorplan of obfuscated FIR filter (note: the change in the position of

modules due to embedding signature is highlighted using bold)

77

embedding the aforementioned signature, the watermarked floorplan of

structurally obfuscated FIR filter is shown in Fig. 6.7. Post obtaining the

watermarked floorplan, the different phases of physical synthesis are

performed to obtain an obfuscated and watermark embedded layout of FIR

filter application.

6.4. Summary

This chapter discussed a double line of defense mechanism where multi-key

driven structural obfuscation is applied to combat the potential backdoor

insertion threat and physical level watermarking is applied to combat the IP

piracy threat. In the double line of defense approach, the structural obfuscation

technique and watermarking are applied during HLS process and physical

synthesis process respectively. The metrics employed to measure the security

using the double line of defense approach were also discussed in the chapter.

Further, we demonstrated the process of generating secured IP (structurally

obfuscated and watermarked) for the FIR filter application.

78

Chapter 7

Secured Hardware Accelerator Design Approach for

Image Processing Filters

Image processing has important applications in extracting desired information

from images to facilitate detection of objects and individuals etc. Moreover,

the image processing applications find utility in security systems such as

detection of license plates of vehicles, biometric fingerprinting, character

recognition systems, robotics vision and healthcare systems etc. The various

types of filters such as blurring, edge detection, and embossment etc are

exploited to acquire useful information from an input image. In case of real

time image processing, a general purpose processor cannot provide the desired

performance in dealing with larger size of images. With the rapid evolution of

digital imaging technology, image processing applications are progressively

becoming computational-intensive due to increasing complexity of algorithm

and larger image sizes. Thus, real-time processing of images entails expediting

the performance [50]-[52]. Further, low power is also a constraint of mobile

devices. Therefore, low power and high performance requirement encourages

execution of image processing functions through a dedicated hardware

accelerator.

Security of hardware accelerator filter design against reverse engineering

(resulting into secret Trojan insertion) is highly relevant due to globalization

of the chip design process involving offshore untrusted design houses and

foundry. These offshore houses cannot be blindly trusted as an adversary may

illegally reverse engineer the design netlist of the hardware accelerator filter

design and insert Trojan secretly [8]. Thus Trojan infected filter designs could

unknowingly be integrated in the products such as digital camera, cell phones,

webcam etc., and therefore raising grave concern of consumers’ safety. The

consumers’ safety and reliability due to Trojan can be compromised in one or

more of the following forms: leakage of secret information, excessive heat

dissipation, functional failure due to negative bias temperature instability

(NBTI) stress, performance degradation, denial of service etc. [1], [2].

Employing structural obfuscation to the proposed hardware accelerator filter

designs thwart reverse engineering (RE) and hence Trojan insertion by making

79

the design functionality and structure un-obvious to understand by an attacker.

Further, employing structural obfuscation through high level transformation in

high level synthesis (HLS) framework is aptly suitable for data intensive filter

hardware accelerators designs as they rely on HLS framework. Fig. 7.1

highlights the process of generating filtered images using structurally

obfuscated hardware accelerator for image processing filters.

This chapter discusses a novel approach of designing hardware accelerator

architecture for image processing filters of 3×3 and 5×5 kernels using high

level synthesis process. Further, structural obfuscation mechanism is added to

the proposed approach for designing secured (structurally obfuscated)

hardware accelerator architecture for both 3×3 and 5×5 filters. And, this

chapter also discusses the designing of structurally obfuscated 3×3 filters for

five specific image processing applications such as blurring, sharpening,

vertical embossment, horizontal embossment and Laplace edge detection.

Furthermore, a secured 3×3 filter design in reconfigurable functionality mode

is presented where a specific image processing functionality can be configured

using a control input. Outline of the chapter is as follows. The first section

formulates the problem. The second section discusses the design approach of a

secured 3x3 filter hardware accelerator under the following sub-sections:

mathematical foundation of a 3x3 filter design, generating structurally

obfuscated 3x3 filter hardware accelerator, designing re-configurable

structurally obfuscated 3x3 filter architecture and generating secured five

different application specific 3x3 filter designs. Further, the third section

discusses the design approach of a secured 5x5 filter hardware accelerator

under the following sub-sections: mathematical foundation of a 5x5 filter

design and generating structurally obfuscated 5x5 filter hardware accelerator.

Finally, the fourth section summarizes the chapter.

7.1. Problem Formulation

Input

image

Input

pixels

matrix

Structurally obfuscated

hardware accelerator

 2D-Convolution
Filter Kernel

Output

pixels

matrix

Filtered

image

Fig. 7. 1. Generating filtered image using secured hardware accelerator of image processing

filters

80

Given the mathematic functions of 3x3 and 5x5 filter of image processing

applications, along with module library, resource constraint and the objective

of securing the designs against potential hardware Trojan insertion attacks,

generate secured (structurally obfuscated) hardware accelerators architecture.

7.2. Design Approach of a Secured 3x3 Filter Hardware

Accelerator

Some image processing applications that involve 3×3 filter to produce filtered

image are as follows: (i) blurring, (ii) edge detection, (iii) sharpening, (iv)

vertical embossment and (v) horizontal embossment etc. This section

discusses the mathematic foundation of a 3x3 filter processing followed by

generating structurally obfuscated filter hardware accelerator in reconfigurable

functionality mode. Further, we also discuss 3x3 filter designs for

aforementioned five application specific image processing applications.

7.2.1. Mathematical foundation of a 3x3 filter design

An image of size I×J pixels can be represented using an I×J matrix [A](I×J) as

follows.

 

 

      

00 01 0 J 1

10 11 1 J 1

I 1 0 I 1 1 I 1 J 1
I J

X X X

X X X
A

X X X





   





 
 
 
  

 (7.1)

Xij is a pixel value of the input image where i and j vary from 0 to I-1 and 0 to

J-1 respectively. Further, a generic filter or kernel matrix of size n×m is

represented by [F](n×m) . For the kernel of size 3×3, the matrix [F] is given

below:

F=

00 01 02

10 11 12

20 21 22 3 3

f f f
f f f
f f f



 
 
 

 (7.2)

fpq denotes kernel values, where p and q both vary from 0 to 2.

To compute the filter output, 2D-convolution is performed between input and

kernel matrix. The ‘same convolution’ provides output image of same size as

input image. To execute ‘same convolution’, the input matrix is padded with g

number of zero-rows and zero-columns based on the following padding rule:

81

 1
g

2




f

 (7.3)

Where, f denotes the size of filter i.e. f=3 for 3×3 kernels. The enhanced input

matrix, post padding, is shown below:

 

 

      

00 01 0 J 1

10 11 1 J 1

I 1 0 I 1 1 I 1 J 1

N M

0 0 0 0 0

0 X X X 0

0 X X X 0
A

0 X X X 0

0 0 0 0 0





   






 
 
 
 
 
  (7.4)

Where, N×M is the dimension of enhanced input matrix which is given as

(I+2)×(J+2) and a pixel value is represented by aij where i and j vary from 0 to

N-1 and 0 to M-1 respectively.

Suppose [O] is an output matrix which contains the output of the same

convolution between the input and kernel matrix. The dimension of [O] is

given as (N-n+1)×(M-m+1). The following ‘for loop’ is used to compute the

output matrix [O]:

for (w=0; w<(N-n+1) × (M-m+1); w++){

i,p upper value j,q upper value

pq

i,p lower value j,q lower val

w

u

ij

e

O (a f)
 

 

   } (7.5)

For 3×3 filters, p and q take the values from 0 to 2 (i.e. lower value is 0 and

upper value is 2) during calculating each output value Ow. And values of i and

j vary from 0 to N-1 and M-1 respectively across the entire output matrix

computation. During computation of each output value, lower and upper

values of i and j vary in the window of 3 (because kernel matrix of size 3×3

slides over the modified input matrix). For example, for computing 1
st
 output

value O0 using (7.5), lower and upper values of i and j are 0 and 2

respectively. Hence, O0 is given as follows:

i=2,p 2 j=2,q 2

0 ij pq

i=0,p 0 j=0,q 0

O (a f)
 

 

  

 (7.6)

Further, this equation is expanded as follows:

82

      
      
      

0 00 00 01 01 02 02

10 10 11 11 12 12

20 20 21 21 22 22

O a f a f a f

a f a f a f

 a f a f a f

      

     

    

 (7.7)

7.2.2. Generating structurally obfuscated 3x3 filter hardware accelerator

Using the eq. (7.7) as an algorithmic description of 3x3 filter application, the

corresponding hardware accelerator can be designed in the form of RTL

through the HLS process. Further in order to generate a secured 3x3 filter

design, structural obfuscation mechanism is integrated with the HLS design

process. Following two structural transformations are applied for obfuscation:

(i) loop unrolling (ii) tree height transformation. In the loop unrolling based

transformation, the ‘for loop’ represented in eq. (7.5) is unrolled twice. The

loop unrolled DFG computes O0 and O1 concurrently as shown in Fig. 7.2,

where the O0 is computed using eq. (7.7) and O1 is computed using the

following equation:

Fig. 7.2. Loop unrolled DFG of 3×3 image filter application

Fig. 7.3. THT obfuscated loop unrolled DFG of 3×3 image filter application

83

      
      
      

01 00 02 01 03 02

11 10 12 11 13 12

21 20 22 21 23 22

1O a f a f a f

a f a f a f

 a f a f a f

      

     

    

 (7.8)

Further, the unrolled DFG is applied with THT based obfuscation where some

sequential addition operations are executed in parallel as shown in Fig. 7.3.

These obfuscation techniques would impact the design structure by incurring

the changes in the size and number of Muxes and Demuxes, interconnection

path and storage resource count, thereby rendering the design structure non-

interpretable by an attacker. This thwarts the adversary from performing

reverse engineering (RE) and potential backdoor insertion. Further, the

obfuscated DFG is subjected to scheduling phase of HLS using FU constraints

of 3 multipliers (M) and 1 adder (A). . Post perming HLS, we obtain a

structurally obfuscated RTL design of 3x3 filter hardware accelerator.

7.2.2.1. Designing re-configurable structurally obfuscated 3x3 filter

hardware accelerator architecture

The functionality of different 3×3 filter applications can be incorporated into a

Fig. 7.4. Structurally obfuscated hardware accelerator architecture for 3×3 image filter

applications with reconfigurable functionality (note: the reconfigurable functionality is

highlighted within a red box. Red hyphens show the registers needed for storing primary and

intermediate inputs-outputs)

84

single obfuscated hardware accelerator by designing a reconfigurable

architecture. The proposed reconfigurable architecture can be configured to

execute functionality of five different image-processing applications viz.

image blurring, sharpening, vertical and horizontal embossment and Laplace

edge detection. A specific image processing hardware accelerator design is

enabled using a control bit pattern.

In order to design the re-configurable structurally obfuscated 3x3 filter

hardware accelerator architecture, the scheduled obfuscated DFG (obtained in

previous sub-section 7.2.2) is subjected to allocation, binding and datapath

synthesis phases of HLS. In this process, the reconfigurable functionality is

enabled through the Muxes acting as switches for different kernel coefficient

inputs. These Muxes are controlled through a bit pattern “c2c1c0” which has

five different modes to execute five different applications. The re-configurable

structurally obfuscated 3x3 filter hardware accelerator architecture along with

five modes of “c2c1c0” is shown in Fig. 7.4.

7.2.3. Generating secured five application specific 3x3 filter designs

Using eq. (7.7) and eq. (7.8), the mathematical expression of different 3×3

filters of specific applications can be deduced based on their kernel matrix.

This sub-section presents the secured hardware accelerator designs of

following 3x3 filter applications:

7.2.3.1. 3x3 Blur filter design

The kernel matrix of a 3×3 mean filter for blurring is given below:

 F
B
 =1/9 [

1 1 1
1 1 1
1 1 1

]

3×3

 (7.9)

Based on the kernel coefficients, the equation of concurrent output pair “O0

and O1” for the 3×3 blur filter is derived as follows:

O0 = [(a00 + a01 + a02 + a10 + a11 + a12 + a20 + a21 + a22) × (1/9)] (7.10)

O1 = [(a01 + a02 + a03 + a11 + a12 + a13 + a21 + a22+a23) × (1/9)] (7.11)

In order to generate the structurally obfuscated 3x3 Blur filter design, the

above equations are first converted into corresponding DFG representing the

85

unrolled version. Further it is subjected to THT based obfuscation followed by

HLS process to generate the structurally obfuscated RTL design of Blur filter.

The end to end image processing using a secured Blur filter design is shown in

Fig. 7.5.

7.2.3.2. 3x3 sharpening filter design

The kernel matrix of a 3×3 sharpening filter is given below:

 F
S
=[

−1 −1 −1
−1 9 −1
−1 −1 −1

]

3×3

 (7.12)

Based on the kernel coefficients, the equation of concurrent output pair “O0

3×3 Blur Filter Hardware Accelerator

[
71.77 107.5 107.4
107.5 161.1 160.8
107.1 160.4 160.2

]

Pre-processing

Input_Image_11 (225x225)

Post-processing
A portion of Filter output

Output Image (Blur)

Fig. 7.5. End to end demonstration of image blurring application using 3x3 blur filter

86

and O1” for the 3×3 sharpening filter is derived as follows:

O0 = [(a00 + a01 + a02 + a10 + a12 + a20 + a21 + a22) × (−1)] + (a11 × 9)

(7.13)

O1 = [(a01 + a02 + a03 + a11 + a13 + a21 + a22+a23) × (−1)] + (a12 × 9)

(7.14)

 In order to generate the structurally obfuscated 3x3 sharpening filter design,

[
974 652 643
642 160 162
646 166 158

]

Fig. 7.6. End to end demonstration of image sharpening application using a 3x3 filter

3×3 Sharpening Filter Hardware Accelerator

Pre-processing

Input_Image_21 (225x225)

Post-processing A portion of Filter output

Output Image (Sharp)

87

the above equations are first converted into corresponding DFG representing

the unrolled version. Further it is subjected to THT based obfuscation

followed by HLS process to generate the structurally obfuscated RTL design

of sharpening filter. The end to end image processing using secured

sharpening filter design is shown in Fig. 7.6.

7.2.3.3. 3x3 vertical embossment filter design

The kernel matrix of a 3×3 vertical embossment filter is given below:

F
VE

= [
0 0 0
1 0 −1
0 0 0

]

3×3

 (7.15)

Owing to non-symmetric nature of the kernel matrix of vertical embossment

filter, a horizontal flip followed by a vertical flip are applied. This results into

Fig. 7.7. End to end demonstration of vertical embossment application using 3x3 filter

3×3 VE Filter Hardware Accelerator

[
48 2 −1
48 2 −1
48 2 −1

]

Pre-

processing

Input_Image_31 (717×956)

Post-

processing

A portion of

Filter output

Output Image (Vertical Embossment)

88

the following kernel matrix of vertical embossment filter:

F
VE

= [
0 0 0

−1 0 1
0 0 0

]

3×3

 (7.16)

Based on the kernel coefficients, the equation of concurrent output pair “O0

and O1” for the 3×3 vertical embossment filter is derived as follows:

 O0 = [(a10 × (−1))] + [(a12)] (7.17)

O1 = [(a11 × (−1))] + [(a13)] (7.18)

In order to generate the structurally obfuscated 3x3 vertical embossment filter

design, the above equations are first converted into corresponding DFG.

Further it is subjected to THT based obfuscation followed by HLS process to

generate the structurally obfuscated RTL design of vertical embossment filter.

The end to end image processing using secured vertical embossment filter

design is shown in Fig. 7.7.

