HARDWARE (IP) SECURITY FOR DSP AND
MULTIMEDIA APPLICATIONS

Ph.D. Thesis

By
MAHENDRA RATHOR

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY INDORE

SEPTEMBER 2021

HARDWARE (IP) SECURITY FOR DSP AND
MULTIMEDIA APPLICATIONS

A THESIS

Submitted in partial fulfillment of the
requirements for the award of the degree

of
DOCTOR OF PHILOSOPHY

by
MAHENDRA RATHOR

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY INDORE

SEPTEMBER 2021

INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis entitted HARDWARE (IP)
SECURITY FOR DSP AND MULTIMEDIA APPLICATIONS in the partial fulfillment of the
requirements for the award of the degree of DOCTOR OF PHILOSOPHY and submitted in the
DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING, INDIAN INSTITUTE OF
TECHNOLOGY INDORE, is an authentic record of my own work carried out during the time period
from DECEMBER, 2018 to SEPTEMBER 2021 under the supervision of Dr. ANIRBAN SENGUPTA,
Associate Professor, Indian Institute of Technology, Indore.

The matter presented in this thesis has not been submitted by me for the award of any other degree

of this or any other institute.

Signature of the student with date
(MAHENDRA RATHOR)

This is to certify that the above statement made by the candidate is correct to the best of my/our

knowledge.

Signature of Thesis Supervisor with date
(ANIRBAN SENGUPTA)

MAHENDRA RATHOR has successfully given his/her Ph.D. Oral Examination held on

Signature of Chairperson (OEB) Signature of External Examiner Signature(s) of Thesis Supervisor(s)

Date: Date: Date:

Signature of PSPC Member #1 Signature of PSPC Member #2 Signature of PSPC Member #3
Date: Date: Date:

Signature of Convener, DPGC Signature of Head of Discipline
Date: Date:

ACKNOWLEDGEMENTS

First and foremost, I wish to express my sincere gratitude to my supervisor Dr.
Anirban Sengupta for providing me the opportunity to do work under their
supervision. I wish to thank them for their persistence and faith in me, without
their relentless effort and guidance I would have not been to understand the
importance of research and the sacrifice it requires to reach a certain level. I
have learned a lot from their invaluable advice, kindness, profoundness and
experience. Under their supervision, | transformed into a person with more

values.

I also owe a mention to Dr. Abhishek Srivastava, Dr. Manish Goyal and Dr.
Puneet Gupta for their valuable feedbacks on my research work throughout

these years.

Further, I wish to express my deepest gratitude to my parents, for their strong
belief in me and for their continuous support all the way. I also wish to express
my gratitude to my dear wife, Lakshmi, for being the driving force of my
career and for her moral and emotional support throughout the PhD work.
Thank you for being with me every single moment to keep me always

prepared to work for the past three years.

I wish to thank all the faculty members and colleagues for their continuous
support. The time spent at IIT Indore will always remain the most valuable

memory of my life.

At last, I wish to thank IIT Indore, DST and CSIR to help financially and

providing me an opportunity to present my research at international grounds.

DEDICATED TO MY FATHER LATE SHRI
MOHANLAL RATHOR

ABSTRACT

A core based design paradigm has become popular in the semiconductor
business market for the last few decades. The underlying reasons are the
increasing time to market pressure, design complexity and cost of system-on-
chip (SoC) designs. However, the contrast impact of core based design
paradigm is the susceptibility of the intellectual property (IP) cores towards
the hardware threats of IP piracy and hardware Trojan insertion. An adversary
in the untrusted SoC design house may infringe or misuse the IP core for
personal benefits. Moreover, the reliance of chip manufacturing on a distinct
offshore foundry also enhances the risks of IP piracy and potential Trojan

insertion.

The digital signal processing (DSP) and multimedia applications are thriving
in the modern consumer electronics (CE) market. The stringent performance
and low power demand have enforced the realization of DSP and multimedia
applications through their hardware accelerator or application specific IPs.
However, owing to the proliferating usage of DSP and multimedia IPs in the
SoCs, their security concerns cannot be undervalued. Hence, an IP core
designer needs to employ protection measures against the piracy and potential
Trojan insertion attacks to ensure trust in hardware. For highly complex
designs such as DSP and multimedia cores, a high level synthesis (HLS)
framework is amenable to employing security mechanisms. Towards the
security of IP cores, this thesis contributes the following novel methodologies:
(a) IP core steganography approaches to secure DSP cores against piracy, (b) a
hologram based obfuscation approach to thwart the potential Trojan insertion
attack, (c) double line of defense approaches based on structural obfuscation
and IP vendor’s secret mark to counter both Trojan insertion and IP piracy
attacks, (d) secured hardware accelerator design approach for various image

processing filter applications and a DFT processor.

\

LIST OF PUBLICATIONS

PEER-REVIEWED JOURNALS (12):

1.

10.

11.

12.

A. Sengupta and M. Rathor, “Protecting DSP Kernels using Robust Hologram based
obfuscation”, IEEE Transactions on Consumer Electronics, vol. 65, no. 1, Feb
2019, pp. 99-108, Impact Factor: 2.947.

A. Sengupta and M. Rathor, “IP Core Steganography for Protecting DSP Kernels
used in CE Systems,” IEEE Transactions on Consumer Electronics, vol. 65, no. 4,
Nov. 2019, pp. 506 — 515, Impact Factor: 2.947.

M. Rathor and A. Sengupta, “IP Core Steganography Using Switch Based Key-
Driven Hash-Chaining and Encoding for Securing DSP Kernels Used in CE
Systems,” IEEE Transactions on Consumer Electronics, vol. 66, no. 3, pp. 251-
260, Aug. 2020, Impact Factor: 2.947.

A. Sengupta and M. Rathor, “Enhanced Security of DSP Circuits Using Multi-Key
Based Structural Obfuscation and Physical-Level Watermarking for Consumer

Electronics Systems”, IEEE Transactions on Consumer Electronics, vol. 66, no. 2,
May 2020, pp. 163-172, Impact Factor: 2.947.

A. Sengupta and M. Rathor, “Obfuscated Hardware Accelerators for Image
Processing Filters-Application Specific and Functionally Reconfigurable
Processors,” IEEE Transactions on Consumer Electronics, vol. 66, no. 4, pp. 386-
395, Nov. 2020, Impact Factor: 2.947.

A. Sengupta and M. Rathor, “Security of Functionally Obfuscated DSP core against
Removal Attack using SHA-512 based Key Encryption Hardware”, IEEE Access
Journal, vol. 7, pp. 4598-4610, 2019, Impact Factor: 3.367.

M. Rathor and A. Sengupta, “Robust Logic locking for Securing Reusable DSP
Cores,” IEEE Access, vol. 7, pp. 120052-120064, 2019, Impact Factor: 3.367.

A. Sengupta and M. Rathor, “Structural Obfuscation and Crypto-Steganography
based Secured JPEG Compression Hardware for Medical Imaging Systems”, IEEE
Access, vol. 8, pp. 6543-6565, 2020, Impact Factor: 3.367.

M. Rathor and A. Sengupta, “Low-Cost Robust Anti-Removal Logic for Protecting
Functionally Obfuscated DSP core against Removal Attack”, IET Electronics
Letters, vol. 55, no. 7, pp. 374-376, 2019, Impact Factor: 1.1316.

A. Sengupta and M. Rathor, “Crypto based Dual phase Hardware Steganography for
Securing IP cores,” IEEE Letters of the Computer Society, vol. 2, no. 4, pp. 32-35,
2019.

M. Rathor and A. Sengupta, “Design Flow of Secured N-Point DFT Application
Specific Processor Using Obfuscation and Steganography,” IEEE Letters of the
Computer Society, vol. 3, no. 1, pp. 13-16, 2020.

A. Sengupta, M. Rathor, S Patil, and NG Harishchandra, “Securing Hardware
Accelerators Using Multi-Key Based Structural Obfuscation,” IEEE Letters of the
Computer Society, vol. 3, no. 1, pp. 21-24, 2020.

Vil

BOOK CHAPTERS (6):

13. A. Sengupta and M. Rathor, “Designing Secured N-point DFT Hardware Accelerator
using Obfuscation and Steganography”, IET Book: Secured Hardware Accelerators
for DSP and Image processing applications, 2021, Print: 978-1-83953-306-8,
eBook: 978-1-83953-307-5.

14. A. Sengupta and M. Rathor, “Structural transformation and obfuscation frameworks
for Data-intensive IPs”, IET Book: Secured Hardware Accelerators for DSP and
Image processing applications, 2021, Print: 978-1-83953-306-8, eBook: 978-1-
83953-307-5.

15. A. Sengupta and M. Rathor, “Security of Functionally Obfuscated DSP cores”, IET

Book: Frontiers in Securing Hardware IP Cores: Forensic detective control and
obfuscation techniques, 2020, ISBN: 978-1-83953-031-9/978-1-83953-032-6.

16. A. Sengupta and M. Rathor, “Hologram based Structural Obfuscation for DSP
Cores”, IET Book: Frontiers in Securing Hardware IP Cores: Forensic detective
control and obfuscation techniques, 2020, ISBN: 978-1-83953-031-9/978-1-83953-
032-6.

17. A. Sengupta and M. Rathor, “Hardware (IP) Watermarking during Behavioural
Synthesis”, Springer Book: Behavioral Synthesis for Hardware Security, 2020,
Invited Chapter (Eds.Srinivas Katkoori, Sheikh Ariful Islam).

18. A. Sengupta and M. Rathor, “Design Space Exploration of DSP hardware using
Bacterial Foraging and Particle Swarm Optimization Algorithm for Power/Area-
Delay Tradeoft”, IET Book: Low Power Nanoscale IC Design,Invited Book
Chapter, 2020, Print ISBN: 978-981-15-7936-3.

PEER- REVIEWED CONFERENCE PUBLICATIONS (4):

19. M. Rathor, P. Sarkar, VK Mishra and A. Sengupta, “Securing IP Cores in CE
Systems using Key-driven Hash-chaining based Steganography”, Proceedings of
10th IEEE International Conference on Consumer Electronics- Berlin (ICCE
Berlin), Germany, 2020, pp. 1-4.

20. M. Rathor and A. Sengupta, “Obfuscating DSP Hardware Accelerators in CE
Systems Using Pseudo Operations Mixing”, Proceedings of 4th IEEE International
Conference on Zooming Innovation in Consumer Electronics 2020 (ZINC 2020),
Serbia, 2020, pp. 218-221.

21. M. Rathor and A. Sengupta, “Enhanced Functional Obfuscation of DSP core using
Flip-Flops and Combinational logic”, Proceedings of 9th IEEE International
Conference on Consumer Electronics (ICCE)- Berlin, Berlin, 2019, pp. 1-5.

22. A. Sengupta and M. Rathor, “Improved Delay Estimation Model for Loop Based
DSP Cores”, Proceedings of 37th IEEE International Conference on Consumer
Electronics (ICCE), Las Vegas, USA, Jan 2019, pp. 1-4.

Vil

TABLE OF CONTENTS

ABSTRACT

LIST OF PUBLICATIONS
LIST OF FIGURES

LIST OF TABLES
NOMENCLATURE
ACRONYMS

Chapter 1
Introduction
1.1 Semiconductor IP core and its various forms

DSP and multimedia applications and corresponding
algorithmic representation

1.3 Threats to IP cores

1.4 Background on high level synthesis and its importance
in [P core security

1.5 Organization of thesis

Chapter 2

State of the art

2.1 State of the art on handling IP piracy threat

2.2 State of the art on thwarting hardware Trojan insertion
attack

23 Objective of the thesis

2.4 Summary of the contributions

Chapter 3

Hardware steganography techniques for securing IP cores against
piracy

3.1 Problem formulation

3.2 Entropy based hardware steganography

33 Key-driven hash chaining based IP core steganography

34 Metric for evaluating impact of proposed steganography
techniques on design cost

3.5 Summary

Chapter 4

Hologram based structural obfuscation to thwart reverse
engineering based attacks

VI
VII
XII

XVI
XIX
XXI

N B

10

11

11
15

17
18

21

22
22
30
40

41

42

4.1 Problem formulation

4.2 Hologram based structural obfuscation approach

4.3 Demonstration on generating hologram obfuscated FIR-
IIR filter integrated datapath

4.4 Similarity of hologram obfuscated design with a
security image hologram

4.5 Summary

Chapter 5

Double line of defense approach using integrated structural
obfuscation and crypto-steganography to secure IP cores

5.1 Problem formulation

5.2 The double line of defense during high level synthesis
process for securing IP cores

53 Demonstration of securing application specific
processors using double line of defense

54 Summary

Chapter 6

Double line of defense approach using integrated multi-key based
structural obfuscation and physical level watermarking to secure
IP cores

6.1 Problem formulation

6.2 The double line of defense during high level and
physical synthesis processes for securing IP cores

6.3 Demonstration of securing IP cores using double line of
defense

6.4 Summary

Chapter 7

Secured hardware accelerator design approach for image
processing filters

7.1 Problem formulation

7.2 Design approach of a secured 3x3 filter hardware
accelerator

7.3 Design approach of a secured 5x5 filter hardware
accelerator

7.4 Summary

Chapter 8

Techniques for securing functionally obfuscated DSP cores
against removal attack

43
43
47
50
51

52

52
52

60

66

67

67
67

73

71

78

79
80

90

93

94

10

11

8.1
8.2
8.3
8.4

8.5

Chapter 9

Problem formulation

Overview of ILB and its features

SHA-512 based ILB-keys generation hardware to
secure against removal attack

Anti-removal logic (ARL) unit to secure against
removal attack

Summary

Robust logic locking technique for preventing IP piracy

9.1 Problem formulation

9.2 Logic locking technique for securing DSP cores
against IP piracy

93 Addressing different Attacks Scenarios

9.4 Summary

Chapter 10

Experimental results and analysis

10.1

10.2

10.3

10.4

10.5

10.6

10.7

Results and analysis: Hardware steganography
techniques for securing IP cores against piracy

Results and analysis: Hologram based structural
obfuscation to thwart reverse engineering based attacks
Results and analysis: Double line of defense approach
using integrated structural obfuscation and crypto-
steganography to secure IP cores

Results and analysis: Double line of defense approach
using integrated multi-key based structural obfuscation
and physical level watermarking to secure IP cores
Results and analysis: Secured hardware accelerator
design approach for image processing filters

Results and analysis: Techniques for securing
functionally obfuscated DSP cores against removal
attack

Results and analysis: Robust logic locking technique for
preventing IP piracy

Chapter 11

Conclusion and future work

11.1 Conclusion
11.2 Future work
REFERENCES

Xl

95
95
96
102
106

107

107
107

116
118

119

119

124

126

129

132

134

138

141

141
143

144

Figure 1.1

Figure 1.2

Figure 1.3

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4
Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

Figure 3.13

Figure 4.1
Figure 4.2

LIST OF FIGURES

Potential hardware security threats in untrustworthy
houses

Counterfeiting and cloning attacks, where brand ‘A’
indicates the brand name of a genuine IP vendor and
brand ‘B’ indicates the brand name used by an adversary

(a) DFG of 4-point DCT (b) Scheduled and hardware
allocated 4point DCT using resource constraints of 1 (+)
and 2(x)

Overview of the implanting hardware steganography in
IP cores

Embedding process of hardware steganography for an IP
Core

CIG of the sample application

Final CIG after implanting all the edges

Proposed entropy based steganography detection
process

Scheduled and hardware allocated 8-point DCT using 1
(+) and 4 (%)

The stego-embedded scheduled and hardware allocated
8-point DCT

Overview of key-driven hash-chaining based
steganography

Details of proposed key-driven hash-chaining based
steganography

DFGggp, of 8-point DCT using 1 A and 4 M before
implanting steganography

(a) CIG of 8-point DCT before steganography (b) CIG
of 8-point DCT after steganography

Scheduled and hardware allocated 8-point DCT after
implanting steganography

Detection process of key-driven hash chaining based
steganography

Overview of Hologram based obfuscation approach

Flow of generating a Hologram obfuscated DSP design

Xl

24

26
27

28

29

31

32

33

35

37

38

43
45

Figure 4.3

Figure 4.4

Figure 4.5

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4
Figure 5.5

Figure 5.6
Figure 5.7
Figure 5.8

Figure 6.1

Figure 6.2
Figure 6.3
Figure 6.4

Figure 6.5

Figure 6.6
Figure 6.7
Figure 7.1

Figure 7.2
Figure 7.3

Scheduling of IR filter based on 1 adder and 1
multiplier

Scheduled DFG of FIR filter based on 1 adder and 1
multiplier

Hologram based structurally obfuscated integrated RTL
design of IIR and FIR filter cores

Overview of double line of defense based security
mechanism for securing IP cores

Flow of the process of securing JPEG codec processor
using structural obfuscation (first line of defense) and
crypto-based steganography (second line defense)

Steps of stego-constraints generation process of crypto-
based steganography encoder system

Roles and various modes of stego-key1 to stego-keyS5

(a) DFG of JPEG compression application (b) THT
based obfuscated DFG

ODFGg,p, of obfuscated 4-point DFT based on 3M and
2A

ODFGgyp of 4-point DFT post embedding stego-

information

Secured 4-point DFT processor at RTL

The flow of proposed key-driven structural obfuscation
and physical level watermarking based double line of
defense

(a) DFG representing 160-tap FIR filter (b) loop
unrolled FIR filter with UF=16

Post applying THT based obfuscation in all partitions

Obfuscated scheduled FIR filter with applied folding at
4 instances

Key-driven structurally obfuscated RTL datapath of FIR
filter

Early floorplan of obfuscated FIR filter
Watermarked floorplan of obfuscated FIR filter

Generating filtered image using secured hardware
accelerator of image processing filters

Loop unrolled DFG of 3x3 image filter application

THT obfuscated loop unrolled DFG of 3x3 image filter
application

X

48

49

50

53

54

55

56
61

63

64

65
68

74

74

75

75

76
76
79

82
82

Figure 7.4

Figure 7.5

Figure 7.6

Figure 7.7

Figure 7.8

Figure 7.9

Figure 7.10

Figure 7.11

Figure 8.1

Figure 8.2

Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6
Figure 8.7
Figure 8.8
Figure 8.9
Figure 9.1

Figure 9.2

Figure 9.3

Structurally obfuscated hardware accelerator
architecture for 3x3 image filter applications with
reconfigurable functionality

End to end demonstration of image blurring application
using 3x3 blur filter

End to end demonstration of image sharpening
application using a 3x3 filter

End to end demonstration of vertical embossment
application using 3x3 filter

End to end demonstration of horizontal embossment
application using 3x3 filter

End to end demonstration of edge detection using 3x3
edge detection filter

Partitioned DFG of 5x5 filter application post
performing THT based structural obfuscation

Structurally obfuscated RTL datapath of 5x5 image
filter hardware accelerator

A sample ILB structure requiring an 8-bit key ‘k1’ to
activate

Overview of securing a functionally obfuscated DSP
core against the removal attack using SHA-512 based
ILBs-key generation hardware

Block diagram of custom hardware for SHA-512 based
ILBs-key generation logic

Block diagram of custom SHA-512 based key
generation hardware

Round Function Computation hardware of custom SHA-
512

Example of a configured ILBy based on the output
“10110000” produced from ILB key selection logic

Overview of using ARL unit to protect a functionally
obfuscated DSP core against the removal attack

Overview of ARL block
Overview of an AND-OR network used in ARL block

Overview of proposed logic locking methodology for
DSP IP cores

Proposed sample reconfigured DLC structures (where,
“K1K2” is a two-bit key)

Waveforms showing that correct output is not obtained
unless the correct key is applied only in the first trial

XV

83

85

86

87

89

90

92

92

95

96

97

99

100

102

103

105
105
108

110

111

Figure 9.4

Figure 10.1

Figure 10.2
Figure 10.3

The process of DLCs insertion into RTL datapath of
DSP cores

Estimation of the number of effective constraints added
for both solutions (considering same number of
constraints) at different entropy threshold

Security comparison of proposed work with [36]

Gate count comparison of proposed work with [36]

XV

114

120

137
137

Table 3.1

Table 3.2

Table 3.3
Table 6.1

Table 10.1

Table 10.2

Table 10.3

Table 10.4

Table 10.5

Table 10.6

Table 10.7

Table 10.8

Table 10.9

Table 10.10

Table 10.11

Table 10.12

Table 10.13

Table 10.14

LIST OF TABLES

Storage variable assignment of a sample application

Swapping pairs and corresponding entropies for the
potential edges to be added

Storage assignment post implanting stego-constraints

Roles and key-size of different keys used for proposed
structural obfuscation

Impact on Pc using proposed IP steganography for
different entropy threshold

Design cost of the proposed approach in terms of area
and latency

Impact on storage overhead on increasing threshold
entropy

Comparison of proposed approach with [25], [31] in
terms of the # of registers for the same # of constraints

Variation in Pc for increasing size of stego-constraints
using proposed key-driven hash-chaining approach

Security of proposed approach in terms of maximum
key size and attacker’s total effort

Impact of increasing size of stego-constraints on the
design cost of proposed key driven hash chaining based
steganography approach

Comparison of design cost of proposed approach with
respect to baseline

Comparison of affected gate count between proposed
obfuscation and baseline

Comparison of affected gate count between [45] and
baseline

Comparison of security of proposed obfuscation and
[45]

Comparison of JPEG compression hardware resources
pre and post obfuscation

Security analysis in terms of strength of obfuscation for
4-point DFT processor

Security analysis (in terms of Pc) of proposed crypto-
based steganography approach on varying size of
stego-constraints for different design solutions of JPEG
compression processor

XVI

24

25

26
69

120

121

121

121

122

123

124

124

125

125

125

127

127

128

Table 10.15

Table 10.16

Table 10.17

Table 10.18

Table 10.19

Table 10.20

Table 10.21

Table 10.22

Table 10.23

Table 10.24
Table 10.25

Table 10.26

Table 10.27

Table 10.28

Table 10.29

Table 10.30
Table 10.31

Table 10.32

Table 10.33

Comparison of security of 4-point DFT in terms of Pc
with the entropy based steganography approach

Design cost analysis of proposed approach on varying
size of stego-constraints for different design solutions
of JPEG compression processor

Comparison of design cost of DFT processor with
baseline and entropy based steganography

Strength of multi-key structural obfuscation in terms of
gate count modified

Total key size for the proposed obfuscated
watermarked design

Security of proposed watermarking using probability of
coincidence (Pc)

Tamper tolerance and brute-force attack analysis of
proposed obfuscated watermarked design

Design cost analysis of proposed approach

RTL components of image processing filters of size
3x3 and 5x5

Gate count of proposed filter hardware accelerators

Security analysis of proposed application specific
image processing filters

Power and design cost of proposed application specific
3x3 filter hardware accelerators

Comparison of security in terms of key-bits encrypted
for the ILBs of obfuscated design of proposed
approach and [36]

Gate count comparison of baseline design with [36]
and proposed methodology

Power comparison of baseline design, [36] and
proposed work

Comparison of design cost of proposed work with [36]

Comparison of the strength of the proposed logic
locking with [36] [37] in terms of the probability of
deducing correct key in exhaustive trials using eq. (9.3)
and (9.4)

Attack time comparison of the proposed logic locking
with [36] [37]

Comparison of the encryption strength of the proposed
logic locking with [36] [37]

Xvii

128

129

129

130

130

130

131

131

133

133
133

133

135

135

135

136
139

139

139

Table 10.34 Percent reduction in the resource count using proposed 140
work w.r.t. [36] [37]