7.2.3.4. 3x3 horizontal embossment filter design

The kernel matrix of a 3×3 horizontal embossment filter is given below:

F
HE

= [
0 1 0
0 0 0
0 −1 0

]

3×3

 (7.19)

Owing to non-symmetric nature of the kernel matrix of horizontal embossment

filter, a horizontal flip followed by a vertical flip are applied. This results into

the following kernel matrix of horizontal embossment filter:

F
HE

= [
0 −1 0
0 0 0
0 1 0

]

3×3

 (7.20)

Based on the kernel coefficients, the equation of concurrent output pair “O0

and O1” for the 3×3 horizontal embossment filter is derived as follows:

 O0 = [(a21)] + [(a01 × (−1))] (7.21)

O1 = [(a22)] + [(a02 × (−1))] (7.22)

In order to generate the structurally obfuscated 3x3 horizontal embossment

filter design, the above equations are first converted into corresponding DFG.

Further it is subjected to THT based obfuscation followed by HLS process to

89

generate the structurally obfuscated RTL design of horizontal embossment

filter. The end to end image processing using secured horizontal embossment

filter design is shown in Fig. 7.8.

7.2.3.5. 3x3 Laplace edge detection filter design

The kernel matrix of a 3×3 Laplace edge detection filter is given below:

 F
ED

= [
0 −1 0

−1 4 −1
0 −1 0

]

3×3

 (7.23)

Based on the kernel coefficients, the equation of concurrent output pair “O0

and O1” for the 3×3 Laplace edge detection filter is derived as follows:

O0 = [(a01 + a10 + a12 + a21) × (−1)] + (a11 × 4) (7.24)

O1 = [(a02 + a11 + a13 + a22) × (−1)] + [(a12 × 4)] (7.25)

3×3 HE Filter Hardware Accelerator

[
46 48 48
0 0 0
0 0 0

]

Pre-

processing

Input _Image_41 (717×956)

Post-

processing

A portion of

Filter output

Output Image (Horizontal Embossment)

Fig. 7.8. End to end demonstration of horizontal embossment application using 3×3 filter

90

In order to generate the structurally obfuscated 3x3 Laplace edge detection

filter design, the above equations are first converted into corresponding DFG.

Further it is subjected to THT based obfuscation followed by HLS process to

generate the structurally obfuscated RTL design of Laplace edge detection

filter. The end to end image processing using secured Laplace edge detection

filter design is shown in Fig. 7.9.

7.3. Design Approach of a Secured 5x5 Filter Hardware

Accelerator

Some image processing applications e.g. deep embossment uses 5×5 filter to

produce filtered image. This section discusses the mathematic foundation of a

5x5 filter processing followed by generating structurally obfuscated filter

Fig. 7.9. End to end demonstration of edge detection using 3×3 edge detection filter

3×3 Laplace edge detection Filter Hardware Accelerator

[
90 50 49
44 2 1
44 2 1

]

Pre-processing

Input _Image_52 (717×956)

Post-processing A portion of Filter output

Output Image (Edge Detection)

91

hardware accelerator.

7.3.1. Mathematical foundation of a 5x5 filter design

For the kernel of size 5×5, the filter coefficient matrix [F] is given below:

F =

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

40 41 42 43 44 5 5

f f f f f
f f f f f
f f f f f
f f f f f
f f f f f



 
 
 
  

 (7.26)

fpq denote the kernel values, where p and q both vary from 0 to 4.

To execute ‘same convolution’ of 5×5 filter with the input image pixels, first

the input matrix [A], given in (7.1), is padded with g number of zero-rows and

zero-columns based on the padding rule given in eq. (7.3). Since f=5, therefor

g is computed to be 2 using eq. (7.3). The enhanced input matrix, post

padding, is shown below:

 

 

      

00 01 0 J 1

10 11 1 J 1

I 1 0 I 1 1 I 1 J 1

N M

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 X X X 0 0

0 0 X X X 0 0
A

0 0 X X X 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0





   












 
 
 
 
 
 
 
 

 (7.27)

Where, N×M is the dimension of enhanced input matrix which is given as

(I+4)×(J+4) for executing the ‘same convolution’ using 5x5 filter. And the

pixel values are represented by aij where i and j vary from 0 to N-1 and 0 to

M-1 respectively.

The output pixels generated using convolution of updated input matrix [A] and

5x5 filter kernel [F] can be calculated using the ‘for loop’ given in eq. (7.5),

where p and q take the values from 0 to 4 (i.e. lower value is 0 and upper value

is 4) during calculating each output value Ow. And values of i and j vary from

0 to N-1 and M-1 respectively for computing the the entire output matrix [O].

For computing 1
st
 output value O0 using (7.5), lower and upper values of i and

j are 0 and 4 respectively. Hence, O0 is given as follows:

i=4,p 4 j=4,q 4

0 ij pq

i=0,p 0 j=0,q 0

O (a f)
 

 

  

 (7.28)

92

Further, this equation is expanded as follows:

          
          
          
          
       

0 00 00 01 01 02 02 03 03 04 04

10 10 11 11 12 12 13 13 14 14

20 20 21 21 22 22 23 23 24 24

30 30 31 31 32 32 33 33 34 34

40 40 41 41 42 42 43 43 44

O a f a f a f a f a f

a f a f a f a f a f

a f a f a f a f a f

a f a f a f a f a f

a f a f a f a f a f

         

        

        

        

        




   44

(7.29)

7.3.2. Generating structurally obfuscated 5x5 filter hardware accelerator

Using the eq. (7.29) as an algorithmic description of 5x5 filter application, the

corresponding hardware accelerator can be designed in the form of RTL

through the HLS process. Further in order to generate a secured 5x5 filter

design, structural obfuscation mechanism is integrated with the HLS design

Fig. 7.10. Partitioned DFG of 5×5 filter application post performing THT based structural obfuscation

Fig. 7.11. Structurally obfuscated RTL datapath of 5×5 image filter hardware accelerator

93

process. Following two structural transformations are applied for obfuscation:

(i) DFG partitioning (ii) tree height transformation. In the DFG partitioning

based structural obfuscation technique, five cuts are made to create 6

partitions. Further, each partition of the DFG is applied with THT obfuscation.

Thus obtained obfuscated partitioned DFG of 5x5 filter application is shown

in Fig. 7.10. Further, FU constraints of 5M and 2A are applied to perform

scheduling of obfuscated DFG. Finally, structurally obfuscated RTL datapath

of 5x5 filter application is synthesized to generate the secured hardware

accelerator as shown in Fig. 7. 11.

7.4. Summary

This chapter discussed a novel appproach of designing 3x3 and 5x5 filter

hardware accelrators for image processing applications using HLS design

process, to address the low power and high performance requiremrnt. Further,

the threat of RE based hardware Trojan insertion attack was handled by

employing the structural obfuscation during the HLS design process of image

processing filters. The proposed structurally obfuscated 3x3 and 5x5 filter

designs are resilient against the RE by an attacker. Furthermore, we also

demonstrated the image processing applications for five specific structurally

obfuscated filters.

94

Chapter 8

Techniques for Securing Functionally Obfuscated DSP

Cores against Removal Attack

The IP core steganography and watermarking techniques, discussed in the

previous chapters, act as detective control against IP piracy. However, these

approaches cannot prevent IP piracy from happening. A functional obfuscation

mechanism [36] is a preventive control against IP piracy, where the

functionality is obfuscated by locking the design using some key gates or

locking blocks. Thus the functional obfuscation technique produces a locked

netlist which can only be activated by applying a correct key [37]. The

adversary, being unaware of the correct key, cannot illegally use the IP core.

For securing digital signal processing (DSP) cores, functional obfuscation has

been performed by adding IP core locking blocks (ILBs) at the output of

functional units (FUs) [36]. However, a functionally obfuscated design is

susceptible to removal attack [39] where the attacker attempts to remove the

ILBs in order to de-obfuscate it and acquire an unlocked netlist. Thus removal

attack can defeat the goal of functional obfuscation and facilitate IP piracy.

This chapter discusses proposed SHA-512 based key generation hardware and

anti-removal logic (ARL) based key generation unit to secure the ILBs used in

functionally obfuscated DSP cores against the removal attack. The security is

achieved by offering re-configurability to ILBs structures based on the output

of proposed key generation hardware units. The outline of the chapter is as

follows. The first section formulates the problem. The second section provides

the overview of an ILB and its various features. The third section discusses the

SHA-512 based ILB-keys generation hardware under the following sub-

sections: overview, design of custom SHA-512 based key generation

hardware, key based reconfiguration of ILB structure and advantages of using

SHA-512 based ILBs-key generation hardware over AES hardware [53] to

secure against the removal attack. Further, the fourth section discusses the

ARL unit under the following sub-sections: overview, design of ARL unit

based key generation hardware, and advantage of using ARL unit over AES

and SHA-512 based logic to secure against removal attack. Finally, the fifth

section summarizes the chapter.

95

8.1. Problem Formulation

Given the data flow graph (DFG) representation of a target application,

module library, resource constraints, along with the objective of securing IP

cores against IP piracy, generate a removal attack resilient functionally

obfuscated DSP IP core.

8.2. Overview of ILB and its Features

An ILB is interweaved structure of various logic gates such as XOR, XNOR,

AND, NAND, and NOT gates. A sample ILB structure is depicted in Fig. 8.1.

An ILB requires 8-bit long key to be activated. The ILBs are placed into the

design at output bit of each FU such as multiplier and adder to enable logic

locking or functional obfuscation of DSP cores. The various ILB structures are

placed into the gate level design through a repetition pattern of a particular

ILB. A random variable µ is used to achieve this repetition pattern, where µ is

given as follows: 1 ≤ μ ≤𝑇𝐼𝐿𝐵. More explicitly, same ILBs is placed ‘µ’ times

and post ‘µ’ repetitions, next ILB from total ILBs (TILB) is chosen and placed

‘µ’ times. The total ILBs TILB are determined as follows: (total number of

FUs) × (# of output bits of a FU).

The ILBs exhibit following security properties:

(i) Multi-pairwise security: The ILBs are multi-pair wise secured because

one bit of key cannot be sensitized to output without monitoring

remaining key bits.

(ii) Protected against key gate isolation: Since the keys gates are associated

in such a manner that one gate is linked with the key inputs of other

gates; hence an individual key gate of ILBs cannot be isolated. Thus,

k1_0
k1_1

k1_2
k1_

3

k1_

4

k1_5
k1_6

k1_7

Out
In

Fig. 8.1. A sample ILB structure requiring an 8-bit key ‘k1’ to activate

96

the key gate isolation is prohibited to thwart the key sensitization

attack.

(iii) Protected against run of key-gates: The keys gates have been

intertwined in order to thwart the replacement of run of key gates with

single key gate by an adversary, hence hindering key sensitization.

(iv) Non-mutable key gates: The robust composition of keys gates prevents

against muting them without monitoring all the key bits hence

hindering key sensitization.

(v) Thwarting IP piracy: The locked or functionally obfuscated netlist

cannot be misused by an adversary to make illegal income, without

knowing or deducing the correct key. Since the locking using ILBs

involve a larger size key (making brute force almost infeasible) and it

is also protected against key sensitization, therefore the correct key

value cannot be recovered by the adversary.

8.3. SHA-512 based ILB-keys Generation Hardware to

Secure against Removal Attack

8.3.1. Overview of SHA-512 based ILBs-key generation hardware

The overview of employing security using SHA-512 based ILBs-key

generation hardware against the removal attack on a functionally obfuscated

Functionally Obfuscated

DSP Core

Custom Hardware for SHA-512
based ILBs-key generation

logic unit

m-bit Input

512 bits (64*8 bits) encrypted

output used as keys for ‘B’

ILBs (B=64)

Non-encrypted

keys for ILBs

Reconfigured
‘B’ ILBS

‘(T
ILB-

B)’ ILBS Primary

Input

Primary Output

Fig. 8.2. Overview of securing a functionally obfuscated DSP core against the removal attack

using SHA-512 based ILBs-key generation hardware

97

design is shown in Fig. 8.2. As shown, the custom hardware of SHA-512

based ILBs-key generation logic takes arbitrary length (m bits) input to

produce output of B*8 bits, where ‘B’ denotes the count of ILBs to be

reconfigured and ‘8’ denotes the size of key (in bits) per ILB. Since the overall

length of the hash digest is 512-bit and one ILB requests an 8-bit key,

therefore ‘B’ can have the maximum value of 64. More explicitly, upto 64

ILBs of the functionally obfuscated design can be reconfigured using the 512-

bit hash digest generated from the SHA-512 based key generation hardware.

And, the keys of remaining ILBs can be fed without encryption as shown in

the Fig. 8.2. Obtaining ILB keys using SHA-512 based key generation logic

offers strong structural reconfiguration of several ILBs simultaneously. This is

because, an ILB structure is not fixed rather it is determined by the key

generation logic and its arbitrary input of m-bit. Moreover, the architecture of

custom SHA-512 based key generation hardware, its m-bit input and hash

output are not known to the attacker. This thwarts the identification of any

particular ILB in the obfuscated design by an attacker, thus securing against

the removal attack.

The custom SHA-512 based key generation logic is shown in Fig. 8.3. The

following two units participate in the logic: (i) SHA-512 custom logic (ii) ILB

keys-extraction logic. An m-bit string (can be chosen arbitrarily) and initial

hash buffer values are given as input to the SHA-512 custom unit and 512-bit

hash digest is produced at the output. The initial values (standard) of eight

Custom Hardware for SHA-512 based

 ILBs-Key Generation Logic

m-bit

Input

Fig. 8.3. Block diagram of custom hardware for SHA-512 based ILBs-key generation logic

Custom SHA-
512 unit ILB Keys

Extraction
Unit

Initial Hash values

B*8

bits 512-bit Hash

digest

8

.

.

.

8

8

K1

K2

K64

98

hash buffers (a, b, c, d, e, f, g and h), each of size 64 bits, are given below:

a  “6A09E667F3BCC908”, b  “BB67AE8584CAA73B”,

c  “3C6EF372FE94F82B”, d “A54FF53A5F1D36F1”

e  “510E527FADE682D1”, f  “9B05688C2B3E6C1F”

g  “1F83D9ABFB41BD6B”, h  “5BE0CD19137E2179”

The custom SHA-512 unit first translates the m-bit input into a chunk of size

1024-bit, followed by processing of 1024-bit chunk and eight hash buffer

values to produce updated values of the hash buffers in each round. Instead of

choosing fixed 80 rounds of traditional SHA-512, the number of rounds of

execution is customized based on designer’s choice. The final round produces

the 512-bit digest contained in the eight hash buffers. Thereafter, the ILB

keys-extraction unit divides the 512-bit hash digest into the 8-bits long

bitstreams that function as encrypted keys for ILBs. Based on the count of

ILBs to be reconfigured, the corresponding number of bitstreams can be

obtained from the 512-bit digest. Hence by extracting B*8 bits using the key-

extraction unit, ‘B’ number of ILBs of a functionally obfuscated DSP core can

be structurally reconfigured.

8.3.2. Design of custom SHA-512 based key generation hardware

Figure 8.4 shows the internal steps of the custom SHA-512 based key

generation logic. The process of generating ILB-keys is elaborated below

using the following steps:

1. Appending padding bits: The input bitstream of random length (e.g. m

bits) is padded with the following bit sequence “1000…0” to enhance the

length upto 896-bit (considering the length of input bitstream is less than

896 bits).

2. Appending input bitstream length: The length of obtained 896-bit long

chunk is further enhanced to a chunk of 1024-bit by padding the 128 bits

of the length of initial input bitstream.

3. Word extraction: The 64-bit words are extracted to be exploited by the

round function computation (RFC) logic as shown in the Fig. 8.4. The

word is either taken out from the 1024-bit chunk or derived using ‘word

99

computation logic’ (same as standard SHA algorithm). For the first 16

rounds, 64-bit words (W0-W15) are taken out from the 1024-bit chunk.

For the 17
th

 round onwards, a 64-bit word is derived from the ‘word

computation logic’.

4. Constant extraction: The custom SHA-512 logic also exploits sixteen 64-

bit constants (K0, k1,…, K15) which are all standard values. One constant

is extracted from the set of constants for each round of RFC logic.