XVl

NOMENCLATURE

Vi i storage variable
Evivi | Entropy of (Vi, Vj) storage variable pair
MEyviv; | Maximum entropy of (Vi, Vj) storage variable pair
T" Threshold entropy
Pc Probability of coincidence
G Number of registers in the design
f Number of stego-constraints embedded
F¢ b" instance of functional unit of vendor type a
My b™ instance of multiplier of vendor type a
A% b™ instance of adder of vendor type a
DFGg,, | Scheduled, allocated and binded DFG
N(Z;)) | Number of instances of functional unit Z of type i
keys, | Maximum possible size of the stego-key
U Total possible encodings for a DSP application
ASK Attacker’s max effort in terms of deducing the stego-key
AP Attacker’s effort in terms of finding the encoded bits
Ay Attacker’s total effort in determining the stego-constraints
C(Zi) | Cost of the design scheduled using the resource constraints Zi
Lt Design delay/latency
At Design area
A ax Maximum area
Lo Maximum delay
Bi, B> | Weights assigned to latency and area in calculating the cost
Sh Strength of obfuscation
G Cf Number of gates affected due to applying obfuscation
Gr Number of gates in the respective un-obfuscated design
AGS? Difff:rence in gate count between obfuscated design and un-obfuscated
¢ version
G Cip Number of gates altered in terms of input connectivity post obfuscation
ODFG,,, | Obfuscated scheduled, allocated and binded DFG
u Number of instances of FU type U,, where r is the total types of FUs

XIX

Number of Muxes of size X,, where v indicates various sizes of Mux in

x the design
d Nurnber' of Dernuges of size D, where e indicates various sizes of
Demux in the design
o, B,y | Signature variables for physical level watermarking
Ts Tamper tolerance
Q Number of distinct variables in the chosen signature for physical level
watermarking
Z Size of the signature in physical level watermarking
[A]1<) | A pixel matrix of image of size IxJ
X. A pixel Val}le of the input image where i and j vary from 0 to I-1 and 0 to
! J-1 respectively
[Flmm) | Kernel matrix of size nxm
foq Kernel values
Oy Output pixel value
[O] Output matrix
F° kernel matrix of a 3%3 blur filter
F° kernel matrix of a 3%3 sharpening filter
F*" kernel matrix of a 3x3 vertical embossment filter
F kernel matrix of a 3x3 horizontal embossment filter
F*° kernel matrix of a 3x3 edge detection filter
Tus Total ILBs in a functionally obfuscated design
Thrc Total DLCs in a functionally obfuscated DSP core
® Designer specified tuning variable for DLCs insertion
P, Probability of obtaining valid key in exhaustive trials
Ky Total number of key-bits in DLC based logic locking
EnS Encryption strength
NgFS | Number of encrypted output bits generated from AES128
N,ng&l Total number of DLC key bits in a design

XX

ACRONYMS

HLS High Level Synthesis

VLSI | Very Large Scale Integration
1P Intellectual Property

DSP Digital Signal Processor

CE Consumer Electronics

IC Integrated Circuits

SoC System on Chip

RTL Register Transfer Level
VHDL | Very High Speed Integrated Circuit Hardware Description Language
GDS Graphic Database System
ALU Arithmetic Logic Unit

DFG Data Flow Graph

CDFG | Control Data Flow Graph
SDFG | Scheduled Data Flow Graph
FSM Finite State Machine

RE Reverse Engineering

CS Control Step

CIG Colored Interval Graph

UF Unrolling Factor

3PIP 3" party Intellectual Property
ASIC | Application Specific Integrated Circuit
PSO Particle Swarm Optimization
DSE Design Space Exploration
FU Functional Unit

HLT High Level Transformation
opn Operation

LU Loop Unrolling

THT Tree Height Transformation
ROE Redundant Operation Elimination
LICM | Loop Invariant Code Motion
SOK Structural Obfuscation Key

XXI

Round Function Computation

FF Flip-Flop

DCT Discrete Cosine Transform
IDCT | Inverse Discrete Cosine Transform
DWT | Discrete Wavelet Transform
DIT Decimation In Time

FFT Fast Fourier Transform

FIR Finite Impulse Response

IIR Infinite Impulse Response

DFT Discrete Fourier Transform
JPEG | Joint Photographic Expert Group
MPEG | Moving Picture Expert Group
AES Advanced Encryption Standard
SHA Secure Hash Algorithm

MDS | Maximum Distance Separable
ARL Anti-Removal Logic

ILB IP core Locking Block

DLC DSP Locking Cell

Mux Multiplexer

Demux | Demultiplexer

CLLC | Combinational Logic Locking Cell
SLLC | Sequential Logic Locking Cell

XXII

Chapter 1

Introduction

We are fortunate enough for living in an era where internet speed is touching
5G, 8D audio effects are mesmerizing us, high definitional (HD) videos and
graphics are fascinating our generation; thanks to electronics. The ubiquitous
applications of electronics have led it in becoming an integral part of
consumer’s life [1]. At the heart of the consumer electronics (CE) systems
such as laptops, tablets, and smart phones etc., there functions a system-on-
chip (SoC). A SoC is designed using various modules such as functional
blocks, memory units and memory controller and different peripherals for
wireless and wired communication etc. Instead of designing a SoC from
scratch, its various modules are purchased from third party vendors or
designers. The pre-designed and pre-verified modules of a SoC, procured from
distinct design houses (fabless), also referred to as third party intellectual
property (3PIP) cores. And, this kind of system design paradigm is called as
core based design paradigm. The core based design paradigm results in
benefits in terms of reduced cost, alleviated design complexity and lower time
to market pressure. This is because, designing a SoC from scratch is not only
cumbersome due to higher design complexity, but also involves higher
investment in terms of time and resources or cost. Further, in the design
supply chain, the SoC design file is sent to a distinct offshore manufacturing
house (also referred to as a foundry) for the chip fabrication. Relying on
distinct foundry for the chip fabrication is economic, because building and
maintaining a foundry require billions of dollar investment. Thereby, different
entities (third party IP vendors, system integrator, and foundry) get
involvement in the IC design chain. This helps in sustaining the IC design

process at lesser cost, lower design complexity and lower time requirement

[2]-[5]-

In the SoC designs of consumer electronic systems, digital signal processing
(DSP) and multimedia cores play a pivotal role owing to their utility in various
applications such as de-noising, image compression-decompression and video

encoding-decoding etc. Because of the vital role of DSP and multimedia

applications in modern electronic systems, their usage has been proliferating
for the past few decades [6]. Since the DSP and multimedia applications are
intended to be executed in the systems where stringent performance and power
requirement are imperative, therefore these applications are designed as
application specific processors or hardware accelerators to be integrated in the

SoCs [1], [2], [7]-

Besides consumer applications, the DSP and multimedia processors also claim
their utility in some critical applications such as military and healthcare. For
example, in military and defense applications, DSP cores integrated in the
SoCs facilitate live video streaming from unmanned aerial vehicles (UAVs).
Further, in the healthcare and medical systems, joint photographic experts
group (JPEG) processors are used for compression-decompression of medical

images to enable low storage requirement and low-bandwidth transmission.

However, the involvement of distinct entities (or houses) in the design chain
raises the issue of untrustworthiness. This is because an adversary or attacker
in an untrustworthy house may realize his/her malicious intents of IP
infringement or misuse [3], [4]. This invites different hardware security threats
which can be broadly of two types: (i) IP piracy [1], [2] (i1) hardware Trojan
insertion [1], [2]. As the DSP and multimedia based IP cores possess
significant role in consumer, military and healthcare applications, therefore
their security perspective cannot be overlooked. A fake or infringed IP used in
military systems or medical devices can even endanger the human’s life.
Hence, security of IP cores is of paramount importance to ensure secure, safe
and reliable functioning of electronic systems. Additionally, securing IP cores
is also indispensable from the vendor’s perspective in order to save him/her

from huge revenue and reputation loss due to IP piracy [8].

This chapter briefly discusses the background on the various key aspects that
the proposed IP core (or hardware) security techniques are developed around.
The first section puts the background on IP cores. Further, the second section
provides an overview of DSP and multimedia applications and corresponding
algorithmic representations. The third section discusses the various threats to

IP cores. The fourth section provides a background on high level synthesis

(HLS) process and discusses its role in hardware (IP) security. Finally, the

fifth section presents the thesis organization.

1.1. Semiconductor IP Core and its Various Forms

In the electronics domain, a reusable logic block which is an intellectual
property of the designer or owner is termed as intellectual property (IP) core.
An IP core is designed and sold into the market in its various forms such as (i)
soft IP core (ii) firm IP core (iii) hard IP core [9],[10]. A synthesizable register
transfer level (RTL) code in a hardware description language (such as VHDL
or Verilog) or schematic design is referred to as a soft IP core. With the soft IP
cores, a chip designer has the flexibility to modify the design parameters as
per the requirement. The performance of a soft IP core can vary considerably
as it gets transformed into lower levels of design abstractions. Further, a firm
IP core is another type which is a technology dependent gate level netlist of
the design. It is lesser modifiable than a soft IP core. Further, a hard IP core is
a GDS-II design database or layout file of the design. It cannot be substantially
modified by the designers as it has lower-level physical description that is
specific to a particular process node. The core based design paradigm is based
on the reusable IP cores, hence playing a pivotal role in alleviating the design
complexity and helping in satisfying time-to-market requirement [10], [11]. A
typical SoC is composed of various kinds of IP cores such as a general
purpose processor core for addressing general purpose functionality, DSP
cores to perform application specific functionality, memory controller IP cores
to manage the data exchanged between the memories and other modules and
interface IP core such as UART, SPI, 12C to facilitate serial communication

and so on.

1.2. DSP and Multimedia Applications and Corresponding Algorithmic

Representation

The digital signal processing (DSP) algorithms such as finite impulse response
(FIR) filter, infinite impulse response (IIR) filter, discrete cosine transform
(DCT), inverse discrete cosine transform (IDCT), fast Fourier transform (FFT)
and discrete wavelet transform (DWT) etc. have wide applications in modern

electronic systems. Additionally, processors used in multimedia applications

such as joint photographic experts group (JPEG) compression-decompression
(codec), moving picture experts group (MPEV) etc. are also dominating in
today’s consumer electronic systems. The DSP and multimedia cores are
employed to perform various functionalities such as filtering, image
compression-decompression, image enhancement, audio/ video encoding-

decoding etc. [1], [2], [8].

In order to generate an application specific processor of a DSP or multimedia
application, its high level or algorithmic or behavioral description is taken as
input to the synthesis process. The algorithmic description can be of various
forms such as a C/C++ code or a mathematical representation (an equation
representing input-output relationship) etc. For example, an algorithmic
description in the form of a mathematic representation of a 4-point DCT

application is given as follows [2]:
X[0]=c1*x[0]+ c2* x[1] + c3* x[2] + c4* x[3] (1.1)

Where, x[0] to x[3] are input variables, cl to ¢4 are input coefficients and X[0]

is an output.
1.3. Threats to IP Cores

As discussed earlier, the various offshore entities such as a 3PIP vendor, a
system integrator and a contract foundry participate in the current
semiconductor business model, leading to the globalization of the design
supply chain. However, in this semiconductor business model, the design data
transfer is asymmetric. More explicitly, an IP design is transferred or sold to a
system integrator however there is no transfer of intellectual property the other
way around. Similarly, the design file is sent to a contract foundry for chip
fabrication where the design data is transparent to the foundry. In these cases,
the design IP is transferred only in one direction [3]. Hence, this globalization
of the design supply chain and asymmetric nature of this business model
render the participating entities untrustworthy, resulting in the emergence of
various hardware threats in the semiconductor market. Fig. 1.1 depicts the
potential threat scenario in the untrustworthy houses (SoC design house and
foundry) where the IP cores designs are vulnerable to hardware threats of IP

piracy and hardware Trojan insertion [8], [11].