5. Hash buffer processing: The first round of RFC uses the initial hash buffer.

Appending
padding

bits
(1000…)

Appending

length of

input bit-

pattern

Round Function

Computation (RFC)
 and

Addition Logic

ILBs
Key-

Extraction
logic

Word
 Extraction

Constant
Extraction

Word

Computation

Logic

a
b
c
d
e
f
g
h

.

.

.

.

.

.

W0

W1

W15

K0

K1

K15

Mux
16:1

Mux
16:1

Mux
2:1

Input Bit-

pattern (m-bits)

N*8
 bits

512
 bits

digest

896 1024 64

64*8

64

Fig. 8.4. Block diagram of custom SHA-512 based key generation hardware

100

Further, the updated hash buffer values are generated in the subsequent

rounds of RFC.

6. Round Function Computation (RFC): the processing of round function

exploits the output from the previous 3 steps viz. word extraction, constant

extraction and hash buffer. The RFC logic executes the following six

elementary functions: MAJORITY function, SUMMATION/ ROTATION

‘a’, CHOOSE function, SUMMATION/ ROTATION ‘e’, MIX function-1,

MIX function-2. The hardware of RFC alongwith the logic of each of six

functions is shown in Fig. 8.5. The number of rounds (customized) of the

ROTR
34

(a)

ROTR
39

(a)

CHOOSE FUNCTION

ROTR
14

(e)

ROTR
18

(e)

ROTR
41

(e)

+
MIX FUNCTION_2

+

MIX FUNCTION_1

+

ROTR
28

(a)

a

b

c

e

f

g

d

h

+

W
r
 K

r

ar

br

cr

er

fr

gr

dr

hr

Fig. 8.5. Round Function Computation hardware of custom SHA-512, where ar to hr indicate updated

hash buffer values, Wr and Kr indicate 64-bit word and constant respectively in the round ‘r’

SUMMATION/ROTATION ‘e’

SUMMATION/ROTATION ‘a’

MAJORIY FUNCTION

101

RFC logic is decided by the designer. The hash buffer values obtained post

final round indicate the 512-bit hash-digest.

7. ILBs keys extraction: The ILBs key extraction unit uses the 512-bit hash-

digest to extract the B*8 bits that act as keys for ‘B’ number of ILBs of a

functionally obfuscated design. Using the 512-bit digest, upto 64 ILBs can

be structurally reconfigured by reordering their internal gates such that the

functionality of ILBs is not affected and the output of ILBs is correct only

on applying actual key bits.

The integration of the custom SHA-512 based ILBs-key generation hardware

with a functionally obfuscated DSP core is performed by connecting its output

to the key bits of ILBs. Thus generated the functionally obfuscated DSP

design is resilient against the removal attack.

8.3.3. Key based reconfiguration of ILB structure

The structural reconfiguration of ILBs using the key bits generated from SHA-

512 based key generation hardware is shown in Fig 8.6. Since an ILB needs 8-

bit key to be activated, therefore an 8-bit block is extracted from the 512-bit

output of the SHA-512 based key generation logic to reconfigure the ILB. To

obtain the keys for ‘B’ ILBs, B*8 bits are extracted by the designer. For

demonstration, a single ILB structure is configured based on the following 8-

bit key value obtained from the ILB key selection unit: “10110000”. Thereby,

different ‘B’ number of ILBs can be structurally reconfigured based on the key

bits by reordering the internal gates in an appropriate manner.

8.3.4. Advantage of using SHA-512 based ILBs-key generation hardware

over AES hardware to secure against removal attack

Following cryptographic properties of SHA-512 based key generation

hardware makes its suitable for producing keys for the ILBs: (a) collision

resistance makes difficult to find two such inputs that produce same hash

output (b) one-way random functionality ensures that the input message

cannot be derived from the output hash (c) deterministic property means that

the same hash value is always generated for a given input and (d) each bit of

the digest is a function of every input bit. These security properties of hashing

prevent an attacker to find actual input pattern from output bits. Further, SHA-

102

512 based ILBs-key generation logic offers the following advantages over

AES based logic:

1. AES based key generation logic relies upon fixed secret key for generating

the encrypted output bits that act as key bits for ILB reconfiguration.

However the fixed secret key is vulnerable to standard side channel

attacks, hence can be compromised by the attacker. On the contrary, the

proposed ‘SHA-512 based key generation logic’ does not depend on fixed

secret key to produce the key bits for ILBs reconfiguration, thereby

rejecting the likelihood of side channel attack.

2. AES based logic has capability to provide key-bits to maximum 16 ILBs

using its 128-bit output (since 16*8=128, where each ILB requires 8-bit

key). This prevents a designer from reconfiguring more than 16 ILBs using

AES128 for larger designs (containing several ILBs). This would demand

more than one instance of AES in the obfuscated design to enable

reconfiguration of more ILBs concurrently, hence resulting in excessive

design and power overhead. On the contrary, the proposed ‘SHA-512

based key generation logic’ can generate keys for upto 64 ILBs using its

512-bit hashed output. This leads to lower design and power overhead

compared to AES based logic.

3. Since the AES based logic offers reconfiguration of maximum16 ILBs

only, hence provides less security against removal attack. On the contrary,

the proposed SHA-512 based logic offers reconfiguration of maximum 64

ILBs in its single execution, thus employs higher security compared to

I/P

O/P

Ky_0

Ky_1 Ky_2
Ky_3

Ky_4

Ky_5 Ky_6 Ky_7

Fig. 8.6. Example of a configured ILBy based on the output “10110000” produced from ILB

key selection/extraction logic

103

AES for securing functionally obfuscated DSP designs against the removal

attack.

8.4. Anti-removal Logic (ARL) Unit to Secure against

Removal Attack

8.4.1. Overview of lightweight ARL based ILBs-key generation

hardware

As we discussed earlier, removal attack on ILBs can nullify the goal of

functional obfuscation. The removal attack can be handled by making ILBs

structure undetectable to an adversary. To make the ILBs undetectable,

reconfigured ILBs can be used in place of standard ILB structures. The

structural reconfiguration of ILBs can be performed by producing their keys

from AES128 and SHA-512 based logic. However, SHA-512 and AES128

based ILBs-key generation hardware result in substantial design overhead and

provide lesser security against removal attack in terms of number of input bits

to be decoded to find the ILB key. Here, we discuss a custom lightweight and

highly secure solution against the removal attack using an anti-removal (ARL)

Functionally Obfuscated DSP

Core

Custom Anti-removal Unit

Fig. 8.7 Overview of using ARL unit to protect a functionally obfuscated

DSP core against the removal attack

x*(n+m)

challenge bits

x=B*8 bits output used as

keys for ‘B’ ILBs

Keys for non-

reconfigured

ILBs

Reconfigured
‘B’ ILBS

‘(T
ILB - B)’ ILBS

Primary

Input

Primary Output

ARL

block-1

ARL

block-2

ARL

block-x

. . .

104

unit. The key-bits for ILBs of a functionally obfuscated design are produced

using the ARL unit. Thus produced key-bits determine the structural

configuration of ILBs to enable the security against removal attack.

The security of a functionally obfuscated design using ARL unit is highlighted

in Fig. 8.7. As shown, an ARL unit is a composition of several ARL blocks.

The number of ILBs that the designer has to reconfigure decides the number

of ARL blocks used in an ARL unit. For example, the designer targets to

reconfigure ‘B’ ILBs where each requires an 8-bit key to be activated. Since

each ARL block produces only one bit of ILB key, hence total B*8 ARL

blocks are required to be employed in the ARL unit. Because an adversary is

not known with the custom ARL unit design, he/she cannot recover the keys

of reconfigured ILBs. Hence the adversary is not able to deduce the ILB

structures based on 8-bit keys. This makes the ILBs un-identifiable for the

adversary, thereby hindering the removal attack. Additionally, the ARL unit

itself remains protected against the removal attack as its architecture is

customizable and also not recognizable to the attacker. Moreover, further

camouflaging of the internal gates of ILBs and ARL unit in the entire design

takes place after synthesis. This renders the identification of ILBs by the

adversary highly challenging, thus improving the security against the removal

attack.

8.4.2. Design of ARL based key generation hardware

Multiple ARL blocks are used to constitute an ARL unit, where each ARL

block generates only a single key-bit for ILBs. For generating ‘x’ number of

key-bits, ‘x’ ARL blocks are employed in an ARL unit, where x=B*8. Here, B

indicates the count of ILBs to be reconfigured. Fig. 8.8 depicts the internal

architecture of an ARL block. As depicted in the figure, an ARL block is a

combination of multiple AND-OR networks which produce a single bit of

output. The size and number of AND-OR networks is decided by the

following two sets of the challenge inputs: S = {S0, S1, …, Sn} and C = {C0,

C1, …, Cm}, where the length of challenge inputs ‘S’ and ‘C’ is given as ‘n’

and ‘m’ respectively. The parameter ‘n’ decides the size of AND-OR network

and the parameter ‘m’ decides count of AND-OR networks in an ARL block.

Total 2
m

 AND-OR networks are employed in an ARL block. Further, ‘m’ also

105

decides the size of multiplexer exploited in the ARL block. The value of a

key-bit produced from a selected AND-OR network is decided by the bit-

pattern of challenge input set ‘S’. The challenge input set ‘C’ determines

which AND-OR network will be selected. An AND-OR network architecture,

which is flexible, is shown in Fig. 8.9.

The factors such as the count of ARL blocks, the size of challenge inputs ‘S’

and ‘C’ determine the structure of ARL blocks and the configuration of AND-

OR networks, which in turn determines the architecture of an ARL unit. Since,

these various factors of ARL architecture are tuned by the designer, therefore

only s/he possesses the details of the custom ARL unit. Hence an adversary

cannot know the exact architecture of ARL unit. This makes infeasible for an

adversary to know the ILB keys, therefore the reconfigured ILBs using the

keys generated from the ARL unit go undetected. Thereby, the removal attack

on the ILBs is thwarted.

Fig. 8.9 Overview of an AND-OR network used in ARL block

AND-OR

Network

S0
S1 Sn

0

. . .

 Mux 2
m

:1

AND-

OR

Network-

1

S0 S1 …Sn C0 C1 …Cm

ARL

block

Challenge

bits

AND-

OR

Network-

2

AND-OR

Network-

2
m

. . .

. . .

. . .

n

m

Fig. 8.8 Overview of ARL block

106

8.4.3. Advantage of using lightweight ARL based ILBs-key generation

hardware over AES and SHA-512 based logic to secure against

removal attack

1. The ARL unit offers higher security in terms of number of challenge bits

needed to decode the keys of reconfigured ILBs (from an attacker’s

standpoint). Generating the one bit of an ILB key requires total n + m bits

of the challenge inputs, as discussed earlier. In order to reconfigure 64

ILBs, total 64*8=512 key-bits need to be generated. The 512 key-bits are

generated from 512*(n+m) bits of challenge input of ARL unit. More

explicitly, for n=3 and m=3, determining 512 key-bits require total 3072

bits of challenge input. On the other hand, four instances of AES128 will

be required to generate 512 key-bits to reconfigure 64 ILBs. To decipher

512 bits, total 1024 bits (4×128 bits of fixed secret key + 4×128 bits of

input) of challenge inputs will be required. And, in case of SHA-512 based

logic, input of 1024-bit is required to know by the attacker to decipher the

512-bit output (acting as key-bits for ILBs). Thereby, an ARL unit offers

higher security due to more number of challenge-bits required for cracking

the same number of ILB keys and determining the ILB structures.

2. Producing key-bits for ‘Z’ more ILBs can be performed simply by adding

Z*8 more ARL blocks in the ARL unit. However, producing key-bits for

more ILBs using AES-128 or SHA-512 based logic demands one extra

instance to be used with the functionally obfuscated design. This impacts

area and power requirement. Hence, the ARL unit offers a lightweight

solution to secure a functionally obfuscated design against removal attack.

8.5. Summary

The threat of removal attack is imperative to address to secure the functionally

obfuscated IP cores or to preserve the goal of functional obfuscation. This

chapter discussed SHA-512 and lightweight ARL unit based ILBs-key

generation hardware to handle the removal attack on functionally obfuscated

DSP cores. This chapter discussed the internal architecture of custom SHA-

512 based key generation hardware and ARL unit. Further, we also discussed

the advantages of using SHA-512 and lightweight ARL unit based ILBs-key

generation hardware compared to an AES based solution.

107

Chapter 9

Robust Logic Locking Technique for Preventing IP

Piracy

The IP piracy can be prevented by locking the functionality of the design

through some key gates which are activated using correct keys only. This kind

of technique of obscuring the design functionality is referred to as logic

locking [36]. This chapter discusses a proposed robust logic locking technique

for securing IP cores for DSP applications, by placing DSP locking cells

(DLCs) at selected locations in the design. The proposed novel structure of

DLC uses sequential elements such as flip-flops (FFs) alongwith

combinational elements such as logic gates. The robustness of the proposed

DSP locking cell structure lies in the fact that the probability of recovering the

correct key even in exhaustive trials is rendered considerably lesser than one.

The outline of the chapter is as follows. The first section formulates the

problem. The second section discusses the proposed logic locking technique

for securing DSP cores against IP piracy under the following sub-sections:

overview, proposed DSP locking cells (DLCs) structure, security assessment

of DLCs, insertion of DLCs in the design, metrics used to evaluate security of

the logic locking technique. The third section discusses the different attack

scenarios addressed by the proposed technique. Finally, the fourth section

summarizes the chapter.

9.1. Problem Formulation

Given the data flow graph (DFG) representation of a target application,

module library, resource constraints, along with the objective of securing IP

cores against IP piracy, generate a locked (functionally obfuscated) netlist of

the IP core.

9.2. Logic Locking Technique for Securing DSP Cores

against IP Piracy

This section discusses the proposed logic locking technique for securing DSP

cores under the following subsections:

9.2.1. Overview

108

The overview of logic locking technique for securing DSP IP cores is depicted

in Fig. 9.1. The proposed technique takes following inputs: DFG representing

the target DSP application, module library, resource constraints, designer

specified tuning variable ‘ω’ and keys for the DLCs. The logic locking

technique integrated with the design flow generates a locked netlist at the

output. The following three steps are executed to accomplish the logic locking

process as shown in Fig. 9.1: (i) design a RTL datapath of target DSP

application using high level synthesis (HLS) process (ii) perform locking of

RTL datapath through insertion of reconfigured DLCs based on encoded value

of ‘ω’ which determines the place for DLCs insertion as per its encoding rules

(iii) perform synthesis of locked gate-level netlist. The keys for DLCs to

produce reconfigured DLC structures are obtained from AES-128 output.

To perform the locking of the functionality of the DSP core, we proposed a

Inputs for Proposed Logic Locking

Proposed Locking for DSP cores

Encoding
Rules

Designer

selected

tuning

variable
(ω)

Generate locked RTL datapath by inserting reconfigured DLCs in the un-locked datapath

based on encoded ‘ω’ (DLCs are reconfigured based on AES output to render them
undetectable into the design)

DSP

application
(DFG)

Keys for DLCs

Encrypted

keys from
AES

Non-

encrypted
keys

Generate a Register Transfer Level (RTL) datapath of DSP application using

HLS framework

Synthesize and generate functionally locked gate-level netlist

Resource

constraints

Output

Locked netlist

Fig. 9.1. Overview of proposed logic locking methodology for DSP IP cores

Module
library

109

robust and reconfigurable structure of DLC. This reconfiguration of DLCs is

accomplished using AES128 output. From the security perspective, the

proposed logic locking approach achieves the probability of deducing correct

key in all possible trials (attempting exhaustive key combinations) extremely

lesser compared to the probability of deducing the same in exhaustive trials

using existing logic locking techniques [36], [37]. In other words, in the

proposed technique, the correct key is only possible to be obtained by an

attacker if he/she attempts it at first combination. If the attacker fails to apply

correct key combination at first trial, during providing various key

combinations, then he/she cannot deduce the correct key in the leftover trials.

On the other hand, in the existing logic locking approaches, the probability of

deducing the correct key using exhaustive trials is 1. Thus, the proposed

structure of DLCs ensures higher security than the existing logic locking

technique [36] for DSP cores.