Attacker in (//‘ ‘\) Hardware threats IP Piracy
| |
\ /

untrustworthy

houses @ Trojan
\ insertion

SoC design IC fabrication
house house Untrustworthy
house

Fig. 1.1. Potential hardware security threats in untrustworthy houses

In 2010, the first case against a counterfeit-chip broker was prosecuted by the
United States. Thousands of counterfeit chips, many of which were intended
to be used in military products, were sold by the company VisionTech [14].
Further, the data provided by IHS (Information Handling Services,
Englewood, CO, USA) displays that reports of counterfeit parts have
quadrupled since 2009. Legitimate electronics enterprises lose out on about
$100 billion of global revenue per year because of counterfeiting. Around 1%
of semiconductor sales are projected to be those of fake components [15].
Additionally, in 2007, Syrian radar botched to warn of an incoming air strike
[16]. A backdoor (hardware Trojan) built into the system’s chips was rumored
to be responsible. This raises questions as to just how much the global supply
chain for ICs can be relied [16]. A brief discussion on the IP piracy and

hardware Trojan insertion threats is as follows:
1.3.1 1IP Core Piracy

IP piracy [3], [4], [12], 13] may take various forms such as IP counterfeiting,
IP cloning and false claim of IP ownership which may cause adverse effects in
the form of huge financial loss for the genuine IP vendor/designer and harm of
IP vendor’s brand and reputation. Fig. 1.2 depicts the potential IP piracy threat

scenario.

IP counterfeiting: In this threat, a potential adversary sells a low quality or
fake IP into the market under the brand name of an authentic or genuine IP
vendor. The adversary can have various objectives of doing so, such as: (i) the
adversary may have malicious intents of sabotaging authentic vendor’s

reputation by enabling the integration of low quality counterfeit IPs as genuine

Counterfeiting Dl : Cloning
(Imitating original design/brand) IP/IC (Pirating and cloning original
Brand ‘A’ design)

Counterfeited ICs/IPs Cloned ICs/IPs

it

IP/IC IP/IC IP/IC

IP/IC

Brand ‘A’ Brand ‘A’ Brand ‘B’ Brand ‘B’ 3 Brand ‘B’

.............................

Fig. 1.2. Counterfeiting and cloning attacks, where brand ‘A’ indicates the brand name of

a genuine IP vendor and brand ‘B’ indicates the brand name used by an adversary

ones into the SoCs (ii) the adversary may be intending earning illegal income
under the brand name of an authentic vendor (iii) the adversary may supply
fake IPs to the offshore system integrators because of some national interests.
The counterfeit IPs may not be rigorously tested in terms of their functionality,
safety and reliability. Additionally, they may also contain some secret
malicious logic (hardware Trojan) to adversely affect the system operation,
performance and security. Therefore, detection of counterfeit [Ps and ensuring
integration of only authentic IPs in SoCs is vital for safe, reliable and secure

functioning of electronic systems.

IP cloning and false claim of IP ownership: In this threat, an adversary (rouge
system integrator) instantiates the third party vendor’s IP more number of
times in the SoC designs than specified in the agreement of IP use. Moreover,
the adversary (rouge system integrator or foundry) may steal the vendor’s IP
and sell it illegally into the market as his/her own. Thus an adversary may
clone the true vendor’s IP to earn the illegal income. Moreover, he/she may
claim the ownership of stolen/cloned IP fraudulently. The IP cloning and false
claim of IP ownership threat harms the genuine IP designer in terms of both
revenue loss and ownership loss. The potential adversaries could be an
untrustworthy SoC designer and an untrustworthy foundry. Therefore a true IP
designer needs to secure his IPs against the cloning to save from the illegal

revenue loss and the fraudulent claim of IP ownership.

1.3.2. Hardware Trojan Insertion

Hardware Trojan [17], [18] is a malicious/intended modification in the design
to cause different kinds of adverse effects such as compromising secret
information from the system, wrong functional output, excessive power
consumption and degraded performance etc. The hardware Trojan insertion is
a back door entry of malicious logics/components into the design by an
adversary in an untrustworthy design house or foundry. The hardware Trojan
is intentionally designed to be stealthy in nature so that it cannot be readily
detected during the validation process. Further, it is designed to be triggered
only upon certain rare events at particular nodes in the design. The
globalization of IC design chain has given the opportunity of inserting
hardware Trojans to rouge elements. Hence, in this globalized design chain,
the IP core designer needs to employ some preventive control against the
possible Trojan insertion in an untrustworthy house by an adversary, to ensure

the trust in hardware [2], [8].

1.4. Background on High Level Synthesis and its Importance in IP Core

Security

The synthesis is a design process whose objective is to find a structure that
implements the behavior required, for a given input specification with a set of
constraints and goals to be fulfilled. Here, the mapping from inputs to outputs
(i.e. the way components of the system interact) defines the behavior and the
set of interconnected components that composes the system defines the
structure. The synthesis can be performed at different levels of design
abstraction as a design can be represented at different levels of detail. The high
level synthesis (HLS) [19]-[22] also referred to as behavioral or architectural
synthesis is a high level design process to convert an algorithmic description
of a system into a structure implemented in the form of datapath and
controller. Thus obtained structure is also called as register transfer level
(RTL) design which is composed of high level components such as functional
units (FUs), registers, interconnect units such as multiplexers (Muxes) and

demultiplexers (Demuxes) etc.

Let’s discuss the internal details of the HLS process in brief [8], [19]-[22]. The
HLS process first takes the algorithmic representation such as C/C++ code or

a mathematical function as an input and generates a corresponding

intermediate representation called data flow graph (DFG) or a control data
flow graph (CDFG). For example, the algorithmic description of a 4-point
DCT application has been given in eq. (1) and its corresponding DFG
representation is shown in Fig. 1.3(a). Further, the DFG can be subjected to
various kinds of high level transformations such as loop unrolling (LU),
redundant operation elimination (ROE), tree height transformation (THT) and
loop invariant code motion (LICM) etc., depending on the nature of the
application or the applicability of the transformation. Thus obtained DFG is
subjected to different phases of the HLS process viz. scheduling, allocation
and binding. In the scheduling phase, different operations of the application
(nodes of the DFG) are assigned to a particular time stamp or control step (CS)
to be executed within. An algorithm chosen to perform the scheduling depends
upon the given constraints on timing or resources. Post scheduling, hardware
or resource allocation phase is performed where the resources are allocated to
the operations to be executed and to the variables to stored, from the HLS
library. A particular kind of resource (of certain specifications) to be allocated
depend on the latency, power and area constraints of the design. For example,
if the higher performance requirement is more important than the compact
area for a given design then a faster resource (e.g. adder/multiplier) consuming
higher area is preferred over a slower resource consuming lower area. Post
allocating resources, binding phase is performed which decides which
operation is to be assigned to which instance of the respective functional unit
(FU) and which variable is to be assigned to which register. This determines
the sharing of FU resources to execute a number of operations and that of
registers to execute a number of storage variables, in the different control
steps. Thus the binding phase provides the information of interconnect
resources such as Muxes and Demuxes required for sharing of FUs and
registers. Fig. 1.3(b) shows the scheduled, allocated and binded DFG of the 4-
point DCT core, where s0O to s10 are the storage variables, TO to T4 are the
control steps, R, I, G and O are the four different registers, M1 and M2 are two
multiplier resources and Al is an adder resource. Post scheduling, allocation
and binding phases, datapath and controller synthesis phase of the HLS
process is performed. This phase synthesizes the RTL datapath of the design

using the allocated FU resources, registers, and latches and using the Muxes

TO

T4

Fig. 1.3(a) DFG of 4-point DCT Fig. 1.3(b) Scheduled and hardware allocated 4point
DCT using resource constraints of 1 (+) and 2(x)

and Demuxes (determined through the binding phase) and that the controller
using the scheduling and dependency information of the operations. The
controller provides the various control signals to enable the different units of
the datapath in the respective control steps as per the scheduling. Post HLS,
the design is subjected to the lower level design processes such as logic
synthesis to obtain the corresponding gate level netlist and physical synthesis
to obtain the respective layout design. Post obtaining the layout, it sent to a

contract foundry for the chip fabrication.

Importance of HLS in IP core security: The 1P core security for DSP and
multimedia applications during the HLS process has a paramount importance.
This is because applying a security mechanism may results into excessive
area, power or delay overhead, violating the given design constraints [23].
However, the HLS integrated with the design space exploration (DSE) process
[24] offers the flexibility of exploring an optimal architecture that satisfies the
given area, power and latency constraints. This helps achieve a low cost secure
architecture post employing the security mechanism during the HLS.
Moreover, employing the security mechanism at lower abstraction levels for
the DSP and multimedia applications is arduous due to their higher design
complexity and non-availability of the designs (such as gate level netlist) at
the lower levels. On the contrary, the DSP applications are readily available in
the form of their algorithmic descriptions and their high level synthesis can

easily be automated using the commercial or non-commercial tools to generate

the corresponding RTL counterparts. Therefore, the security mechanisms can
easily be integrated with the computer-aided-design (CAD) tools of HLS to
generate the secured designs for the DSP and multimedia IP cores.
Furthermore employing security during the HLS process also secures the
various other forms of an IP at lower design levels such as firm IPs and hard
IPs, along with the soft IPs. And we also have the security constraints more
distributed throughout the design post synthesis, if we apply the security
during the HLS [24], [25].

1.5. Organization of Thesis

The chapters of the thesis are organized as follows. Chapter 2 discusses the
state-of-art with respect to proposed techniques. Chapter 3 discusses the
proposed hardware steganography techniques for securing IP cores against
piracy. Chapter 4 discusses the proposed hologram based structural
obfuscation to thwart reverse engineering based attacks. Chapter 5 discusses
the proposed double line of defense approach using integrated structural
obfuscation and crypto-steganography to secure IP cores. Chapter 6 discusses
the proposed double line of defense approach using integrated multi-key based
structural obfuscation and physical level watermarking to secure IP cores.
Chapter 7 discusses the proposed secured hardware accelerator design
approach for image processing filters. Chapter 8 discusses the proposed
techniques for securing functionally obfuscated DSP cores against removal
attack. Chapter 9 discusses the proposed robust logic locking technique for
preventing IP piracy. Chapter 10 discusses the experimental results of the
proposed techniques and compares with the state-of-the-arts. Chapter 11

concludes the thesis and briefly discusses the future work.

10

Chapter 2

State of the Art

Some techniques have been proposed to counter the threats of IP piracy and
hardware Trojan insertion for the past few years. This chapter discusses the
state of the art techniques alongwith their limitations. This builds up the
foundation for the proposed methodologies presented in this thesis. The first
section presents state-of-the-art on handling IP piracy threat. The second
section presents state-of-the-art on thwarting hardware Trojan insertion attack
on DSP IP cores. The third section presents the objective of this thesis. The
fourth section highlights the contributions of this thesis.

2.1. State of the Art on Handling IP Piracy Threat

The IP piracy threat results into huge impact on (i) the revenue and reputation
of the IP creator/designer/owner and (ii) the system in which the IP core is
deployed and its user. The IP piracy threat has been discussed in the section
1.3.1 of the chapter 1. The threat of IP piracy has been combated using either

preventive or detective control mechanisms in the literature [1], [2].

2.1.1. Preventive control mechanism: To prevent the IP/IC piracy from
happening, Roy et al. [35], proposed the EPIC (ending piracy of integrated
circuits) technique which requires an external key generated by the IP owner
to activate the chips. In this approach, the circuit is locked by inserting
additional XOR gates on chosen non-critical paths. These XOR gates are
controlled through an external key value. The normal functionality of the
design is available only upon applying actual unlocking key value [35].
Further, the logic locking techniques were proposed by Yasin et al. [37], and
Sengupta et al. [36]. In these logic locking based preventive controls over
piracy, the IP core design functionality is locked by inserting an additional
locking circuitry into the design. Logic locking, also referred to as functional
obfuscation, techniques have been proposed for both combinational circuits
and DSP circuits. The logic locking of combinational circuits is performed by
inserting key gates (XOR and XNOR gates) [35], [37] or key driven
multiplexers [38] at appropriate places into the design. And, the logic locking

11

of DSP circuits is performed by inserting IP core locking blocks (ILBs) at
some chosen output bits of the functional units into the design [36].
Performing logic locking results in a locked gate level netlist of the design. An
adversary in the SoC design house or in a foundry cannot misuse or pirate the
IP core without unlocking the design using a correct key value, thus thwarting

the IP piracy.

Limitations: The logic locking technique is vulnerable to various kinds of
popular attacks such as key sensitization attack [36], [37], removal attack [39],
Boolean satisfiability (SAT) based attack [40], [41] and brute force attack. By
launching the aforementioned attacks, the adversary or attacker aims at
deriving the unlocked netlist. In the key sensitization, SAT and brute force
attack, the attacker attempts to find the correct key value to unlock the design.
However, the SAT attack is not applicable on complex DSP circuits because
of multiplication operations involved [36]. Further in the removal attack, the
attacker tries to remove the locking logic/circuitry from the locked netlist to
obtain the unlocked version. If the attacker becomes successful in obtaining
the unlocked design/netlist, the purpose of preventive control is defeated and

the IP piracy becomes realizable.

2.1.2. Detective control mechanism: To enable the detection of IP piracy,
hardware or IP watermarking technique was proposed by Hong and Potkonjak
[26]. In this technique, the vendor’s secret mark or signature is implanted into
the IP core during the design process. During the verification or authentication
process, the presence of vendor’s watermark is detected into the design to
identify whether the IP is pirated or authentic. The process of embedding
watermark into a design can be performed at various levels of VLSI design
abstraction, depending on the nature of the target circuits. For example, the
watermarking for combinational circuit is performed during logic synthesis
process. Kirovski et al. [27] proposed a watermarking method for implanting
user and tool specific information into a combinational circuit during a pre-
processing step of traditional logic synthesis. Design constraints for
watermarking are generated using hashing such as SHA-256 and pseudo-
random number generation. Further, Cui et al. [28] proposed a constraint-

based adaptive watermarking method at logic synthesis level. In this method,

12

some closed cones in an originally optimized combinational circuit are
modulated for technology mapping. Furthermore, Cui and Chang [29] embeds
watermark in combination circuits by substituting template. In order to embed
watermark, this method replaces some specific cells with another template
(that have the equivalent function) in the library without altering the topology

and original functionality.

However in case of watermarking of DSP circuits, it is more efficient to
embed signature constraints during the high level synthesis (HLS) process.
There are few techniques in the literature which perform watermarking of DSP
circuits during the HLS. Koushanfar et al. [30] proposed an IP protection
technique based on hardware watermarking to combat IP piracy. This
technique embeds watermark in the pre-synthesis phase of HLS or behavioral
synthesis, thus influencing the end design. The watermark is embedded in the
form of additional design constraints. The added extra constraints encode the
author’s signature into a binary number (combination of Os and 1s) which is
further represented in the 7-bit ASCII characters. To embed the author’s
signature during behavioral synthesis, high level description of the design is
first converted in the control data flow graph (CDFG) representation. Further,
CDFG is scheduled in control steps (CS). Thereafter, an interval graph (IG) is
created wherein each node indicates a storage variable, and an edge between
two nodes indicates overlapping of life time of two storage variables. Register
allocation to these variables is performed by coloring the graph. The author
signature is embedded by imposing the extra constraints during the register
allocation of storage variables in the form of extra edges in the interval graph.
This technique is more effective for large DSP applications. This approach
assesses the protection strength in terms of probabilities of coincidence and
resilience against tampering. Sengupta and Bhadauria [25], [31] proposed
multi-variable watermarking for protecting DSP hardware accelerators against
counterfeiting, cloning and false claim of ownership threats. This approach
exploits particle swarm optimization based design space exploration (PSO-
DSE) during HLS to obtain low cost optimal watermark. In this approach,
authors signature is a combination of four distinct variables viz. ‘’, ‘I, ‘T’

C"

and ‘!I’. Hardware security constraints corresponding to the designer’s chosen

13

signature are embedded during the register allocation phase of HLS. Since the
watermarking constraints are imposed during the single phase i.e. register
allocation of HLS, hence referred as single phase watermarking. To embed the
constraints, colored interval graph (CIG) framework is exploited, where each
distinct color represents a distinct register, nodes indicates storage variables
and an edge between two nodes indicates overlapping of life time of two
storage variables. Each digit of multivariable signature is embedded as an
additional edge between a node-pair in the CIG. In order to do so, this
approach mapped each signature digit to hardware security constraints based
on following encoding of aforementioned four signature variables: ‘i’ is
encoded as an edge between node-pair of two prime nodes in the CIG, T’ is
encoded as an edge between node-pair of two even nodes, ‘T’ is encoded as an

"’

edge between node-pair of odd and even node and ‘!’ is encoded as an edge
between node-pair of node number 0 and any integer. While forming node
pairs to embed all signature digits, nodes are traversed in the increasing order
of their number. Further, Le Gal and Bossuet [32] exploits in-synthesis phase
of HLS for watermarking of DSP circuits. This approach targets the hardware
that performs computationally intensive tasks in audio and video applications.
This technique automatically inserts author’s watermark in order to reduce
design overhead. In this concept of watermarking, empty time slots between
successive high levels of data valid output are exploited to embed author’s
signature. Therefore, this approach is viable for circuits having free output
slots. The entire watermark is a set of sub-marks where each sub-mark is given
by a mathematical relation. Input values, initial values and intermediate values
of circuit compose the mathematical relation of a sub-mark. During the unused
time slots of output, when data valid signal is dormant, the sub-marks are read
as output values. The watermark remains invisible during static analysis
because the sub-marks appear at output as dynamic transient values.
Furthermore, Sengupta and Roy proposed a multi-phase watermarking
technique [33], [34] based on seven variables author-signature. Signature
combination comprising of seven variables is embedded during three different
phases of HLS process viz. scheduling phase, hardware allocation phase and
register allocation phase. Owing to large number of signature variables and

embedding at three different phases, this watermarking technique is highly

14

tamper tolerant and offers extremely low Pc. This is because the complex
signature combination embedded at three phases of HLS renders the
identification process of watermarking constraints into the design highly
complicated and it is very less probable that the same watermarking solution is

identified in an unsecured version.

Limitations: The detective control is a passive protection measure of IP cores.
It does not actively prevent IP piracy by an adversary. Further, the signature
used in the existing watermarking approaches is vulnerable to theft and misuse
by the adversary [26]. If the chosen signature length, signature digit and their
encodings into security constraints are compromised by the adversary then
he/she can duplicate the true vendor’s signature to cause the following impacts
[2]: (1) misusing the compromised signature to fraudulently claim the
ownership, thereby hindering the true IP vendor from proving his/her
ownership (ii) evading IP counterfeiting detection by embedding the vendor’s
authentic signature (or secret mark) in counterfeit designs. Hence, this entails
developing robust authentication marks (or secret marks) to enable strong

detection of IP piracy.
2.2. State of the Art on Thwarting Hardware Trojan Insertion Attack

If an attacker becomes able to successfully reverse engineer the design to
know its exact structure and internal details, he/she can insert the Trojan
secretly into the design. Therefore, the designer’s effort should be to hinder
the attacker from knowing the correct structure of the design through reverse
engineering (RE) [42] to secure against the hardware Trojan insertion attack
[43]. By making the design structure un-obvious or un-interpretable to an
adversary, the RE based attack of potential Trojan insertion can be thwarted
[2], [8]. Structural obfuscation mechanism was proposed to obfuscate (make
un-obvious) the design structure of an IP core to prevent against the possible
Trojan insertion in an untrustworthy house [44], [45]. The potential sites for

Trojan insertion could be a SoC design house or a foundry.

Lao and Parhi [44] utilized hierarchical contiguous folding (HCF) to
performing the structural obfuscation. In this folding, all operations of one

stage are performed before starting to perform next stage operations. More

15

explicitly, Lao and Parhi [44] applied the obfuscation by varying the number
of stages in the cascaded structure, resulting into several variation modes. For
obfuscating DSP circuits, different variation modes can be implemented.
Some modes produce functionally invalid outputs, however, the output can be
meaningful from a signal processing point of view. Other modes can produce
non-meaningful outputs. Manifold meaningful and non-meaningful modes
(resulting from folding) have been utilized for obfuscation in this technique.
Various modes of operations are regulated through configure data. The
functional mode of a DSP design is configured by a reconfigurator which is
enabled by a finite state machine (FSM). Further, this FSM is controlled by a
key. If an invalid key/wrong configure data is applied, it results into either a
meaningful but non-functional or non-meaningful mode. Thus folding based
obfuscation results in many equivalent circuits to incur obscurity in the
structure of a DSP design. The probability that a correct mode is activated is
considerably reduced for achieving higher security through obfuscation. This
approach mainly targets loop based DSP applications such as finite impulse
response (FIR) filters etc. Further, Sengupta et al. [45] leveraged compiler
based high level transformations (HLTs) to structurally obfuscate DSP
hardware accelerators. Following compiler based high-level transformations
have been exploited [45], [46]: redundant operation elimination (ROE), logic
transformation, tree height transformation (THT), loop unrolling and loop
invariant code motion. ROE technique eliminates those operations (or nodes in
CDFG) whose inputs and operation type match with another operations/nodes
in the CDFG. Logic transformation alters some operation types in the CDFG,
maintaining the design functionality intact. THT technique causes some
operations to be executed as parallel sub-computation rather than sequential
execution. Thus it leads to either increase or decrease in the tree height. Loop
unrolling technique unrolls the loop body based on unrolling factor. This
changes the number of times reuse of FUs and also reduces design latency
because of allowing parallelism. Loop invariant code motion technique moves
those operations out of the loop which are not dependent on the loop
iterations. Applying aforementioned complier based techniques significantly
transform the CDFG of DSP application without affecting original

functionality. These high level transformations considerably alter the RTL

16

datapath of the DSP application post HLS. This alteration includes changes in
size and number of Muxes and Demuxes, changes in interconnectivity of
functional units (FUs) with Muxes, Demuxes and change in number of storage
elements (registers) etc. In addition, Sengupta et al. [45] explored low-cost
solution by integrating PSO-DSE framework with the HLS process. This PSO-
DSE provides optimal resource constraints to schedule transformed/obfuscated
graph which in turn leads to minimal design cost of structurally obfuscated
design. Furthermore, Sengupta et al. [47] proposed THT based structural
obfuscation for protecting JPEG codec hardware accelerators. And, Sengupta
et al. [48] proposed hybrid transformations based structural obfuscation to
protect fault secured DSP designs. A structurally obfuscated design is arduous
to be successfully reverse engineered, hence thwarting hardware Trojan

insertion attack.

Limitations: The applicability of existing structural obfuscation approaches
rely on the nature of the intended application to be secured. The high level
transformations employed in existing approaches may not be universally
applied to all target applications. This demands alternative techniques which
can be applied to wide variety of applications. Furthermore, the strength of
obfuscation value needs to be enhanced /improved in order to achieve higher

security against the potential Trojan insertion attack.

2.3. Objective of the Thesis

This thesis aims at developing novel techniques/methodologies for securing
DSP and multimedia based IP cores against the foregoing hardware threats.

This is achieved by setting out the following objectives:

1. To develop robust detective control mechanisms using I[P core
steganography for securing DSP and multimedia IP cores against the threat
of IP piracy.

2. To develop a robust preventive control mechanism against the potential
hardware Trojan insertion attack using hologram based structural
obfuscation.