9.2.2. Proposed DSP locking cells (DLCs) structure and its security

properties

The proposed DSP locking cell structure is constituted using following two

logic locking sub-cells (i) sequential logic locking cell (SLLC) (ii)

combinational logic locking cell (CLLC) as shown in Fig. 9.2. A SLLC

comprises of two D flip-flops. We refer these flip-flops as key-FFs in this

chapter, as their functioning is driven by the key bits. Each key-FF acts in

toggling mode. The initial state of each key-FF is required to set to ‘0’. This

setting of key-FFs can be achieved using power on reset. Further, a CLLC

comprises of various logic gates such as OR, NOR, EX-OR, EX-NOR, AND,

NAND and NOT gate. Different arrangements of various logic gates in CLLC

and variations of edge triggering (such as positive and negative) of the key-

FFs in SLLC can produce various reconfigured functional structures of DLCs.

The proposed DLCs exhibit various security properties such as (i) pair-wise

security, protection against key-gate isolation, protection against run of key-

gates, protection against muting of key gates to hinder the sensitization of key

bits at output (ii) involving the outputs of key-FFs with key-gates makes the

hybrid structure of proposed DLC more robust (iii) deducing the valid key

using all possible combinations of key is infeasible, given that the valid key

110

combination is not provided at the first trial (iv) since both type of cells viz. D-

FFs and logic gates participate in the logic locking, therefore detection of only

key-gates or only key-FFs is not enough for an attacker to perform the attacks.

All the key-gates and key-FFs of a DLC are required to be identified by the

attacker. This renders the attacker’s effort tremendously challenging due to

camouflaging of key-FFs and key-gates in the many similar resources of the

gate level netlist of the DSP core (v) the proposed DLC structure requires

lesser number of key-bits (only two per DLC structure), therefore keys for

more DLCs can be obtained from an AES instance.

9.2.3. Security assessment of DLCs

Using the proposed DLCs, obtaining the correct key is only possible if the

attacker attempts it at first trial. The reason of not finding the correct key in

Fig. 9.2. Proposed sample reconfigured DLC structures (where, “K1K2” is a two-bit key)

(b)

SLLC

Q1

K2

K1

I

Q1 D Q2 D

O

CLLC

Q2

(a)

K2

K1

I

 SLLC

 Q1 D Q2 D

O

CLLC
Q1

111

exhaustive combinations except applying it at the first trial is explained in this

sub-section with the help of proposed DLC and timing diagram shown in Fig.

9.2(a) and 9.3 respectively:

The proposed DLC structure leverages the toggling nature of FF elements. A

FF can work in toggling mode on applying a certain input alongwith a clock

signal. In the proposed DLCs, organization of logic gates and key-FFs is such

that the unique feature of toggling of FFs can be exploited for robust security

of logic locking against the brute force attack. To generate a correct output

through proposed DLCs, the output of each key-FF must stay at 0 while

applying the correct key. As shown in Fig. 9.2, the key bits are connected with

the clock input of the key-FFs. Therefore during exhaustive

combinations/trials of key value, variation in key-bits would lead to flipping of

the flip-flop output. This guarantees that the output of a FF does not stay at 0

upon applying the correct key after a wrong key combination applied in the

Fig. 9.3. Waveforms showing that correct output is not obtained unless the correct key is

applied only in the first trial (note- R: right key combination, W: wrong key combination. At

W, output (O) is either complement of input (I’) or 0 and at R, O is always 0)

112

first trial. Hence, the attacker cannot obtain the correct output on exhaustive

key combinations unless the valid key is provided only in the first trial. This

idea is further explained below with the help of the proposed DLC structure,

given Fig. 9.2(a), for different scenarios:

Note: Since each DLC requires two-bit key to activate therefore exhaustive

trials in deducing the correct key of a DLC are four.

1. Scenario of applying valid key in the first trial: If the initial setting of each

key-FF output is 0 and the correct key “01” is provided to the DLC (Fig.

9.2(a)) in the first trial, then the DLC functions correctly. In this case, the

path of DLC from input (I) to output (O) bit is unlocked and valid output is

generated. Thus, the correct output can be produced using DLC on

providing valid key in the first trial. This could be achieved because the

flip-flops output “Q1Q2” are “00” during the application of correct key.

Therefore, the probability of obtaining valid output on providing valid key

in the first trial is 1.

2. Scenario of applying valid key in the second trial: Let’s suppose an invalid

key is applied in the first trial and the valid key “01” is applied in the

second trial. This will make the transition in either of the key bits (K1 or

K2) as depicted in the waveforms shown in Fig. 9.3(a), (b) and (c). This

transition on a key-bit (which is the clock input of flip-flop) will result in

flipping (toggling) on output of respective key-FF and thus “Q1Q2” will

no longer remain at “00”. For example, if invalid key “00” is provided in

the first trial then providing valid key “01” in the second trial results in

transition on key-bit ‘K2’ (as shown in Fig. 9.3(a)) which toggles the

output Q2. This toggling in the output of key-FF results in incorrect output

of the DLC on feeding correct key in the second trial. Therefore, the

probability of obtaining valid output on providing the valid key in the

second trial is 0.

3. Scenario of applying valid key in the third trial: If valid key is fed in the

third trial post two wrong trials, then the valid output is not obtained from

the DLC (Fig. 9.2(a)) as depicted in the waveforms shown in Fig. 9.3(d),

(e), (f), (g), (h) and (i). The underlying reason is that the applying valid

key after two wrong trials results in the transition on key-bits. This

113

transition toggles either Q1 or Q2 or both, hence “Q1Q2” is not

maintained at “00”. Therefore, the probability of obtaining valid output on

providing valid key in the third trial is 0.

4. Scenario of applying valid key in the fourth trial: Similarly, applying valid

key after three wrong trials makes the output of the DLC invalid as

depicted in waveforms shown in Fig. 9.3 (j), (k), (l), (m), (n) and (o).

Therefore, the probability of obtaining valid output on providing valid key

in the fourth trial is also 0.

Although it does not match with our intuition that the probability of obtaining

valid output by feeding valid key is not always 1, however it has been

achieved for the proposed DLC structure as shown in Fig. 9.3. Therefore, the

valid key cannot be deduced through the proposed DLCs in exhaustive trials

except first and this makes the proposed logic locking more robust.

9.2.4. Insertion of DLCs in the design

Figure 9.4 shows the insertion technique of proposed DLCs in the DSP core

design. Before the DLCs insertion process, the structure of DLCs and

locations for their insertion are determined. To determine the locations of the

DLC insertion, the designer specified tuning variable ‘ω’ is used which varies

from 0 to 3 and conform to the following encoding rules:

 ω =0: select even output bits of functional units (FUs) for DLCs insertion

 ω =1; select odd output bits of FUs for DLCs insertion

 ω =2; select prime output bits of FUs for DLCs insertion

 ω =3; select all output bits of FUs for DLCs insertion

The total number of DLCs (TDLC) to be placed in a DSP design is determined

using the following equation:

TDLC =(total # of FUs)×(# of output bits per FU chosen based on ω) (9.1)

For example, if a design contains three FUs each of size 32-bit then total

output bits of FUs are 3×32=96. Therefore, on choosing ω =3, total 96 DLCs

are placed in the design. Post determining the number of DLCS and their

location of insertion based on ω, the DLCs are inserted at selected locations in

the RTL datapath of the DSP design. It is noteworthy that the proposed DLC

structure is not predefined rather it is reconfigurable based on its key value. As

114

shown in Fig. 9.4, a subset of DLCs obtains the keys from AES128 output in

order to generate the reconfigured structure of respective DLCs. Since a DLC

is activated using a two-bit key, therefore 128-bit AES output can be used to

reconfigure upto 64 DLCs. This structural reconfiguration of DLCs disables

an attacker in identifying them in the design, hence hindering the removal

attack.

9.2.5. Metrics used to evaluate security of the logic locking technique

Following metrics are used to evaluate the security achieved using the

proposed logic locking technique:

1. Probability of obtaining valid key in exhaustive trials (Pv)

The Pv is the metric for assessing security of the proposed logic locking in

compared to the existing logic locking techniques [36], [37]. The Pv metric

indicates the probability of deducing the correct key by trying all the possible

key combinations. The equation of Pv is formulated as follows:

𝑃𝑣 = (𝑃𝑎𝑝𝑝𝑙

𝑣𝑘(1)
) . (𝑃𝑜𝑏𝑡

𝑣𝑜(1)
) + (𝑃𝑎𝑝𝑝𝑙

𝑣𝑘(2)
) . (𝑃𝑜𝑏𝑡

𝑣𝑜(2)
) + ⋯ + (𝑃𝑎𝑝𝑝𝑙

𝑣𝑘
(2𝑘𝑏)

) . (𝑃𝑜𝑏𝑡

𝑣𝑜
(2𝑘𝑏)

) (9.2)

Where, kb and 2kb represent the total number of key-bits and the exhaustive

key-combinations or trials respectively.

(𝑃𝑎𝑝𝑝𝑙

𝑣𝑘(1))=probability of applying valid key at 1
st

trial.

(𝑃𝑎𝑝𝑝𝑙

𝑣𝑘(2))= probability of applying valid key at 2
nd

trial.

Decision of the location

for DLCs insertion

Designer

selected tuning

variable (ω)

Encoding

Rules

DLCs Insertion Process

Insert DLCs based on above conditions

1. ω =0; select even output

bits of FUs for DLC insertion

2. ω =1; select odd output

bits of FUs for DLC insertion

3. ω =2; select prime output

bits of FUs for DLC insertion

4. ω =3; select all output bits

of FUs for DLC insertion

AES

128-bit output

(Encrypted keys

for DLCs)

Non-

encrypted

keys for

DLCs

Fig. 9.4. The process of DLCs insertion into RTL datapath of DSP cores

128-bit input

128-bit secret

key

115

(𝑃𝑎𝑝𝑝𝑙

𝑣𝑘
(2𝑘𝑏))=probability of applying valid key at (2𝑘𝑏)th trial.

(𝑃𝑜𝑏𝑡

𝑣𝑜(1))= probability of obtaining valid output on applying valid key at 1
st

trial.

(𝑃𝑜𝑏𝑡

𝑣𝑜(2))= probability of obtaining valid output on applying valid key at

2
nd

trial.

(𝑃𝑜𝑏𝑡

𝑣𝑜
(2𝑘𝑏))=probability of obtaining valid output on applying valid key

at (2𝑘𝑏)th trial.

It seems to be likely that the valid output can be obtained by applying valid

key at any trial (with probability=1). However, this fact is challenged using the

proposed DLC based logic locking technique where an attacker cannot find

valid output even on applying valid key unless it is fed only in the first trial.

More explicitly, this fact is explained for the following two cases:

(i) In case of existing techniques of logic locking [36], [37]: Valid

output can be obtained by applying valid key at any trial with

probability 1. In this case, the trial number in which the correct key is

applied does not matter. The probability of applying valid key at any

trial can be formulated as 1/2𝐾𝑏 as the total possible trials are 2𝐾𝑏 and

the favourable trial is only one in which valid key is fed. Thus, the

probability of obtaining valid key in exhaustive trials (i.e. Pv) is

derived as follows using (9.2):

𝑃𝑣 =
1

2𝐾𝑏
. 1 +

1

2𝐾𝑏
. 1 +

1

2𝐾𝑏
. 1 + ⋯ 2𝐾𝑏𝑡𝑖𝑚𝑒𝑠

 𝑃𝑣 = 2𝐾𝑏
1

2𝐾𝑏

𝑃𝑣 = 1

 (9.3)

The above eq. (9.3) shows that the probability of obtaining valid key in

exhaustive trials is 1 in case of existing logic locking techniques.

(ii) In case of proposed DLC based logic locking: The probability that

the valid output can be obtained on feeding valid key at any trial is not

always 1. Only the probability of obtaining valid output on feeding the

valid key in the first trial is 1. In case of other trials, this probability is

0 due to the structural nature of the proposed DLC. Thus, the

116

probability of obtaining valid key in exhaustive trials is derived as

follows using (9.2):

 𝑃𝑣 =
1

2𝐾𝑏
. 1 +

1

2𝐾𝑏
. 0 + ⋯ +

1

2𝐾𝑏
. 0

 𝑃𝑣 = 1/2𝐾𝑏 (9.4)

In other words, if the valid key is only fed at the first trial, only then

DLC is activated and the attacker can deduce the correct key.

Thereby, security (strength of logic locking) of the logic locking

technique in terms of the probability of obtaining valid key in

exhaustive trials is achieved to be 1/2𝐾𝑏 instead of 1.

2. Encryption strength

Encryption strength (Ens) metric measure the percent of DLC key bits

encrypted using an AES128 output. This metric is given as follows:

 Ens =
Nop

AES

Nkbits
total (9.5)

Where, Nop
AES indicates the number of encypted output bits generated from

AES128 and Nkbits
total indicates the total number of DLC key bits in a design.

9.3. Addressing different Attacks Scenarios

To launch attacks, an attacker is assumed to have access of the following: (i)

locked gate-level netlist or a layout/GDS-II file (ii) sophisticated tools for

reverse engineering to obtain locked gate-level netlist (iii) functional IC of

the locked design. Using the abovementioned facilities, the attacker can try to

unlock the design through various attacks such as: key-sensitization based

attacks [37], SAT attack [40], removal attack [39]. Post obtaining the unlocked

netlist, the design becomes susceptible to IP piracy attack. Various attacks are

addressed using the proposed logic locking technique as follows:

1. Addressing key-sensitization based attacks: A key-bit can be sensitized

at primary output by feeding a suitable input pattern to primary input. In

the proposed DLC, one key bit obstructs the path of sensitization of the

117

other key bit and the complex organization of key-gates and key-FFs

renders the logic locking resilient against the key-sensitization attack

based on the following: (i) isolated key-bits (ii) run of key-gates (iii)

mutable key-gates.

2. Addressing brute force attack: Performing brute-force attack almost

infeasible because of the proposed DLCs based logic locking. This is due

to the fact that the probability of obtaining valid key even in exhaustive

trials is 1/2𝐾𝑏 (highly lesser than one).

3. Addressing SAT attack: The SAT attack works by rejecting wrong key

combinations iteratively with the help of distinguishing input-output (DIO)

pairs. Since the proposed logic locking is employed for DSP IP cores

which contain several multiplication operations, hence the SAT attack is

not feasible due to its non-scalability for multipliers. However, efficient

SAT attack algorithms may be assumed to be developing for DSP cores in

future. The proposed logic locking can be used as a proactive

countermeasure against the potential SAT attack, which can work as

follows. The keys for the proposed DLCs are extracted from the encrypted

output of the custom- AES block which executes a one-way random

function. This prevents an attacker from determining the AES inputs from

its output.

4. Addressing removal attack: If the attacker is assumed to be aware of

some templates of DLC structures and has access to the locked netlist, then

s/he can attempt removal attack on DLCs. However, locked design netlist

using DLCs cannot be subjected to removal attack due to the following

reason. The inside structures of DLCs are reconfigured using the different

combinational logic gates and positive/negative edge triggered D-FFs,

according to the output of AES128 hardware. Thereby multiple DLC

structures are possible, depending on AES output, which are all unknown

to the attacker. Hence, the attacker cannot detect DLCs fully in the locked

design because of his/her unawareness of the DLCs structure, encrypted

output of AES and its corresponding secret key. This prevents an attacker

from matching the reconfigured DLC structures with the available

templates and thus thwarts his/her attempts to remove DLCs.

118

5. Addressing IP piracy attack: The security against IP piracy using logic

locking cannot be realized unless the logic locking is strong enough. The

strength of logic locking is challenged by some key based attacks and

removal attack etc. However, security against these attacks can be ensured

as discussed earlier in this section. Further, the proposed logic locking

prevents the IP piracy as the attacker cannot misuse the IP without

unlocking it using the correct key. Since the probability of finding valid

key in the exhaustive trials is very less due to the proposed logic locking,

hence impeding an attacker from deducing the valid key value.