3. To develop double line of defense mechanisms to secure the DSP and

multimedia [P cores to handle both the IP piracy and Trojan insertion

17

threats simultaneously by integrating structural obfuscation techniques
with the hardware watermarking/steganography.

To develop a methodology for designing secured (obfuscated) and

reconfigurable image processing filters hardware accelerators and a

secured DFT processor.
To develop robust countermeasures against the potential removal attack to
secure functionally obfuscated DSP cores.

To develop a robust preventing control mechanism against the threat of IP

piracy using logic locking of DSP and multimedia IP cores.

2.4. Summary of the Contributions

A novel detective control approach for securing against IP piracy using

proposed entropy based IP core steganography. (publications: #2)

Proposes a novel ‘IP core steganography’ for enabling detection of piracy
of DSP kernels.

The extent to which secret stego-information could be implanted is
designer controlled through an ‘entropy threshold’ value.

Achieves reduced typical register overhead while improving the

robustness of the IP core protection.

A novel detective control approach for securing against IP piracy using

proposed key-driven hash chaining based IP core steganography.

(publications: #3, #19)

Proposes a novel key-driven hash-chaining based IP steganography to
secure against ‘counterfeit ICs/IPs with copied stego-mark’. This
impedes an adversary from copying and misusing the authentic stego-
mark to escape counterfeit detection process.

The proposed approach exploits manifold encoding schemes, switch
based hash blocks (driven through stego-keys) alongwith regular hash
blocks in the hash-chaining process.

Yields stronger security in terms of robust digital evidence (stego-mark)

and larger key size at trivial area overhead.

A novel methodology of hologram based structural obfuscation to secure

DSP cores against reverse engineering based attacks. (publications: #1,

#16)

18

- Proposed work leverages a security image hologram feature to
introduce a novel hologram based structural obfuscation technique for
securing DSP cores at register transfer level.

- Presents multiple algorithms for generating hologram based obfuscated
design by integrating two DSP cores.

= A novel double line of defense methodology using proposed integrated
tree height transformation based structural obfuscation and Crypto-
steganography approach for securing JPEG processor and DFT processor.

(publications: #8, #10, #11, #13)

- Proposes first work towards securing JPEG codec hardware using
double line of defense based on structural obfuscation and crypto-
steganography to provide enhanced security.

- Presents a design flow of generating a secured N-point DFT application
specific processor using the proposed double line of defense.

- The structural obfuscation is employed as 1* line of defense against
Trojan insertion and the 2™ line of defense is deployed by embedding
proposed crypto-based dual phase hardware steganography.

- The hardware steganography as a second line of defense uses following
security modules/properties to generate a robust stego-mark:
substitution using S-box (confusion property), diffusion property,
alphabetic encryption, alphabet substitution, byte concatenation and bit-
encoding.

= A novel double line of defense methodology using proposed integrated
multi-key based structural obfuscation and physical level watermarking

approach (publications: #4, #12)

- Proposes a design methodology for generating secured DSP circuits
using double line of defense via key based structural obfuscation as
preventive control and physical level watermarking as detective control

- The obfuscation is performed using key-driven partition and key-driven
folding knob based transformations combined with key-driven loop
unrolling, key-driven ROE and key-driven THT.

- The proposed physical-level watermarking is performed through early

floorplanning of obfuscated DSP circuits.

19

A novel HLS driven secured hardware accelerator design methodology for

image processing filters (publication: #5)

Proposes a methodology of designing a hardware accelerator
architecture using HLS process for 3x3 and 5x5 kernel filters of image
processing applications.

Designs structurally obfuscated hardware accelerator architecture using
high level transformations for both 3%3 and 5x5 filters.

Designs structurally obfuscated architectures of five types of 3x3 filters
such as blurring, sharpening, vertical embossment, horizontal
embossment and Laplace edge detection.

Proposes an obfuscated 3x3 filter hardware accelerator design in

reconfigurable functionality mode.

Novel SHA-512 based key generation hardware and anti-removal logic

(ARL) hardware based techniques for securing functionally obfuscated

DSP cores (publications: #5, #9, #15).

Proposes for the first time key-generation logic for ILBs
reconfiguration using a custom SHA-512, to be used for larger size
designs secured using functional obfuscation.

Also proposes key-generation logic using a lightweight ARL unit, to be
used for smaller size designs secured using functional obfuscation.
Proposed logics are capable to reconfigure larger number of ILBs at

lower design overhead than AES128 logic.

A novel methodology for generating secured DSP cores using proposed
robust logic locking (functional obfuscation) approach to thwart IP piracy
(publications: #7, #21)

Proposes a robust DSP locking cell (DLC) structure to lock the DSP
circuits against IP piracy.

Proposes re-configurability of DLCs based on AES128 output to
enhance the resilience against removal attack.

Proposed DLCs render the brute force attack of extracting the actual
key ineffective by enabling the true operation of DLCs only upon
applying correct key in the first trial.

20

Chapter 3

Hardware Steganography Techniques for Securing IP
Cores against Piracy

For the past few decades, the intellectual property (IP) piracy has posed a
serious threat to the security of IP cores. The illegitimate use of IPs not only
causes a revenue loss to a true IP vendor but also raises a grave concern about
the reputation of the genuine IP vendor. This is because, an adversary may sell
the counterfeit/fake components into the market as authentic ones under the
brand name of the genuine vendor. Since a counterfeit I[P may contain a
hidden malicious logic inside and not be fully tested for reliable and safe
operations, hence results in sabotaging the true vendor’s reputation [1]-[3].
This entails developing a robust mechanism for enabling the detection of IP
piracy. The detective control based security of IP cores can be employed
during the design process at various levels of design abstraction. However in
case of DSP and multimedia applications, the high level synthesis (HLS)
process offers an effective and efficient way of integrating the security
mechanism. The HLS process has various design phases viz. scheduling,
allocation, binding and datapath synthesis, which can be exploited for
applying the security. Moreover, the HLS process possesses the flexibility of
controlling the design cost overhead and parametric constraints such as area,
power and delay that may be affected due to integrating the security
mechanism. [P watermarking is a very popular mechanism of detective control
over IP piracy, which embeds the IP vendor’s signature into the design in the
form of hardware security constraints [8]-[11]. The details on IP piracy threat
and the state of the art security mechanisms have been discussed in the

chapters 1 and 2.

Novel techniques for detecting the piracy using IP core steganography are
presented in this chapter. Following two proposed IP core steganography
techniques are discussed in this chapter: (i) entropy based hardware
steganography (ii) key-driven hash-chaining based hardware steganography.
The first section of the chapter formulates the problem. The second section

discusses the proposed entropy based IP core steganography technique under

21

the following sub-sections: overview, the proposed steganography
methodology with a motivational example, entropy based steganography
detection process, demonstration of the entropy based steganography using a
DSP application, the measure used for evaluating the security and limitations
of entropy based steganography. The Third section discusses the proposed
key-driven hash-chaining based IP core steganography methodology under the
following sub-sections: overview, the proposed key-driven hash-chaining
based steganography methodology with demonstration using a DSP
application, steganography detection process, and the measure used for
evaluating the security. Subsequently, the fourth section presents the metric
for evaluating the impact of proposed steganography techniques on design

cost. Finally, the fifth section concludes the chapter.

3.1. Problem Formulation

Given a data flow graph (DFG) representation of a target DSP application,
module library, resource constraint Zi, along with the objective of securing IP
cores against piracy and false claim of IP ownership, generate a secured stego-

embedded design.
3.2. Entropy based Hardware Steganography

The proposed entropy based steganography methodology is discussed under

the following sub-sections.

3.2.1. Overview

| Input Block !

i Data Flow Graph Resource Module |

i | (DFG) of DSP Constraints Library |

v _____________________ 1
: High Level Synthesis Framework
: e Edgeset | Swappingpair | pour shortisted | Stego-constraints

assignmen determination| o determination | opy. 8 5CIS | embedding phase

| | phasein phase in CIG phase determination determination in IP core at RTL
| | Scheduling Ph phase phase
| | (Phase 1) (Phase2) (Phase 3) (Phase 4) (Phase 5) (Phase 6)

Output Block

Stego DSP IP Core

Fig. 3.1. Overview of the implanting hardware steganography in IP cores

22

The overview of the proposed steganography framework is shown in Fig. 3.1.
As shown, the HLS framework is used to accomplish the process of IP
steganography. Input to the HLS framework is a DFG of the intended DSP
application and output is the steganography embedded IP core (Stego IP core).
Further, the process of embedding steganography using the HLS framework is
allocated to six different phases. Phase 1 takes the DFG of the target
application as input and accomplishes the storage assignment process post
scheduling. Phase 2 first forms a colored interval graph (CIG) [25] where the
storage variables are denoted using different nodes in the graph and then
performs determination of edge set where all the edges between two nodes of

same colors in the CIG are listed. Further, phase 3 takes this edge set as input

and performs the determination of swapping pairs for each edge in the set.

P e e 1

|(\ [| Create \ —————\l

Scheduled I I el CIG I

Il prc | |l

1 | ! | 1

[l |l Determine all I | | Determine | I

||| Assign || possible edge sets I | Swapping pair I |

Il storage | || that could be added | | I to embed edge I

variables || in CIG between same for each set | |
pTTTTTTTo ! II colors | ||
| ipBlock | || | | | |
" [org| 1INt) Vo Phase2) /(| Phase3)| 0 op
' b | | Block
1 : —_————— = 1
| v Phase 5 \ . 2 I |
' Resource | | I | 7 4 \\I !
i i Phase St

i constraints I Apply | { ||I-J|>i Ds?)g?P
! | I Entropy N Compute I ' Core
| Module| ! | Thresholding | I ° Entropy of I
| library | | | I | | each swapping || |
| ! | air -
I L v | | P ===
| C | v |l
"""""" o I Shortlist edge sets | Yes I

I MEv.V.STE Find max II

vVj

| I , for each set | I

| N ——~ \ /|

I I N — — e —— 7 I

I |

\

I / Implant Implant Generate | |

|| conmsrt)r:i?lts > f:onstrgints Modjﬁed _y Evaluate . Stego I

|| o CIG in Register Register Cost implanted ||

II m Allocation Allocation in IP Core ||

| ! Phase 6 | |

N _

—— -

Fig. 3.2. Embedding process of hardware steganography for an IP Core

23

Next, phase 4 determines the maximum entropy for each edge in the set. Then
a sub-set of edges is shortlisted in the phase 5 based on the designer’s chosen
entropy threshold value. In the last, phase 6 embeds the shortlisted edges into
the design in the form of constraints edges added to the CIG to generate a
stego-IP core.

3.2.2. Elaborating entropy based IP core steganography with a

motivational example

The proposed methodology is elaborated in this section using a motivational
example. Fig. 3.2 highlights the details of the proposed methodology and its

various phases are explained as follows:
Phase 1: Storage variables assignment in the scheduled DFG

The phase 1 takes the DFG of the DSP IP core to be secured as input and
performs the scheduling step of HLS based on the resource constraints to
generate the corresponding scheduled DFG (SDFG). Further, in this phase,
storage variable assignment in the SDFG is performed wherein storage
variables are assigned to the inputs and output of each operation. Successively,
a colored interval graph (CIG) is created to show the binding of storage
variables (nodes) to the minimum number of registers (colors). The storage
variable assignment of a sample application is shown in Table 3.1, where VO
to V7 indicate the storage variables and Red (R), Blue (B) and Green (G)
indicate the three distinct registers. The corresponding graphical

representation in the form of CIG is shown in Fig. 3.3.

Phase 2: Edge set determination in the CIG

Table 3.1 Storage variable assignment
of a sample application .

Control step Red Blue Green .—.

CS 0 VO VI V2

CS 1 V3 V4 V5 @
S

CS 2 V6 - V5 -

CS3 A7 A - | @ .