9.4. Summary

The logic locking technique has been proposed as a preventive measure

against IP piracy. This chapter discussed the proposed DLC based logic

locking technique which is resilient against various attacks such as key

sensitization based attack, removal attack, SAT attack and brute force attack.

Further, the robust structure of proposed DLC makes it nearly infeasible to

obtain valid key even in the exhaustive trials. Various security properties

discussed in the chapter makes the proposed approach highly robust to prevent

the IP piracy attack.

119

Chapter 10

Experimental Results and Analysis

The experimental results and analyses of the proposed techniques of

hardware/IP core security for DSP and multimedia applications are presented

in this chapter. The results have been calculated for various DSP and multi-

media benchmarks [8], [58], [59].

10.1 Results and analysis: Hardware steganography

techniques for securing IP cores against piracy

The experimental results of the proposed hardware steganography techniques

discussed in chapter 3 are presented in this section. 15 nm open cell library

[60] was used to calculate different design parameters such as area and delay.

The following subsections present the results for entropy based steganography

and key-driven hash chaining based steganography techniques respectively.

10.1.1 Evaluating entropy based steganography

The proposed entropy based steganography technique has been

implementation in java and run on processor with specifications “4 GB, DDR3

memory at 1.9 GHz”. The implementation run time ranges between 2.41 to

7.01 seconds. Unlike signature-based IP core security techniques, the proposed

technique is entirely signature free. The amount of vendor’s secret information

embedded can be totally controlled by the vendor/designer using an entropy

threshold value. The security of proposed steganography technique and its

impact on design cost are assessed as follows:

10.1.1.1 Security analysis

For analyzing the security achieved in terms of strength of IP ownership proof,

the probability of coincidence (Pc) metric presented in eq. 3.2 in the section

3.2.5 of chapter 3 is used. Table 10.1 shows the Pc value for the increasing

value of entropy threshold T
E
. As shown, increasing T

E
 leads to increase in the

number of stego-constraints ‘f’ embedded into the design hence resulting into

decreasing value of Pc. The lower Pc value is desirable which represents

120

stronger proof of authorship. Hence, a large entropy threshold value can be

chosen to achieve a stronger proof of authorship.

The comparison of proposed steganography approach with the related works

[25], [31] in terms of the effective stego-constraints embedded in the design is

shown in Fig. 10.1, for designer specified different entropy threshold values.

As shown in Fig. 10.1, the proposed approach embeds more number of

constraints effectively than related approaches [25], [31]. This is because,

[25], [31] possess several constraints by default which is out of designer’s

control. So, effectively lesser constraints are inserted. However the proposed

technique does not contain the constraints by default, thus offering full control

over the number constraints embedded than [25], [31].

10.1.1.2 Design cost analysis

The metric used to compute the design cost of the proposed steganography in

terms of area and delay is discussed in eq. (3.8) of section 3.4 of chapter 3.

Table 10.1. Impact on Pc using proposed IP steganography for different entropy threshold (varying

number of stego-constraints ‘f’)

Benchmark # of

storage
variables

of registers

before
steganography

Value of threshold entropy

TE = 4 TE = 6 TE = 8

f Pc f Pc f Pc

DCT 22 8 13 1.8E-01 24 4.1E-02 43 3.2E-03

FIR 30 8 20 6.9E-02 57 4.9E-04 57 4.9E-04

JPEG_IDCT 135 29 50 1.7E-01 203 8.1E-04 317 1.5E-05

MPEG 41 14 21 2.1E-01 52 2.1E-02 59 1.3E-02

JPEG_sample 44 12 18 2.1E-01 30 7.4E-02 72 1.9E-03

IDCT 49 10 63 1.3E-03 125 1.9E-06 125 1.9E-06

EWF 35 7 12 1.6E-01 34 5.3E-03 57 1.5E-04

0

20

40

60

80

n
u

m
b

er
 o

f
co

n
st

ra
in

ts

 constraints to be added

effective constraints added (proposed work)

 effective constraints added ([25] [31])

0

50

100

150

200

250

n
u

m
b

er
 o

f
co

n
st

ra
in

ts

constraints to be added

 effective constraints added (proposed work)

 effective constraints added ([25] [31])

(a) E
th

=4 (b) E
th

=6

Fig. 10.1. Estimation of the number of effective constraints added for both solutions (considering

same number of constraints) at different entropy threshold

121

Table 10.2 presents the design cost of the proposed approach. Further, Table

10.3 presents the impact on register overhead with varying entropy threshold

value. The variable ‘q’ denotes the number of extra registers needed to implant

the stego-information. As presented in Table 10.3, the register overhead either

increases marginally or remains same with varying entropy threshold value.

This indicates the low overhead attribute of the proposed technique.

Further, the proposed approach is compared with [25], [31] in terms of

registers count as shown in Table 10.4. As shown, the number of registers

needed to embed the same number of constraint edges in case of proposed

approach and [25], [31] is compared. Where # of C denotes the number of

constraints edges to be inserted in both cases, P and R denote the number of

Table 10.2. Design cost of the proposed approach in terms of area and latency

Benchmark Proposed

Solution

LT(ps) AT(μm) Cost

DCT 1A 4M 928 327.15 0.47

FIR 4A 4M 994 383.78 0.44

JPEG_IDCT 12A 12M 1988 1155.27 0.33

MPEG 3A 7M 795 596.11 0.36

JPEG_sample 6A 1M 1325 198.18 0.58

IDCT 4A 3M 1723 309.85 0.48

EWF 2A 1M 2716 118.75 0.66

Table 10.3. Impact on storage overhead on increasing threshold entropy

Benchmark # of
storage

variables

of registers
before

steganography

Value of threshold
entropy resulting into

‘q’ more registers

 q=0 q=1 q=2 q=3 q=4

DCT 22 8 2-6 7 NA NA NA

FIR 30 8 2-5 NA NA NA NA

JPEG_IDCT 135 29 2-9 NA NA NA NA

MPEG 41 14 2-7 NA NA NA NA

JPEG_sample 44 12 2-8 9 NA NA NA

IDCT 49 10 2-5 NA NA NA NA

EWF 35 7 2-7 8 NA 9,10 11

Table 10.4. Comparison of proposed approach with [25], [31] in terms of the # of registers for

the same # of constraints (Note: C - # of constraints added; P – proposed solution; R – related

works; % RR – register reduction % obtained w.r.t. [25], [31])

Benchmark # of Registers required after embedding same number of constraints

TE = 4 TE = 5 TE = 6

#C P R % RR # C P R % RR # C P R % RR

DCT 13 8 9 11 % 18 8 10 20% 24 8 10 20%

FIR 20 8 9 11 % 57 8 10 20% 57 8 10 20%

JPEG_IDCT 50 29 29 -- 124 29 30 3.3% 203 29 30 3.3%

MPEG 21 14 15 6.6 % 46 14 15 6.6% 52 14 15 6.6%

JPEG_sample 18 12 13 7.6 % 20 12 13 7.6% 30 12 13 7.6%

IDCT 63 10 11 9.1 % 125 10 18 44.4% 125 10 18 44.4%

EWF 12 7 8 12.5% 30 7 8 12.5% 34 7 8 12.5%

122

registers needed in the proposed approach and [25], [31] respectively. The

results in the table show that the proposed steganography incurs lesser storage

overhead than [25], [31]. The reason is that the storage overhead in the

signature-based protection techniques [25], [31] depends on the signature

combinations and its encoded meaning. Additionally, foreseeing the

relationship of signature combination with the storage overhead is also not

feasible. On the other hand, the proposed steganography technique is signature

free and hence independent of signature combination.

10.1.2 Evaluating key-driven hash chaining based steganography

The proposed key-driven hash chaining based steganography was

implemented in C++ and run on a processor with specifications “4 GB, DDR3

memory”. The following subsection presents the analysis on security and

design cost of the proposed technique:

10.1.2.1 Security analysis

For analyzing the security achieved in terms of strength of IP ownership proof,

the probability of coincidence (Pc) metric presented in eq. 3.3 in the section

3.3.4 of chapter 3 is used. Table 10.5 shows the Pc value for varying size of

stego-constraints embedded in two different phases (register allocation and FU

vendor allocation) of HLS design process. As shown, we achieved lesser Pc as

the stego-constraints size is increased. Further, implanting stego-information

into two distinct phases shows that the higher amount of digital evidence are

hidden into the design. This strengthens the stego-mark.

Additionally, we analyze the security offered by the proposed technique in

terms of key strength and an attacker’s effort in determining the stego-

constraints embedded into the IP core. The key strength in terms of maximum

Table 10.5. Variation in Pc for increasing size of stego-constraints using proposed key-driven

hash-chaining approach (note: f1 indicates #0s and f2 indicates #1s embedded effectively)

Benchmarks # of

registers
(G)

#constraint Pc #constraint Pc #constraint Pc

f1 f2 f1 f2 f1 f2

DCT 8 13 10 9.9E-3 24 12 1.3E-3 43 12 1.0E-4

FIR 8 20 6 4.7E-2 57 23 1.1E-4 57 23 1.1E-4

JPEG_IDCT 29 203 109 3.8E-4 317 109 6.9E-6 355 109 1.8E-6

MPEG 14 21 16 9.6E-2 52 23 6.9E-3 59 23 4.1E-3

JPEG_sample 12 30 21 1.6E-3 72 31 6.7E-6 116 31 1.4E-7

EWF 7 34 18 2.0E-8 57 28 5.7E-13 86 28 6.5E-15

123

stego-key size (in bits) and attacker’s effort in determining the key are given

using eq. (3.4) and eq. (3.5) respectively discussed in section 3.3.4 of chapter

3. This represents the stronger security of proposed technique against

determining the valid stego-key value by an attacker. The maximum key size

and attacker’s effort in terms of key security are reported in Table 10.6.

Moreover, the attacker is also required to deduce the encoded bits used in each

hash block for finding the stego-constraints embedded into the design. The

attacker’s effort of finding encoded bits, calculated using eq. (3.6) discussed in

section 3.3.4, is shown in Table 10.6. Further, the attacker’s total effort,

calculated using eq. (3.7) discussed in section 3.3.4, is also reported in Table

10.6.

The security achieved in terms of maximum stego-key size is compared with

the entropy based steganography technique. In contrast to the entropy based

steganography technique, the proposed approach offers very large stego-key

size (in bits). This is because the entropy-based steganography technique does

not require stego-key; hence the key size remains zero.

10.1.2.2 Design cost analysis

The metric used to compute the design cost of the proposed hash-chaining

based steganography has been discussed in eq. (3.8) of section 3.4 of chapter

3. Table 10.7 presents the design cost of the proposed approach. As shown, the

design cost either remains same or increases by a nominal value with the

growing size of constraints (#0s and #1s). The reason is that the design may

require extra register in some cases to satisfy larger number of constraints.

Further, Table 10.8 analyzes the design cost overhead by comparing the

baseline cost with the post embedding steganography cost. The table shows

Table 10.6. Security of proposed approach in terms of maximum key size and attacker’s total

effort

Benchmark Maximum key

size using (3.4)

Maximum attacker

effort in terms of key
security (using (3.5))

Maximum attacker effort

in terms of finding encoded
bits (using (3.6))

Total attacker

effort
(using (3.7))

DCT 491520 >10147603 102059 >10149662

FIR 192937984 >1057939334 102059 >1057941393

JPEG_IDCT 5.8153×1035 >101.74×10^35 102059 >101.74×10^35

MPEG 7516192768 >102277634172 102059 >102277636231

JPEG_sample 283467841536 >1085899345920 102059 >1085899347979

EWF 584115552256 >10177004712804 102059 >10177004714863

124

that the proposed steganography has nominal impact on the design cost due to

incurring only a trivial cost overhead (≤ 0.3 %).

10.2 Results and analysis: Hologram based structural

obfuscation to thwart reverse engineering based attacks

The experimental results of the proposed hologram based obfuscation

technique discussed in chapter 4 are presented in this section. For experiments,

we generated following five different hologram based obfuscated DSP

designs, where each is an integration of two DSP cores. (i) IIR-FIR hologram

based obfuscated design, (ii) 4 point DCT- 4 point IDCT, (iii) 8 point DCT- 8

point IDCT (iv) 8 point DCT - 4 point DCT and (v) 8 point DIT-FFT - 4 point

DIT-FFT. Further, for comparative analysis, same DSP applications were also

subjected to HLT based obfuscation technique [45]. A 15nm technology scale

open cell library [60] was used to calculate the gate count and delay overhead

of the designs of proposed technique and [45].

The gate count affected due to proposed obfuscation and [45] is presented in

eq. (4.2) of section 4.2.3 of chapter 4. The comparison of affected gate count

of proposed technique and [45] w.r.t. the baseline counterpart is presented in

Table 10.9 and 10.10 respectively. Further, the comparison of security (in

terms of %gate count affected) due to proposed obfuscation and [45] is

Table 10.7. Impact of increasing size of stego-constraints on the design cost of proposed key driven

hash chaining based steganography approach

Benchmarks effective # of

constraints

embedded

#constraints Design cost

post phase1

& 2

effective # of

constraints

embedded

#constraints Design cost

post phase1 &

2
0s 1s 0s 1s

DCT 23 13 10 0.45357 26 24 12 0.45357

FIR 26 20 6 0.44465 80 57 23 0.44467

JPEG_IDCT 312 203 109 0.3258 426 317 109 0.3258

MPEG 37 21 16 0.37445 75 52 23 0.37479

JPEG_sample 51 30 21 0.47476 103 72 31 0.47783

EWF 52 34 18 0.6632 85 57 28 0.6655

Table 10.8. Comparison of design cost of proposed approach with respect to baseline

Benchmarks Design Cost

(Baseline)

effective # of

constraints embedded

Design cost

(proposed)

Cost overhead in

%

DCT 0.453 23 0.453 0%

FIR 0.445 26 0.447 0%

JPEG_IDCT 0.325 312 0.326 0.3%

MPEG 0.374 37 0.374 0.2%

JPEG_sample 0.473 51 0.475 0.3%

EWF 0.661 52 0.663 0.3%

125

presented in Table 10.11. Based on these results, following subsections

present the analysis of obfuscated design area, delay and security.

10.2.1 Security analysis of proposed hologram based obfuscation

The security is analyzed using the strength of obfuscation metric which has

been discussed using eq. (4.1) in section 4.2.3 of chapter 4. Table 10.11

presents the comparison of obfuscation strength (security) in terms of affected

gate count (using eq. (4.1)) due to proposed hologram based obfuscation and

[45]. Results show that we achieve more security due to larger # of gates

affected compared to [45]. Further, as shown in Table 10.11, affected gate

count for 4-point and 8-point DIT-FFT is 0% using [45] because of non-

applicability of HLT based obfuscation. On the other hand, the proposed

obfuscation offers considerable strength of obfuscation for 8 point DIT-FFT -

4 point DIT-FFT wrt baseline.

Table 10.10 Comparison of affected gate count between [45] and baseline

DSP kernels Gate count of

baseline
(un-obfuscated)

Gate count of

obfuscated design
[45]

of gates changed

in terms of input
connectivity

of gates affected [45]

(based on eq. (4.2)]

IIR 5968 5968 160 160

FIR 3280 3280 64 64

8-pt DCT 50816 50816 1792 1792

8-pt IDCT 50816 50816 1792 1792

4-pt DCT 13120 13120 256 256

4-pt IDCT 13120 13120 256 256

8-pt DIT-FFT 9344 9344 0 0

4-pt DIT-FFT 4672 4672 0 0

Table10.9 Comparison of affected gate count between proposed obfuscation and baseline

DSP kernels Gate Count

of baseline (un-

obfuscated)

Gate Count of

proposed

obfuscation

Gate count

reduction

 (through proposed
obfuscation)

Affected gate

count through

proposed
obfuscation

IIR+FIR 9248 6544 2704 29.2 %

8-pt DCT+8-pt IDCT 101632 55424 46208 45.5%

4-pt DCT+4-pt IDCT 26240 14400 11840 45.1%

8-pt DCT +4-pt DCT 63936 52352 11584 18.1%

8-pt DIT-FFT +

4-pt DIT-FFT

14016 9856 4160 29.7%

Table 10.11 Comparison of security of proposed obfuscation and [45]

DSP kernels # of gates affected
(proposed obfuscation)

of gates
affected ([45])

Affected gate count
(proposed obfuscation)

Affected gate
count ([45])

IIR+FIR 2704 224 29.2 % 2.4%

8-pt DCT+8-pt IDCT 49792 3584 45.5 % 3.5%

4-pt DCT+ 4-pt IDCT 9024 512 45.1% 2.0%

8-pt DCT +4-pt DCT 12096 2048 18.1% 3.2%

8-pt DIT-FFT +

4-pt DIT-FFT

4160 0 29.7% 0%

126

10.2.2 Design area analysis of proposed hologram based obfuscation

The Table 10.10 shows that the gate count of DSP cores due to HLT based

obfuscation [45] remains same as the baseline. Whereas, the gate count of

proposed hologram based obfuscated DSP cores are decreased considerably

compared to its baseline as shown in Table 10.9. Therefore, the proposed

hologram based obfuscation technique offers on average 33.5% savings in

gate count (design area) than [45].

10.2.3 Delay analysis of proposed hologram based obfuscation

The tree height transformation (THT) [45] impacts the critical delay of design.

Therefore, for the chosen DSP benchmarks, the THT technique increases the

tree height by one control step where an operation is executed using the

respective functional unit. Because of this additional control step, the overall

delay using [45] is increased. However, in case of proposed hologram based

obfuscation, the switching elements of hologram obfuscation (which are the

2x1 Muxes) lead to the additional propagation delay. Since the propagation

delay of a 2x1 Mux is considerably lower than a FU, hence lesser delay

overhead is incurred than [45]. Thus, the proposed approach is capable to

provide higher strength of obfuscation at lesser delay overhead than [45].

10.3 Results and analysis: Double line of defense approach

using integrated structural obfuscation and crypto-

steganography to secure IP cores

The experimental results of the proposed structural obfuscation and crypto-

steganography based double line of defense technique discussed in chapter 5

are presented in this section. 15 nm open cell library [60] was used to calculate

different design parameters such as area and delay. The proposed approach has

been implementation in C++ and run on processor with specifications “4 GB,

DDR3 memory at 1.9 GHz”. The experimental results have been analyzed on

JPEG compression processor and DFT processor. The security of proposed

technique and its impact on design cost are assessed as follows:

10.3.1 Security analysis

127

The security achieved through structural obfuscation based first line of defense

is analyzed in terms of strength of obfuscation and the security achieved

through crypto-based steganography is analyzed in terms of probability of

coincidence metric for both JPEG compression processor and DFT processor.

10.3.1.1 Strength of structural obfuscation analysis

The strength of obfuscation of proposed technique has been defined in section

5.2.4 of chapter 5. The significant amount of structural obfuscation is achieved

in terms of the following: (a) alterations in the interconnectivity of high level

components such as adders, and multipliers etc. (b) alterations in the total

count of interconnect binding units such as Muxes and Demuxes (c)

alterations in the total count of storage units such as registers. Because of the

internal architecture concealment using the proposed obfuscation, the attacker

fails to realize his/her ill intentions of inserting malicious logic (backdoor) or

steal the design. For the JPEG compression hardware, the impact of structural

obfuscation on architectural resources and gate count is presented in Table

10.12. Further, the strength of obfuscation analysis for DFT processor is

shown in Table 10.13.

10.3.1.2 Probability of coincidence analysis of crypto-steganography

For analyzing the security achieved using proposed crypto-steganography in

terms of strength of IP ownership proof, the probability of coincidence (Pc)

metric presented in eq. 5.1 in the section 5.2.4 of chapter 5 is used. Table

10.14 shows the Pc value achieved for JPEG compression processor for

varying size of stego-constraints embedded in two different phases (register

allocation and FU vendor allocation) of HLS design process. As evident from

Table 10.12 Comparison of JPEG compression hardware resources pre and post obfuscation

 Resource configuration Structural changes due

to proposed obfuscation

Non-obfuscated JPEG

hardware

4+, 8*, 12(8:1) mux, 12(16:1) mux, 6 (1:8

demux), 6 (1:16 demux)

10064 gates

Structurally obfuscated

JPEG hardware

3+, 3*, 10(32:1) mux, 2(16:1) mux, 5 (1:32

demux), 1 (1:16 demux)

Table 10.13 Security analysis in terms of strength of obfuscation for 4-point DFT processor

Strength of obfuscation of proposed design w.r.t

baseline (unsecured)
Strength of obfuscation of proposed

design w.r.t baseline (%) = Total gates

affected due to obfuscation/ total gates in
baseline

Due to difference

 in gate count

of gates

modified

Total gates

affected

336 4000 4336 (4336/5760)*100 = 75.28%

128

the table, the Pc value reduces with the increasing size of stego-constraints.

The reason is that the effective # of 0s (f1) and the effective # of 1s (f2)

embedded into the design increase with the increasing size of stego-

constraints. Thus, we can achieve lower value of Pc by choosing the large size

of stego-constraints to enhance the strength of steganography. In addition, the

resource constraints (design solutions) used also affect the Pc metric as shown

in Table 10.14 as the number of 0s and 1s of the stego-constraints vary as per

the chosen design solution.

Further, the Pc value in case of DFT processor is presented and compared with

the entropy based steganography approach in Table 10.15. The proposed

crypto-based steganography results in lower Pc because of implanting stego-

information in two distinct phases of HLS compared to implanting only in

single phase in the entropy based steganography. Hence, the proposed

technique implants more digital evidence which leads to stronger proof of

ownership.

10.3.2 Design cost analysis

We used eq. (3.8) as the metric to compute design cost of the proposed

approach. Table 10.16 presents the design cost of the proposed approach for

JPEG compression processor. As evident from the table, the design cost post

crypto-steganography marginally increases for different size of stego-

constraints. The reason is that, post embedding stego-constraints, the design

may undergo more FU allocation of vendor type-2 than that of type-1. As the

Table 10.14 Security analysis (in terms of Pc) of proposed crypto-based steganography approach on

varying size of stego-constraints for different design solutions of JPEG compression processor

Design

solution

Pc

of constraint =100 # of constraint =200 # of constraint =300 # of constraint =400

3+, 3* 1.6245e-3 4.4e-6 2.4e-7 9.89e-8

3+, 5* 1.732e-2 3.39e-4 2.228e-5 9.497e-6

5+, 5* 6.329e-2 4.913e-3 5.907e-4 2.518e-4

7+, 9* 2.092e-1 4.61e-2 1.515e-2 6.87e-3

9+, 9* 2.552e-1 6.496e-2 2.146e-2 1.051e-2

11+, 11* 3.001e-1 8.816e-2 2.821e-2 1.166e-2

Table 10.15 Comparison of security of 4-point DFT in terms of Pc with the entropy

based steganography approach (Note: G=14, f1=14, f2=10, y=2)

Pc (proposed crypto-based steganography) Pc (entropy based steganography)

5.72E-2 3.54E-01

129

area and latency of FUs of vendor type-2 is marginally higher than the vendor

type-1, therefore it results in marginal increase in the cost.

Further, Table 10.17 shows the comparison of design cost of baseline N-point

DFT processor with that of proposed secured design and entropy driven

steganography based secured design. As shown, the design cost of proposed

crypto-steganography is nominally affected due to changes in the size of

Muxes.

10.4 Results and analysis: Double line of defense approach

using integrated multi-key based structural obfuscation and

physical level watermarking to secure IP cores

The experimental results of the proposed multi-key driven structural

obfuscation and physical level watermarking based double line of defense

technique discussed in chapter 6 are presented in this section. 15 nm open cell

library [60] was used to calculate the design cost. The proposed approach has

been implementation in java and run on processor with specifications “4 GB,

DDR3 memory at 1.9 GHz”. The experimental results have been analyzed for

various DSP benchmarks. The security of proposed technique and its impact

on design cost are assessed as follows:

10.4.1 Security analysis

The security achieved through multi-key driven structural obfuscation based

first line of defense is analyzed in terms of strength of obfuscation and total

Table 10.16 Design cost analysis of proposed approach on varying size of stego-constraints for

different design solutions of JPEG compression processor

Design

solution

Pre-

steganograp
hy cost

Design cost of JPEG compression processor pre and post crypto-steganography

of constraint
=100

of constraint
=200

of constraint
=300

of constraint
=400

3+, 3* 0.2167 0.2167 0.2169 0.2173 0.2173

3+, 5* 0.1917 0.1920 0.1924 0.1929 0.1929

5+, 5* 0.1713 0.1713 0.1713 0.1719 0.1719

7+, 9* 0.1718 0.1720 0.1725 0.1729 0.1729

9+, 9* 0.1752 0.1754 0.1757 0.1763 0.1763

11+, 11* 0.1785 0.1785 0.1789 0.1794 0.1794

Table 10.17 Comparison of design cost of DFT processor with baseline and entropy based

steganography

Metric
Baseline
design

Proposed obfuscated and crypto-
steganography secured design

Entropy based
steganography

Post obfuscation Post steganography
Cost 0.4674 0.4674 0.4680 0.466

130

key size and the security achieved through physical level watermarking is

analyzed in terms of probability of coincidence and tamper tolerance for

various DSP benchmarks.

10.4.1.1 Strength of multi-key structural obfuscation analysis

The strength of obfuscation of proposed technique has been defined in section

6.2.4 of chapter 6. Table 10.18 shows the comparative study between non-

obfuscated versus proposed key based structurally obfuscated design. The

change in gate count shown in Table 10.18 happens due to applying various

phases of proposed multi-key structural obfuscation. Moreover, alterations in

the interconnectivity of various resources also incorporate huge variation in

the structure of the design. This makes the structure unidentifiable for an

attacker, thus hindering the malicious attempt of backdoor insertion.

10.4.1.2 Total key size of multi-key structural obfuscation

Incorporation of multiple keys in the proposed obfuscation makes the

decoding of the structural obfuscation highly challenging from an attacker’s

perspective. Hence, the security against the malicious intent of RE and

backdoor insertion is enhanced. The total key size of proposed obfuscation

technique has been defined in eq. (6.1) in section 6.2.4 of chapter 6. And,

Table 10.19 reports the total key size for various DSP benchmarks.

10.4.1.3 Probability of coincidence of physical level watermarking

Table 10.18 Strength of multi-key structural obfuscation in terms of gate count modified

DSP

benchmarks

Total gates in baseline

(non-obfuscated)

Total gates in proposed

approach

Difference in gate count due to

proposed obfuscation

FIR 688 8832 8144

IIR 4464 4128 336

ARF 7360 5888 1472

DCT 3680 4208 528

Differential
Equation

2560 8704 6144

Table 10.19 Total key size for the proposed

obfuscated watermarked design

DSP

benchmarks

Key size (in bits) of

structural obfuscation

FIR 20

IIR 7

ARF 9

DCT 7

Differential
Equation

17

Table 10.20 Security of proposed watermarking

using probability of coincidence (Pc)

DSP

benchmarks

Pc

FIR 8.93E-26

IIR 1.81E-11

ARF 8.6E-16

DCT 8.5E-10

Differential
Equation

6.0E-37

131

For analyzing the security achieved in terms of strength of IP ownership proof

using proposed physical level watermarking, the probability of coincidence

(Pc) metric presented in eq. 6.2 in the section 6.2.4 of chapter 6 is used. Table

10.20 presents the Pc of the proposed approach. As shown, considerably lower

Pc has been obtained for the various DSP benchmarks.

10.4.1.4 Tamper tolerance analysis

For analyzing the security achieved against removal attack on watermark, the

tamper tolerance metric (TS) presented in eq. 6.3 in the section 6.2.4 of chapter

6 is used. Table 10.21 shows the higher tamper tolerance of the proposed

technique for the designer chosen watermark strength. Higher value of TS

represents stronger security against removal attack.

10.4.2 Design cost analysis

We used eq. (3.8) as the metric to compute design cost of the proposed

approach. The design area is computed using the area of the enveloping

rectangle of the floorplan, whereas the execution latency is determined from

the scheduled design. Table 10.22 compares the design cost of proposed

double line of defense technique wrt the baseline design. As shown in the

table, the proposed technique does not incur overhead due to applying

security. The overall design cost is reduced either due to substantial reduction

in latency or floorplan area.

Table 10.21 Tamper tolerance (TS) and brute-force attack analysis of proposed obfuscated

watermarked design

DSP

benchmarks

TS (total combinations representing

signature space)

Probability of finding WM signature using

brute-force attack= (1/TS)

FIR 4.9*106 2.0E-07

IIR 7.3*102 1.4E-03

ARF 5.9*104 1.7E-05

DCT 7.3*102 1.4E-03

Differential

Equation

3.9*108 2.6E-09

Table 10.22 Design cost analysis of proposed approach

DSP benchmarks Design cost of baseline design Design cost of proposed approach

FIR 1 0.326

IIR 0.517 0.491

ARF 0.431 0.412

DCT 0.483 0.482

Differential Equation 0.76 0.455

132

10.5 Results and analysis: Secured hardware accelerator

design approach for image processing filters

The experimental results of the proposed secured hardware accelerator design

approach for image processing filters discussed in chapter 7 are presented in

this section. 15 nm open cell library [60] was used to calculate the design cost.

The experimental results have been analyzed for generic 3x3 and 5x5 filters

and various application specific 3x3 filters. The security of proposed

technique and its impact on design cost are assessed as follows:

10.5.1 Security analysis

Structural obfuscation technique is employed to achieve security of proposed

filter hardware accelerators against the threat of RE and potential backdoor

insertion. Applying obfuscation techniques such as loop unrolling, graph

partitioning and THT incur considerable alteration in the RTL datapath,

without affecting the functionality. A structurally obfuscated netlist obtained

in the proposed technique is considerably altered than the original version in

terms of alteration in the overall gate count and gates connectivity. This

prevents an attacker from reverse engineering the obfuscated netlist to identify

the original structure.

10.5.1.1 Security analysis of generic 3×3 and 5×5 filter hardware

accelerators

Table 10.23 shows the comparison of the RTL modules in the datapath of 3×3

and 5×5 filter hardware accelerators pre and post employing structural

obfuscation. Further, impact of structural obfuscation at gate level is measured

in terms of number of gates affected due to employing obfuscation techniques.

Table 10.24 compares the gate count of 3×3 and 5×5 filter hardware

accelerators pre and post employing structural obfuscation. As shown in the

table, substantial change in number of gates is achieved. This is due to the fact

that the count of datapath modules such as Muxes, Demuxes, FUs and

registers and the size of Muxes and Demuxes noticeably changes post

obfuscation. This change in the datapath is also reflected at gate level post

logic synthesis, resulting in an obfuscated netlist.

133

10.5.1.2 Security analysis of application specific 3×3 filters

hardware accelerators

Security of five image processing applications specific 3×3 filter hardware

accelerators, achieved using structural obfuscation, is analyzed in terms of

number of gates affected. Table 10.25 shows the comparison of the gate count

of blur, sharpening, vertical embossment, horizontal embossment and Laplace

edge detection filter before and after structural obfuscation. The structural

obfuscation incurs huge change in gate count as shown in Table 10.25.