Fig. 3.3. CIG of the sample application

24

https://www.draw.io/#G1cp6HakEI4x_U5_Tb3lanjPvSoaZsFAyf

An edge between two nodes in the CIG shows that the life time of two storage

variables are overlapping, hence the colors (register assignment) of both nodes

in such pairs are distinct. This also indicates that the edges between same color

nodes in the CIG can never be drawn. In this phase, all the possible edges

(constituting the edge set) that could be added between the nodes of same

colors are identified. For the sample application being explained, the set of all

possible edges between the nodes of same colors is as follows: D= {<VO0,

V3>, <V0, V6>, <V0, V7>, <V1, V4>, <V2, V5>, <V3, V6>, <V3, V7>,

<V6, V7>}.

Phase 3: Swapping pair determination

The input for phase 3 becomes all the edges mentioned in the set ‘D’ obtained

Table 3.2 (a): Swapping pairs and corresponding

entropies (Evi,vj) for the edge (VO, V3)

. Swapping
CS Swapping colors (Evyy))
pair (Registers)

CSO | Vo= VD) | ReB) 2

CS0 | (V0= V2) | ReG) 2

CSl | Vievd | ReB) 2

SSL 3 vs) (+R & G) .

Cs2 | (V6 VS) | g

Table 3.2 (¢): Swapping pairs and
corresponding entropies for the edge (VO0, V7)

. Swapping
Cs ngp PR | colors (Ev,y)
P (Registers)
Ccso | (VO V) | ReB) 2
Cs0 | (V0= V2) | Re G) 2
Cs3 | VIi=—-) | R=B) 1
CS3 | Vi=>-) R=20G) 1

Table 3.2 (e): Swapping pairs and
corresponding entropies for the edge (V2, V5)

cs Swappmg Swapping Ey.y,
pair colors v
CcS0 | (v2evo) | BeR) 2
CS0 | (V2o VD) | (GeB) 2
CSl | (V5o V4) | (GeB) 2
csi | V5eV3) [GeR)
cs2 + + 3
(V5 V6) | (GeR)

Table 3.2 (g): Swapping pairs and
corresponding entropies for the edge (V3, V7)
Swapping | Swapping

CS pair colors Eviy,

CSl | (V3o Va) (R < B) 2
(V3 & V5)

csl + R & G) 3
(V5 < V6)

CS3 | (Vi=-) (R= B) 1

CS3 | (Vi=-) (R = G) 1

25

Table 3.2 (b): Swapping pairs and
corresponding entropies for the edge (VO0, V6)

. Swapping

CS Swapping colors (Evyr))

pair (Registers)
CS0 | (VO VI) | ReB) 2
CS0 | (V0= V2) | Re G) 2
CS2 | (V6= -) (R= B) 1

V6 & V5

s | " ®eo) 3

(V3 & V5)

Table 3.2 (d): Swapping pairs and
corresponding entropies for the edge (V1, V4)

Swapping Swapping
€S pair colors Evir))
CS0 | (VI & V0) (BoR) 2
Cs0 | (Vie V) (B G) 2
CSI | (V4o V3) (BoR) 2
V4 & V5 Re G
S iy |
(V5= -) R=G)

Table 3.2 (f): Swapping pairs and
corresponding entropies for the edge (V3, V6)

cs Swapplng Swapping Eyy,
pair colors v
Vie
csl1 Va) R & B) 2
cs2 | (V6= -) (R = B) 1

Table 3.2 (h): Swapping pairs and
corresponding entropies for the edge (V6, V7)
Swapping | Swapping

CS pair colors Eviy,

CS2 | (V6= -) (R> B) 1
(V6 & V5)

cs2 + (R & G) 3
(V5 & V3)

CS3 | (Vi=-) (R= B) 1

CcS3 | (Vi) (R = G) 1

in the previous phase. This phase determines the possible swapping pairs in
the CIG for enabling the addition of an edge <Vi, Vj> between the node pairs
Vi and Vj in the set ‘D’. Essentially, the conflict in inserting an edge between
node pair Vi and Vj can be resolved using multiple such possible swapping
pairs. For the all edges determined in the previous phase, the possible

swapping pairs are shown in Table 3.2.
Phase 4: Maximum entropy determination

This phase finds the entropy for each swapping pair of each edge mentioned in
the edge set D. The entropy E(vivj of a swapping pair of the edge <Vi, Vj>
represents the number of color transformations needed to enable embedding of
that particular edge in the CIG. Further, for all edges in the set ‘D’, the
maximum value of entropy (MEvivj) among all the possible swapping pairs

for an edge <Vi, Vj> is determined.
Phase 5: Eligible edges determination as stego-constraints

The eligible edges are those edges in the edge set D which qualify for
embedding into the CIG as steganography constraints. These edges become
eligible based on a vendor specified threshold entropy value (T") following the
given eligibility criteria:

yes, ME(Vi,Vj) < TE

Edge eligibility = { no, MEqiy;) > TE
) Vi, Vj

(3.1)

For the sample application being discussed in this section, the eligible edges

for TF = 2 are as follows: <V0, V7>, <V1, V4>, and <V3, V6>.

Phase 6: Stego-constraints embedding

Table 3.3 Storage assignment
post implanting stego-constraints

e CS Red Blue Green

CS0 VO VI V2
° CS1 V3 V5 V4

cSs2 - V5 A\

(] CS3 — - VI

Fig. 3.4. Final CIG after implanting all the edges

26

https://www.draw.io/#G1cp6HakEI4x_U5_Tb3lanjPvSoaZsFAyf

In this phase, all the eligible edges are embedded into the design in the form of

adding constraint edges to the CIG of the target DSP application. Since an

edge cannot be directly added between the nodes of same colors, therefore the

proposed algorithm seeks for the corresponding possible swapping pairs to

enable the addition of the edge. For example, eligible edges obtained in the

previous phase are implanted in the CIG using the following solutions:

(a) The embedding of edge <V0, V7> requires the color transformation of V7
from R to G in the CS3 as shown in Table 3.2(c).

(b) The embedding of edge <V1, V4> requires the color transformations of
V4 from R to G and V5 from G to R in the CS1 as shown in Table 3.2(d).

(c) The embedding of edge <V3, V6> requires the color transformation of V6
from R to B in the CS2 as shown in Table 3.2(f).

Using the above solutions, the vendor’s entropy controlled stego-constraints
are embedded into the design during the register binding step of the HLS
process. Post embedding the constraints, the modified CIG of the sample
application and the corresponding modified storage variable assignment are
shown in Fig. 3.4 and Table 3.3 respectively. Thus generated a specific
register binding of storage variables hides the vendor’s secret stego-
information which enables the detection of IP piracy and resolution of IP

ownership conflict during the verification process.

3.2.3. Steganography detection

Input DFG > . . o/ Generate
Based on Z; Scheduling > Reglstgr e ¢
Allocation

Collect the

correspondi If \ 4

ng edges of | My, <= T" > CAlCUIate By | T iorine it of

the satisfied ' for each possible i ible ed

L d all possible edges
condition edge

v

Storage variable
NO Verification mapped to register Inspect Muxes of Datapath of the
Block 44— | all Registers (& licati
(inputs) application
1P
counterfeiting YES
detected Ownership

Proved

Fig. 3.5. Proposed entropy based steganography detection process

27

Detection of the stego-information in the DSP IP core is a vital and essential
process for resolving IP ownership conflict and detecting piracy. The detail of
the proposed steganography detection process is highlighted in Fig. 3.5. As
shown, the detection is performed by extracting the hidden information from
the design and verifying it with the stego-constraints obtained using the

claimant’s steganography process based on the entropy threshold value “T*.

3.2.4. Demonstration of the entropy based steganography using 8-point
DCT core

An 8-point DCT is a DSP algorithm which is used in the JPEG compression
process to convert the pixel intensities from spatial domain to the frequency
domain representation [54]. The scheduled DFG of 8-point DCT based on the
resource constraints of 1 adder (A1) and 4 multipliers (M1, M2, M3 and M4)
is shown in Fig. 3.6. As shown in the scheduled DFG, total eight control steps
(CS) are required to schedule all the operations, and total eight registers viz.
Violet, Indigo, Blue, Green, Yellow, Orange, Red, and Black are used to
execute 23 storage variables (V0-V22) of the design. Further, a CIG is created
from the scheduled DFG and the edge set ‘D’ is determined. The potential

Blue Green Yellow Orange

Blue Green

Yellm’ Orangg ‘ °

Fig. 3.6. Scheduled and hardware allocated 8-point DCT using 1 (+) and 4 (%)

28

edges in the set ‘D’ are as follows: <V0, V8>, <V0, V16>, <V0, V17>, <V0, V18>,
<V0, V19>, <V0, V20>, <V0, V21>, <V0, V22>, <V1, V9>, <V2, V10>, <V3, V11>, <V4,
V12>, <V5, V13>, <V6, V14>, <V7, V15>, <V8, V16>, <V8, V17>, <V§, V18>, <V§,
V19>, <V§, V20>, <V§, V21>, <V8, V22> <V16, V17>, <V16, V18>, <V16, V19>, <V 16,
V20>, <V16, V21>, <V16, V22>, <V17, V18>, <V17, V19>, <V17, V20>, <V17, V21>,
<V17, V22>, <V18, V19>, <V18, V20>, <V18, V21>, <VI8, V22>, <V19, V20>, <V19,
V21>, <V19, V22>, <V20, V21>,<V20, V22>, < V21, V22> Further, as per the
proposed approach, maximum entropy for each edge in the set is determined.
The corresponding maximum entropy values for all edges in the set ‘D’ are 4,
7,7,7,7,7,7,3,2,3,4,4,5,6,7,7,7,7,7,7,7,4,3,4,4,5,6,7,4,4,5, 6,
7,4,5,6,7,5,6,7, 6,7, 7 respectively. Further, the aforementioned edge
eligibility criteria is applied to shortlist the eligible edges based on the entropy
threshold value TF=5. This provides the eligible edges to be embedded into the
CIG in the form of stego-constraints. The embedding of stego-constraints
leads to a modified register binding of storage variables, indicating the
vendor’s secret information hidden into the design. Post embedding stego-
constraints, the scheduled DFG of 8-point DCT is shown in Fig. 3.7. Further a
stego-embedded RTL datapath is generated after the HLS process, thus

Green Yellow Orange

e° ° ‘ Yellovg

Orang

Fig. 3.7. The stego-embedded scheduled and hardware allocated 8-point DCT

29

enabling the detection of IP piracy.