10.5.2 Design cost analysis

We used eq. (3.8) as the metric to compute the design cost of the proposed

approach. Table 10.26 presents the design cost and power of the different

application specific hardware accelerator. The result shows that the design

Table 10.24 Gate count of proposed filter hardware accelerators

Benchmarks # Gates

Proposed processor Proposed obfuscated processor

3×3 Filter 7408 19312

5×5 Filter 23456 22560

Table 10.25 Security analysis of proposed application specific image processing filters

Benchmarks Gate count Gate

difference Proposed processor Proposed obfuscated processor

Blur Filter 3152 6544 3392

Sharpening Filter 3488 7232 3744

Vertical embossment Filter 1120 1792 672

Horizontal embossment Filter 1120 1792 672

Laplace edge detection Filter 2288 4368 2080

Table 10.26 Power and design cost of proposed application specific 3x3 filter

hardware accelerators

Benchmarks Power (μW) Design cost

Blur Filter 21.257 0.682

Sharpening Filter 23.306 0.685

EV Filter 10.012 0.758

EH Filter 10.012 0.758

Laplace edge detection Filter 17.159 0.728

Table 10.23 RTL components of image processing filters of size 3x3 and 5x5 (note: ‘M’, ‘A’

and ‘Reg’ denote multipliers, adders and registers respectively)

Benchmarks RTL components

Baseline Proposed

3×3 Filter M=1, A=1, 8x1 mux=2, 1x8 dmux=1,

16x1 mux=2, 1x16 dmux=1, Reg=20,
Latches=6

M=3, A=1, 8x1 mux=15, 1x8 dmux=3, 16x1

mux=2, 1x16 dmux=1, Reg=86, Latches=12

5×5 Filter M=5, A=2, 8x1 mux=10, 1x8 dmux=5,

16x1 mux=4, 1x16 dmux=2, Reg=76,

Latches=21

M=5, A=2, 2x1 mux=12, 1x2 dmux=6, 4x1

mux=6, 1x4 dmux=3, 8x1 mux=14, 1x8 dmux=7,

Reg=78, Latches=21

134

cost and power dissipation of the proposed designs are low.

10.6 Results and analysis: Techniques for securing

functionally obfuscated DSP cores against removal attack

The experimental results of the proposed techniques for securing functionally

obfuscated DSP cores against removal attack discussed in chapter 8 are

presented in this section. 15 nm open cell library [60] was used to calculate the

design cost. The experimental results for the following proposed techniques

for securing functionally obfuscated DSP cores against the removal attack are

presented in this section: (i) SHA-512 based ILBs-key generation technique (i)

ARL based ILBs-key generation technique. Further, the experimental results

are compared with [36] to analysis the impact of proposed techniques. The

experimental results have been analyzed for various DSP benchmarks. The

security of proposed techniques and its impact on design cost are assessed as

follows:

10.6.1 Results and analysis for SHA-512 based ILB-keys generation

technique

This proposed technique has been implementation on a processor with

specifications “on MD A8- 4500M APU with 4 4 GB DDR3 memory at 1.9

GHz”.

10.6.1.1 Security analysis

Security of the proposed SHA-512 based technique is assessed in terms of the

number of encrypted keys (to reconfigure the ILBs) generated for securing a

functionally obfuscated design. The security comparison of proposed

technique with [36] is accomplished for the same number of locking key-bits

for the ILBs of functionally obfuscated DSP cores. As presented in Table

10.27, the proposed technique generates more number of encrypted key bits

for the ILBs in a functionally obfuscated design than [36]. This results in

larger number of ILBs structure reconfiguration using the proposed technique.

The reason is that the output of proposed key generation logic using SHA-512

is 512-bit long compared to 128 bit output of AES based key generation

approach for ILBs [36]. Even, two AES blocks [36] are capable to provide 256

135

key bits when implemented for IIR, Mesa Horner, DWT, ARF, FIR as shown

in Table 10.27. This is still 50% lesser secured than proposed SHA-512 based

key generation logic. For larger DSP circuits such as JPEG IDCT, Mesa

Interpolate etc., three AES instances can concurrently provide 384 key bits.

However, the proposed one SHA-512 based logic can provide 512 key bits for

ILBs reconfiguration. Average 43.75% enhancement in security is offered by

the proposed approach than [36].

10.6.1.2 Area and power overhead analysis

The gate count of the proposed technique and [36] is compared w.r.t. baseline

(non-obfuscated DSP designs) as shown in Table 10.28. As shown, the gate

count overhead of proposed technique is significantly lower than [36]. This is

because of using more than one instance of AES to enable concurrent

reconfiguration of several ILBs in [36]. This results in gate count overhead

using [36] than the proposed technique and baseline. Further, the power

Table 10.29 Power comparison of baseline design, [36] and proposed work

DSP Benchmark
Power of baseline

(in µW)

Power of [36]

(in µW)

Power of Proposed

methodology (in µW)

% reduction in power of

proposed work wrt [36]

IIR 58.906 721.465 498.904 30.85

Mesa Horner 100.396 750.662 528.101 29.62

DWT 104.750 763.211 540.651 29.16

ARF 154.691 821.861 599.300 27.08

FIR 154.947 834.922 612.362 26.66

JPEG IDCT 567.286 1746.294 1207.052 30.88

Mesa Interpolate 597.507 1650.764 1111.522 32.67

Table 10.28 Gate count comparison of baseline design with [36] and proposed methodology

DSP Benchmark

Gate

count of

baseline

Gate count of [36]

 (Obfuscated design

with AES)

Gate count of proposed methodology

(Obfuscated design with SHA-512

based key encryption hardware)

% reduction in gate

count of proposed

work wrt [36]

IIR 7360 90144 62336 30.84

Mesa Horner 12544 93792 65984 29.65

DWT 13088 95360 67552 29.16

ARF 19328 102688 74880 27.08

FIR 19360 104320 76512 26.66

JPEG IDCT 70880 218192 150816 30.88

Mesa Interpolate 74656 206256 138880 32.67

Table 10.27 Comparison of security in terms of key-bits encrypted for the ILBs of obfuscated

design of proposed approach and [36]

DSP Core Benchmarks
No. of encrypted key-bits for

ILBs using proposed approach

No. of encrypted key-bits

for ILBs using [36]

% increase in

security

IIR 512 256 50 %

Mesa Horner 512 256 50 %

DWT 512 256 50 %

ARF 512 256 50 %

FIR 512 256 50 %

JPEG IDCT 512 384 25 %

Mesa Interpolate 512 384 25 %

136

comparison of baseline design with [36] and proposed technique is presented

in Table 10.29. The power overhead of proposed technique in contrast to

baseline design is lower than [36]. This is because, the design overhead due to

AES block [36] becomes high for improving the security. This results in larger

gate count and thus higher power requirement than proposed technique. This

indicates that the proposed technique is a low power and high secure solution

than [36] against removal attack.

10.6.1.3 Design cost analysis

In computation of the design cost, we included area and power as the design

parameters, where both were given same weightage. Table 10.30 presents the

design cost of obfuscated DSP cores. As evident from the table, the proposed

technique offers significant reduction in the design cost than [36]. This

reduction is achieved owing to integration of relatively lightweight SHA-512

based key encryption hardware compared to AES hardware used in [36] to

achieve enough security.

10.6.2 Results and analysis for ARL based ILB-keys generation

technique

The proposed ARL unit offers a lightweight, low power and more secure

solution against removal attack than [36]. The experimental results were

analyzed in terms of security and area (gate count) overhead.

10.6.2.1 Security analysis

The security is analyzed in terms of number of input (challenge) bits needed to

produce the same number of key bits for ILBs reconfiguration using the

proposed unit and [36]. The substantial improvement in security using

proposed ARL unit compared to [36] is graphically shown in Fig. 10.2. The

Table 10.30 Comparison of design cost of proposed work with [36]

DSP Benchmark Design cost of proposed work Design cost of [36] % reduction in cost

IIR 0.827 0.987 16.2

MESA HORNER 0.719 0.880 18.3

DWT 0.819 0.981 9.2

ARF 0.619 0.775 20.1

FIR 0.604 0.754 19.9

JPEG IDCT 0.419 0.619 32.4

MESA INTERPOLATE 0.319 0.519 38.5

137

reason is as follows. In the results, upto 32 ILBs are reconfigured which

require 256 bits generated from 2 instances of AES128 in case of [36]. The

two instances of AES require 512 bits of input (2*(128+128)) to generate 256

bits for ILB keys. And for larger designs such as Mesa Interpolate and JPEG

IDCT, minimum 48 ILBs are reconfigured (which require three AES

instances). However to reconfigure the same number of ILBs using the

proposed ARL unit, more number of challenge/input bits are required to

generate the ILB keys. This provides more security against guessing correct

key bits used for ILBs reconfiguration. An average 66.67% more input bits

than [36] are required to be known by an attacker in order to deduce the

correct key bits.

512 512 512 512 512
768 768

1536 1536 1536 1536 1536

2304 2304

0

500

1000

1500

2000

2500

#
 o

f
ch

a
ll

en
g

e
b

it
s

DSP benchmarks

 [36] Proposed approach

Fig. 10.2 Security comparison of proposed work with [36]

90144 93792 95360 102688 104320

218192
206256

44800 48448 50016 57344 58976

150176 138240

0

50000

100000

150000

200000

250000

G
a
te

 c
o
u

n
t

DSP benchmarks

Gate count of [36] Gate count of Proposed work

 Fig. 10.3 Gate count comparison of proposed work with [36]

138

10.6.2.2 Area overhead analysis

The proposed ARL unit results in lesser area or gate count overhead than [36]

as shown in Fig. 10.3. The reason is as follows. For generating key bits for the

same number of ILBs, two or three instances of AES are required as discussed

earlier in section 10.6.2.1. This leads to substantial gate count overhead than

the proposed ARL unit. The proposed technique offers an average 42.57%

reduction in gate count than [36].

10.7 Results and analysis: Robust logic locking technique for

preventing IP piracy

The experimental results of the proposed robust logic locking technique for

preventing IP piracy discussed in chapter 9 are presented in this section. The

proposed approach has been implemented on a processor with specifications

“2GB RAM and processor frequency of 2.4 GHz”. The results are calculated

for the DSP benchmarks of size 32-bit (i.e. size of input, output and FUs is 32-

bit). The security of the proposed technique and its impact on design overhead

are assessed as follows:

10.7.1 Security analysis

The security of proposed logic locking technique is analyzed in terms of the

following:

10.7.1.1 Probability of finding valid key in exhaustive trials

This probability Pv is measured using eq. (9.2) discussed in section 9.2.5 of

chapter 9. In case of the existing logic locking techniques [36], [37], the eq.

(9.2) converges into eq. (9.3) and in case of the proposed technique it

converges into eq. (9.4). The comparison of Pv of proposed technique with the

existing technique [36], [37] is shown in Table 10.31. The table shows that we

obtained the Pv very lesser than [36], [37] despite encoding lesser key bits.

The higher security using the proposed logic locking is achieved because of

very less probability of deducing the correct key in exhaustive trials. However,

in case of existing approaches [36], [37], it is likely to find the correct key in

exhaustive trials with probability 1 hence the attack time to find the key is

projected to be finite. Since using the proposed technique, the correct key

139

cannot be deduced in the exhaustive trials except first, hence the attack time to

find the valid key is projected to be infinite (indicating that the time taken will

be much higher than that of obtaining the key using brute-force). Table 10.32

shows the attack time comparison of proposed technique with [36], [37]

(supposing that 1 billion (10
9
) keys can be fed per second.

10.7.1.2 Encryption strength analysis

The encryption strength En
s
 of the proposed logic locking is measured using

eq. (9.5) discussed in section 9.2.5 of chapter 9. Table 10.33 shows the

comparison of encryption strength of the proposed technique with the existing

approaches [36], [37]. As shown, the proposed technique encrypts higher

percentage of key-bits w.r.t. [36], [37] using one AES. The reason is that the

Table 10.31 Comparison of the strength of the proposed logic locking with [36] [37] in terms of

the probability of deducing correct key in exhaustive trials (Pv) using eq. (9.3) and (9.4)

DSP Core

Benchmarks

of key

bits in

locked
design of

[37]

of key

bits in

locked
design of

[36]

of key bits

in locked

design of
proposed

work

Pv using

exhaustive

(2Kb)
trials in

[36] [37]

PCK using

exhaustive

(2Kb) trials in
proposed

work

of times security

enhancement in

proposed
approach w.r.t.

[36] [37]

IIR 384 768 192 1 1.6E-58 6.3E+57

Mesa
Horner

384 768 192 1 1.6E-58 6.3E+57

DWT 384 512 128 1 2.9E-39 3.4E+38

ARF 448 1024 256 1 8.6E-78 1.2E+77

FIR 576 1280 320 1 4.7E-97 2.1E+96

JPEG IDCT 1728 5376 1344 1 2.6E-405 3.8E+404

Table 10.32 Attack time comparison of the proposed logic locking with [36] [37] (note: In proposed

logic locking, correct key cannot be deduced in exhaustive trials except first)

DSP

Benchmark

Estimated attack time

through proposed work

Estimated attack time through

[37] (in years)

Estimated attack time through

 [36] (in years)

IIR ∞ 1.2E+99 4.9E+214

Mesa Horner ∞ 1.2E+99 4.9E+214

DWT ∞ 1.2E+99 4.2E+137

ARF ∞ 2.3E+118 5.7E+291

FIR ∞ 7.8E+156 6.6E+368

JPEG IDCT ∞ 4.8E+503 6.9E+1601

Table 10.33 Comparison of the encryption strength of the proposed logic locking with [36] [37]

DSP

Benchmarks

of key
bits in the

design

of [37]

% of key bits
encrypted of

[37]

(using (9.5))

of key
bits in the

design of

[36]

% of key bits
encrypted of

[36]

(using (9.5))

of key bits
in the

design using

proposed

% of key

bits

encrypted of
proposed

(using (9.5))

IIR 384 33.3% 768 16.7% 192 66.7%

Mesa Horner 384 33.3% 768 16.7% 192 66.7%

DWT 384 33.3% 512 25.0% 128 100%

ARF 448 28.6% 1024 12.5% 256 50.0%

FIR 576 22.2% 1280 10.0% 320 40.0%

JPEG IDCT 1728 7.4% 5376 2.4% 1344 9.5%

140

proposed technique requires lesser key bits than the existing techniques, while

deploying the same number of ILBs in the design.

10.7.2 Design area analysis

Design area of the proposed and existing techniques [36], [37] is assessed in

terms of resource count which is calculated as the count of total required

NAND gates and D-FFs. Table 10.34 presents the % reduction in NAND gates

and % increase in D-FFs using proposed technique compared to existing

techniques [36], [37]. Furthermore, the Table 10.34 presents the overall %

reduction in resource count achieved through proposed approach. The overall

% reduction in the resource count is computed in terms of an algebraic

summation of ‘% decrease in total NAND gates’ and ‘% increase in total D-

FFs’. Table 10.34 shows that the proposed technique achieves on average

25.8% reduction in the resource count with respect to [37] and on average

1.9% reduction with respect to [36]. This indicates that the proposed technique

incurs lesser resource count and hence lesser area than existing techniques

[36], [37].

Table 10.34 Percent reduction in the resource count using proposed work w.r.t. [36] [37]

DSP

Benchmarks

Proposed work

% reduction

in NAND
gates w.r.t.

[37]

% increase

in D-FFs

w.r.t. [37]

Overall %

reduction in
resource count

w.r.t. [37]

% reduction

in NAND
gates w.r.t.

[36]

%

increase
in D-FFs

w.r.t. [36]

Overall %

reduction in
resource count

w.r.t. [36]

IIR 40.7% 3.7% 37.0% 7.4% 3.7% 3.7%

Mesa Horner 32.7% 3.7% 29.0% 6.5% 3.7% 2.8%

DWT 27.3% 2.5% 24.8% 4.2% 2.5% 1.7%

ARF 24.0% 4.7% 19.3% 7.1% 4.7% 2.4%

FIR 33.4% 5.9% 27.5% 8.5% 5.9% 2.6%

JPEG IDCT 30.4% 19.1% 11.3% 13.9% 19.1% 0%

141

Chapter 11

Conclusion and Future work

11.1 Conclusion

The DSP and multimedia applications are prevailing in the modern consumer

electronics. Therefore, the application specific IP cores or hardware

accelerator of DSP and multimedia applications are important part of modern

SoC designs. However, different parties or houses involved in the SoC design

process are situated offshore/globally. This renders the DSP and multimedia

IP cores vulnerable to various kinds of hardware security threats such as IP

piracy and hardware Trojan insertion. These threats may pose substantial

impact on system, services, and users and as well as on IP designer itself. This

thesis presented novel techniques for generating secure IP cores or hardware

accelerators to counter the aforementioned hardware threats. The following

objectives were accomplished:

 Proposed an IP core steganography based hardware security solution to

address the threat of IP piracy by implanting the vendor’s stego-mark

into the design during register allocation phase of HLS process. The

vendor’s stego-mark or steganography information to be implanted

into the design is monitored using a controlling parameter called

entropy threshold. The implanted stego-information incurred negligible

design overhead and produced lower design cost compared to

signature-based IP core protection techniques.

 Proposed an IP core steganography based hardware security solution

that generates a robust stego-mark using a large size stego-key and a

chain of SHA-512 hash blocks. Thus generated stego-constraints

cannot be easily regenerated or back tracked by an adversary to

compromise the stego-mark and misuse it to escape counterfeit

detection. Thus the proposed approach is capable to offer higher

security against the IP piracy threat and outperforms the related works.

 Proposed hologram based structural obfuscation technique that hinders

reverse engineering by camouflaging the functionality of one design

142

into another, hence preventing against Trojan insertion attack.

Likewise a security image hologram, where two distinct images are

camouflaged and displayed at different viewing angles, the proposed

work merges two distinct DSP cores such that each one functions at a

particular bit pattern. Therefore, proposed obfuscation has been called

as hologram based obfuscation which obfuscates two DSP kernels

simultaneously by camouflaging functionality of one DSP kernel into

another.

 Proposed an integrated structural obfuscation and crypto-

steganography based double line of defense mechanism to address both

IP piracy and hardware Trojan insertion threats simultaneously. The

proposed approach has been applied on JPEG compression processor

and DFT processor.

 Proposed an integrated multi-key based structural obfuscation and

physical level watermarking based double line of defense mechanism

to address both IP piracy and hardware Trojan insertion threats

simultaneously. The structural obfuscation is performed using key-

driven partition and key-driven folding knob based transformations

combined with key-driven loop unrolling, key-driven ROE and key-

driven THT, and the proposed physical-level watermarking is

performed through early floorplanning of obfuscated DSP circuit.

 Proposed a HLS driven technique to generate secured hardware

accelerator designs for image processing filters. We addressed the

problem of stringent performance and low power requirement of image

processing applications by designing dedicated hardware for image

processing filters. We also handled the threat of Trojan insertion

through RE by designing structurally obfuscated versions of filters

hardware.

 Proposed SHA-512 based key generation hardware and ARL based

key generation unit to secure the IP core locking blocks (ILBs) used in

functionally obfuscated DSP cores against the removal attack. The

security is achieved by offering re-configurability to ILBs structures

143

based on the output of proposed key generation hardware units.

Proposed logics provide higher security than related work.

 Proposed logic locking of DSP circuits using highly robust DSP

locking cells (DLCs) comprising of combinational gates and flip-flops.

Proposed DLCs are reconfigurable based on AES128 output. The

DLCs are inserted in register transfer level (RTL) datapath based on

designer selected value of ‘ω’. Proposed DLCs are capable of

hindering the probability of obtaining correct key (<<1) even through

exhaustive trials, thus rendering the brute force attack ineffective. The

proposed approach achieved higher security at lower design overhead

than the existing logic locking techniques.

11.2 Future work

In the conventional hardware security techniques for IP cores authentication,

designer’s secret information is not uniquely associated with the designer’s

identity. Therefore in future, we target to offer unique/non-conflicting

authentication to IP cores. To do so, we aim at exploiting the vendor’s unique

information based on physiological or behavioral biometric traits to offer

robust detective control on IP piracy.

144

REFERENCES

[1] Sengupta A. (2020). Secured hardware accelerators for DSP and image

processing applications. The Institute of Engineering and Technology

(IET) Book, e-ISBN: 9781839533075.

[2] Sengupta A. (2020). Frontiers in securing IP cores - Forensic detective

control and obfuscation techniques. The Institute of Engineering and

Technology (IET) Book, ISBN-10: 1-83953-031-6, ISBN-13: 978-1-

83953-031-9.

[3] Colombier B. (2017). Methods for protecting intellectual property of IP

cores designers. Micro and nanotechnologies/Microelectronics,

Université de Lyon, NNT : 2017LYSES038.

[4] Colombier, B, & Bossuet, L. (2014). Survey of hardware protection of

design data for integrated circuits and intellectual properties. IET

Computers & Digital Techniques, 8, (6), p. 274-287.

[5] Saha D. & Sur-Kolay S. (2011). SoC: A real platform for IP reuse, IP

infringement, and IP protection. CAD for Gigascale SoC Design and

Verification Solutions, vol. 2011, doi:10.1155/2011/731957.

[6] Schneiderman R. (2010). DSPs evolving in consumer electronics

applications. IEEE Signal Process. Mag., vol. 27(3), pp. 6–10.

[7] Mahdiany H. R., Hormati A. and Fakhraie S. M. (2001). A hardware

accelerator for DSP system design. in Proc. ICM, pp. 141-144.

[8] Sengupta A., Mohanty S. P (2019). IP core protection and hardware-

assisted security for consumer electronics. The Institute of Engineering

and Technology (IET) Book, ISBN: 978-1-78561-799-7, e-ISBN: 978-1-

78561-800-0.

[9] Sengupta, A. (2016). Cognizance on Intellectual Property: A High-Level

Perspective. IEEE Consumer Electronics Magazine, 5(3), 126-128.

[10] Chakraborty R. S., Bhunia S. (2009). HARPOON: An Obfuscation-

Based SoC Design Methodology for Hardware Protection. IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol. 28 (10), pp. 1493-

1502.

[11] Sengupta, A. (2016). Intellectual property cores: Protection designs for

CE products. IEEE Consumer Electronics Magazine, 5(1), 83-88.

145

[12] Plaza S. M., Markov I. L. (2015). Solving the third-shift problem in IC

Piracy with test-aware logic locking. IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 34(6), pp. 961-971.

[13] Castillo E., Meyer-Baese U., Garcia A., Parilla L., Lloris A. (2007).

IPP@HDL: Efficient intellectual property protection scheme for IP

cores. IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 5,

pp. 578–590.

[14] Gorman, C. (2012). Counterfeit Chips on the Rise. IEEE Spectrum. 49.

16-17. 10.1109/MSPEC.2012.6203952.

[15] Guin U., Huang K., DiMase D., Carulli J. M., Tehranipoor M. and

Makris Y. (2014). Counterfeit Integrated Circuits: A Rising Threat in the

Global Semiconductor Supply Chain. Proceedings of the IEEE, vol. 102,

no. 8, pp. 1207-1228.

[16] Mitra S., Wong H.P. and Wong S. (2015). The Trojan-proof chip. IEEE

Spectrum, vol. 52, no. 2, pp. 46-51.

[17] Tehranipoor, M., & Koushanfar, F. (2010). A survey of hardware Trojan

taxonomy and detection. IEEE design & test of computers, 27(1).

[18] Bhunia, S., Hsiao, M. S., Banga, M., & Narasimhan, S. (2014).

Hardware Trojan attacks: threat analysis and

countermeasures. Proceedings of the IEEE, 102(8), 1229-1247.

[19] McFarland, M. C., Parker, A. C., & Camposano, R. (1990). The high-

level synthesis of digital systems. Proceedings of the IEEE, 78(2), 301-

318.

[20] McFarland, M. C., Parker, A. C., & Camposano, R. (1988). Tutorial on

high-level synthesis. In Proceedings of the 25th ACM/IEEE Design

Automation Conference (pp. 330-336). IEEE Computer Society Press.

[21] Coussy, P., & Morawiec, A. (Eds.). (2008). High-level synthesis: from

algorithm to digital circuit. Springer Science & Business Media.

[22] Gajski, D. D., Dutt, N. D., Wu, A. C., & Lin, S. Y. (2012). High—Level

Synthesis: Introduction to Chip and System Design. Springer Science &

Business Media.

[23] Rajendran, J., Zhang, H., Sinanoglu, O., & Karri, R. (2013). High-level

synthesis for security and trust. In On-Line Testing Symposium (IOLTS),

2013 IEEE 19th International, pp. 232-233.

146

[24] Mishra, V. K., & Sengupta, A. (2014). MO-PSE: Adaptive multi-

objective particle swarm optimization based design space exploration in

architectural synthesis for application specific processor

design. Advances in Engineering Software, 67, 111-124.

[25] Sengupta A., Bhadauria S. (2016). Exploring low cost optimal

watermark for reusable IP cores during high level synthesis. IEEE

Access, vol. 4, pp. 2198-2215.

[26] Hong I. and Potkonjak M. (1999). Behavioral synthesis techniques for

intellectual property security. in Proc. DAC, pp. 849–854.

[27] Kirovski D., Hwang Y., Potkonjak M. and Cong J. (2006). Protecting

combinational logic synthesis solutions. IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 25(12), pp. 2687-2696.

[28] Cui A., Chang C. H. and Tahar S. (2008). IP watermarking using

incremental technology mapping at logic synthesis level. IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol. 27(9), pp. 1565-1570.

[29] Cui A. and Chang C. (2007). Watermarking for IP protection through

template substitution at logic synthesis level. in Proc. ISCAS, New

Orleans, LA, pp. 3687-3690.

[30] Koushanfar, F., Hong, I., & Potkonjak, M. (2005). Behavioral synthesis

techniques for intellectual property protection. ACM Transactions on

Design Automation of Electronic Systems (TODAES), 10(3), 523-545.

[31] Sengupta A., Roy D. (2017). Antipiracy-Aware IP Chipset Design for

CE Devices: A Robust Watermarking Approach. IEEE Consumer

Electronics Mag, vol. 6(2), pp. 118-124.

[32] Le Gal B., Bossuet L. (2012). Automatic low-cost IP watermarking

technique based on output mark insertions. Design Autom. Embedded

Syst., vol. 16(2), pp. 71-92.

[33] Sengupta A., Roy D. (2018). Multi-Phase Watermark for IP Core

Protection. Proc. 36th IEEE International Conference on Consumer

Electronics (ICCE), pp. 1-3.

[34] Sengupta A., Roy D., Mohanty S. P. (2018). Triple-Phase Watermarking

for Reusable IP Core Protection During Architecture Synthesis. IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst, vol. 37(4), pp. 742-

755.

147

[35] Roy J. A., Koushanfar F., and Markov I. L. (2008). EPIC: Ending piracy

of integrated circuits. in Proc. Design Autom. Test Europe, pp. 1069–

1074.

[36] Sengupta A., Kachave D. and Roy D. (2019). Low cost functional

obfuscation of reusable IP cores used in CE hardware through robust

locking. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 38(4), pp. 604-616.

[37] Yasin, M., Rajendran, J. J., Sinanoglu, O., & Karri, R. (2016). On

improving the security of logic locking. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 35(9),

1411-1424.

[38] Zhang, J. (2016). A Practical Logic Obfuscation Technique for

Hardware Security. IEEE Trans. VLSI Syst., 24(3), 1193-1197.

[39] Yasin M., Mazumdar B., Sinanoglu O., and Rajendran J. (2017).

Removal attacks on logic locking and camouflaging techniques. IEEE

Transactions on Emerging Topics in Computing, doi:

10.1109/TETC.2017.2740364.

[40] Subramanyan P., Ray S., and Malik S. (2015). Evaluating the security of

logic encryption algorithms. in IEEE International Symposium on

Hardware Oriented Security and Trust (HOST), pp. 137-143.

[41] Xie Y. and Srivastava A. (2019). Anti-SAT: Mitigating SAT Attack on

Logic Locking. IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., vol. 38(2), pp. 199-207.

[42] Torrance, R., & James, D. (2009). The state-of-the-art in IC reverse

engineering. In Cryptographic Hardware and Embedded Systems-CHES

2009 (pp. 363-381). Springer, Berlin, Heidelberg.

[43] Chakraborty R. S., Narasimhan S. and Bhunia S. (2009). Hardware

Trojan: Threats and emerging solutions. IEEE International High Level

Design Validation and Test Workshop, pp. 166-171.

[44] Lao Y. and Parhi K. K. (2015). Obfuscating DSP Circuits via High-

Level Transformations. IEEE Trans. on Very Large Scale Integr. (VLSI)

Syst., vol. 23(5), pp. 819–830.

[45] Sengupta A., Roy D., Mohanty S.P., and Corcoran P. (2017). DSP

Design Protection in CE through Algorithmic Transformation based

148

Structural Obfuscation. IEEE Transactions on Consumer Electronics,

vol. 63(4), pp. 467 – 476.

[46] Sengupta A. and Roy D. (2017). Protecting an intellectual property core

during architectural synthesis using high-level transformation based

obfuscation. IET Electronics Letters, vol: 53(13), pp. 849 – 851.

[47] Sengupta A., Roy D., Mohanty S.P., and Corcoran P. (2018). Low-cost

obfuscated JPEG CODEC IP core for secure CE hardware. IEEE Trans.

Consum. Electron., vol. 64(3), pp. 365–374.

[48] Sengupta A., Mohanty S. P., Pescador F., Corcoran P. (2018). Multi-

Phase Obfuscation of Fault Secured DSP Designs with Enhanced

Security Feature. IEEE Transactions on Consumer Electronics, vol.

64(3), pp: 356-364.

[49] Sengupta, A. (2015). Exploration of kc-cycle transient fault-secured

datapath and loop unrolling factor for control data flow graphs during

high-level synthesis. Electronics Letters, 51(7), 562-564.

[50] Benda L., Mudry P., Ijspeert A. (2008). Hardware acceleration for image

processing. Technical report EPFL, [online] Available:

http://biorob2.epfl.ch/pages/studproj90/birg67936/rapport.pdf.

[51] Dutta H., Hannig F., Teich J., Heigl B., and Hornegger H. (2006). A

design methodology for hardware acceleration of adaptive filter

algorithms in image processing. in Proc. ASAP, Steamboat Springs, CO,

USA, pp. 331–340,

[52] Ortega-Cisneros S. et al. (2014). Real time hardware accelerator for

image filtering. Progress in Pattern Recognition, Image Analysis,

Computer Vision, and Applications, CIARP, pp. 80-87.

[53] Sengupta A., Mohanty S. P. (2019). Advanced encryption standard

(AES) and its hardware watermarking for ownership protection. Book:

IP Core Protection and Hardware-Assisted Security for Consumer

Electronics. e-ISBN: 9781785618000, pp. 317-335.

[54] Obukhov A., Kharlamov A. (2008). Discrete Cosine Transform for 8x8

Blocks with CUDA. Nvidia whitepaper document.

[55] Matrix Technologies, Hologram Features (2016). [Online]. Available:

http://www.matrixtechnologies.in/hologram-features.html, last accessed

on May 2019.

http://biorob2.epfl.ch/pages/studproj90/birg67936/rapport.pdf

149

[56] Kachave D., Sengupta A. (2016). Integrating physical level design and

high level synthesis for simultaneous multi-cycle transient and multiple

transient fault resiliency of application specific datapath processors.

Microelectronics Reliability, vol. 60, pp. 141-152.

[57] Sait, S. M., & Youssef, H. (1999). VLSI physical design automation:

theory and practice (Vol. 6). World Scientific Publishing Company.

[58] Express benchmark suite, University of California San Diego, 2016,

https://www.ece.ucsb.edu/EXPRESS/benchmark/.

[59] Mohanty S. P., Ranganathan N., Kougianos E., Patra, P. (2008). Low-

power highlevel synthesis for nanoscale CMOS circuits. Springer

Science & Business Media.

[60] 15 nm open cell library. [Online]. Available: https://si2.org/open-cell-

library/, last accessed on Jan. 2020.

https://www.ece.ucsb.edu/EXPRESS/benchmark/