3.2.5. Metrics for evaluating security of entropy based steganography

The effectiveness of the proposed approach is measured using the security
achieved and its impact on design cost. The security is measured in terms of a
probability of coincidence (Pc) metric which indicates the probability of
coincidently detecting the same stego-information into a design of the same
application which is not secured using the proposed steganography approach.
Hence, it is expected to be as low as possible. The following formula is used

to compute the Pc metric [25], [30]:

pPe=(1- %)f (3.2)
Where, G denotes the number of registers before embedding steganography,
and f denotes the number of stego constraints added to the CIG. The Pc can be
minimized by adding larger number of security constraints into the design,

indicating higher strength of the stego-mark.
3.2.6. Limitations of entropy based steganography

The entropy based steganography approach generates the stego-constraints
using the secret design data (the initial edge set) and a key-parameter
(entropy). If this information is compromised to an adversary, then s/he can
regenerate or duplicate the stego-constraints to misuse them for IP piracy or
fraudulently claiming the IP ownership. The compromised/copied stego-mark
can be misused in a counterfeit design by the adversary to evade the
counterfeiting detection process. This entails developing a robust
steganography approach which should be arduous to be compromised/

attacked by the adversary.
3.3. Key-driven Hash Chaining based IP Core Steganography

The proposed key-driven hash-chaining based steganography is a robust
approach for securing the IP cores against piracy. In this approach, the stego-
constraints generation process involves a robust hash-chaining process and a
larger size key in order to counter the attacker’s malicious intent of copying
and misusing the vendor’s authentic stego-mark. This gets rid of the limitations

of entropy based steganography approach. Further, the stego-constraints are

30

embedded into the design during two distinct phases of HLS, rendering the
stego-mark highly strong. The proposed key-driven hash-chaining based

steganography methodology is discussed under the following sub-sections.
3.3.1. Overview

This steganography approach generates the stego-constraints using a robust
hash-chaining process which is regulated using a larger size vendor’s key
(stego-key). Once the stego-constraints are obtained, they are imposed onto
the target DSP design during register binding phase and functional unit (FU)
vendor allocation phases of HLS. Embedding stego-constraints during dual
phases of HLS enhances the quality of vendor’s stego-mark hidden into the
design. Fig. 3.8 shows the overview of the proposed dual-phase key-driven
hash chaining based steganography approach. The inputs and output of the
proposed approach are highlighted in the figure itself. The generic flow of the
proposed approach is as follows: (i) performing the scheduling, allocation and
binding steps on DFG of the target DSP application using the module library
and resource constraints, (ii) generating various encoded bitstreams of the

DSP application using proposed encoding rules (ii) performing key-driven

Inputs
Module Encoding
Stego- Resource DEG : s
keys ~constraints library
v v v
Scheduling, allocation and binding steps of]
HLS

v

Generating bitstream representation

v

Proposed key-driven Hash-chaining

v

Mapping into secret stego-constraints

v

Embedding stego-constraints during
HLS

v

Output

v

Steganography embedded DSP Core

Fig. 3.8. Overview of key-driven hash-chaining based steganography

31

Stego-
Key-1

logn
| bits

Stego-
Key-2

f A
Encoding ‘E1” | |Encoding ‘E2’

DSP application (DFGy,,)

v
Encoding ‘En’

Stego-
Key-n

A

1

X X X
\ 4 \ 4 'V
Pre-processing Bits padding Bits
padding
1024 380 380
\ 4 \4 v
Hash Hash > Hash
_ _f_> _ = -’
Mu‘x—l Mux-2/ Mux-n, block-1 512 block-2 512 blocken 512
n:l n S\
logon logon
bits bits Hash Hash inIash
block- block- ock-
< < Pl P a2 = o
X 512 512 512
380 ¢ 380 i 380¢
Bits Bits Bits
padding padding padding

A

Stego-constraints generation through proposed Hash-chaining

Embedding constraints corresponding to bit ‘0’
during register allocation phase of HLS €

Embedding constraints corresponding to bit ‘1’
during resource allocation phase of HLS

Embedding Steganography

47

Converting
bitstream into
stego-constraints

‘_

truncation to designer|

Bitstream (512 bits)

selected constraints |
size

Steganography embedded DSP core

Fig. 3. 9. Details of proposed key-driven hash-chaining based steganography

hash-chaining process taking the encoded bitstreams as inputs (ii) mapping the

output bitstream of hash-chaining process to stego-constraints using the

mapping rules (iii) embedding the secret stego-constraints into the design

during dual phases (register binding phase and FU vendor allocation phase) of

HLS. The embedded stego-constraints into the design act as a vendor’s secret

digital evidence to proving the authenticity of the genuine IP and identifying

the fake ones.

3.3.2. Details of key-driven hash chaining based IP core steganography

with demonstration using 8-point DCT core

Figure 3.9 shows the details of the proposed methodology and it is elaborated

with a demonstration on 8-point DCT core under the following steps.

32

(a) Scheduling, allocation and binding of input DFG

This step performs scheduling, allocation and binding of DFG of the input
DSP application using the resource constraints of one adder and four
multipliers and the given module library. For example, Fig. 3.10 shows the
DFG post performing scheduling, allocation and binding phases of HLS. Here,
the vendor allocation to FUs has been performed using the two-vendor
allocation scheme in which an FU instance Fj (e.g. M} or A%) bears the
vendor type ‘a’ and instance number ‘b’. In the two vendor allocation scheme,
the variable ‘a’ can take up only two possible values either 1 or 2. Further, in
the scheduled, allocated and binded DFG (abbreviated as DFGyy,), VO to V22
are the storage variables, P, I, V, G, Y, O, R and B are the eight distinct
registers as shown in Fig. 3.10. Thus obtained DFGg,y, is used for generating
various encoded bitstreams.

(b) Generating encoded bitstreams

The DFGq,, is encoded into various bitstream representations using the
vendor’s encoding rules. The encoding rules encode each operation of DFGgy
into either bit ‘0’ or ‘1°, hence the length of the encoded bitstream is same as

the number of operations (nodes) in the application (DFG). Some proposed

Cs4

CS5

CSé

Cs8

Fig. 3.10. DFGy,, of 8-point DCT using | A and 4 M before implanting steganography

33

encoding rules are as follows:

1.

Encoding rule E1: If operation number (opn#) and respective CS# are both
even then the opn is encoded as bit ‘0’ otherwise bit ‘1°.

Encoding rule E2: If operation number and respective CS number both
bear the same parity (both either even or odd) then the opn is encoded as
bit ‘0’. However, if both bear the different parity then the opn is encoded
as bit ‘1°.

Encoding rule E3: If operation number and respective CS# are both odd
then the opn is encoded as bit ‘0’ otherwise bit ‘1°.

Encoding rule E4: If operation number and respective CS number both
bear the different parity then the opn is encoded as bit ‘0’. However, if
both bear the same parity then the opn is encoded as bit “1°.

Encoding rule E5: 1f operation number and respective CS# are both prime
then the opn is encoded as bit ‘0’ otherwise bit ‘1°.

Encoding rule E6: 1If operation number and respective CS# are both prime
then the opn is encoded as bit ‘1’ otherwise bit ‘0’.

Encoding rule E7: If the greatest common divisor of operation number and
the respective CS number is one then the opn is encoded as bit ‘0.
However, if the greatest common divisor of operation number and the
respective CS number is not one then the opn is encoded as bit ‘1’
Encoding rule E8: If the operation number modulo respective CS number
is zero then the opn is encoded as bit ‘0’. However, if the operation
number modulo respective CS number is not zero then the opn is encoded
as bit “1°.

Encoding rule E9: If the CS number is equal to second odd sequence of

operation number then the opn is encoded as bit ‘0’ otherwise bit ‘1°.

For demonstration, the encoded bitstream representations of DFGg,, of 8-point

DCT (shown in Fig 3.10) for the aforementioned nine encoding rules are

respectively as follows:

“El: 1111101011111117, “E2: 010110101111111”, “E3: 0101111111111117,
“E4: 101001010000000”, “E5: 111101011111111”, “E6: 000010100000000”,
“E7:000001010000010”, “E8: 000010101111101”, “E9: 111111111111111”

However, an application having x operations can have 2* possible encoded

bitstream presentations using the same number of encoding rules.

34

(¢) Generating a hashed bitstream using key-driven hash-chaining

The encoded bitstreams of the DSP application are fed to the key-driven hash
chaining process to generate a hashed bitstream. If there are n number of
encoded bitstreams then 2xn hash blocks are used in the hash chain. Each hash
block performs a SHA-512 algorithm on 1024-bit input data where the 1024-

bit data is formed using the following procedure:

Fig. 3.11 (b). CIG of 8-point DCT
after steganography

Fig. 3.11 (a). CIG of 8-point DCT
before steganography

35

For the I°" hash block in the hash chain: the encoded bitstream of length x-bit
is first appended with ‘1’ followed by sequence of ‘0’ bits to form a 896-bit
chunk. Further, the 128-bit representation of the length ‘x’ of encoded
bitstream is appended to the 896-bit chunk to form 1024-bit input to the 1*
hash block.

For the remaining hash blocks in the chain: the 512-bit output of previous
hash-block is concatenated with a 4-bit chunk “1000” followed by 380-bit
output of bits-padding block and 128-bit representation of the length ‘512 bits’
of previous hash, to form 1024-bit input to the remaining hash blocks. The
380-bit output of bits-padding block is generated by padding designer’s
chosen (380-x) bits before the x-bit long encoded bitstream.

Further, in the hash-chaining process, the i hash block uses the i bitstream
where ‘i’ varies from 1 to n (the number of encoded bitstreams). However, the
remaining n- hash blocks are key driven where the encoded bitstreams used by
a key-driven hash block is determined by the stego-key value of size [log,n]
bits. The total stego-key size is computed to be is nx[log,n] bits as there are n
number of key-driven hash blocks in the hash-chain. The output of final hash-
block is 512-bit hashed bitstream.

For the 8-point DCT application being demonstrated, nine (n=9) encoding
rules are used to generate the 9 encoded bitstreams which are processed by
2n=18 hash blocks through the hash-chain process. The hash block number 10
to 18 are the key driven hash blocks which use the following keys
respectively: “1000, 0111, 0110, 0101, 0100, 0011, 0010, 0001, 0000

(d) Mapping the hashed bitstream into stego-constraints

The 512-bit long hashed bitstream is first truncated to the designer selected
size of stego-constraints. For the demonstration on DCT core, let’s say the
chosen constraints size is 24 bits and the truncated bitstream is as follows:
“111100010011101000011000” which contains 13 zeros and 11 ones. The bits
of the truncated hashed bitstream are mapped to the stego-constraints using the
following mapping rules:

‘0’: Anedge added between node pair (even, even) of the CIG

‘1’ Odd operations are assigned to FU of vendor type 1 and even

operations are assigned to FU of vendor type 2.

36

Where, the CIG corresponding to the DFGg,, of a DSP application graphically
represents the register binding of storage variables.

For the 8-point DCT application, the corresponding CIG is shown in Fig.
3.11(a) which is exploited to embed secret stego-constraints into the design.
(e) Embedding stego-constraints into the design

The obtained stego-constraints are embedded into the design in the form of
extra edges added to the CIG and a specific FU vendor allocation to the
respective operation. The stego-constraints corresponding to bit ‘0’ and bit ‘1’
are implanted in the design during register binding and FU vendor allocation
phase respectively of HLS. The constraint edges added to the CIG
corresponding to the 13 zeros (obtained in the previous step) are as follows:
<V0,V2>, <V0,V4>, <V0,V6>, <V0,V8>, <V0,V10>, <V0,V12>, <V0,V14>, <V0,V16>,
<V0,V18>, <V0,V20>, <V0,V22>, <V2,V4> <V2,V6>. These edges are deliberately
added to the CIG one by one, indicating the vendor’s stego-information
embedded into the design during register binding phase of HLS. Sometimes,
adding extra edges may result into conflict as no edge can exist between two

nodes of similar color. This conflict is resolved through local valid alterations

Cso

Cs2

CS3

Cs4

CS5

CSé

Cs7

CS8

Fig. 3.12. Scheduled and hardware allocated 8-point DCT after implanting steganography

37

in the colors of the nodes. However, in some cases, additional colors
(registers) may be needed to accommodate the constraints. The CIG post
embedding stego-constraints corresponding to bit 0 are shown in Fig. 311(b).
Further, the constraints corresponding to bit ‘1’ specify the constraint-based
allocation of FU vendor type to the respective operations in the DFGg,p. Post
embedding all the constraints, the DFGyg,p 1s shown in Fig. 3.12. Thus obtained
stego-DFGq,p is transformed into the stego-RTL by performing datapath and
controller synthesis phases of HLS. The stego-RTL is a secured soft IP core of
the respective DSP application, enabling the detection of IP piracy.

In the proposed steganography approach, the amount of digital evidence
hidden into the design is higher because of inserting constraints during two
distinct phases of HLS process. This results in a stronger stego-mark leading
to the robust detection of IP piracy.

3.3.3. Steganography detection

The detail of the key-driven hash chaining based steganography detection
process is highlighted in Fig. 3.13. As shown, the detection is performed by

Feeding designer’s stego-
constraints

DSP application

| |
|
| (DFG) |
I * I Extracting storage variable
Resource _L Schedulin : mapped to registers and vendor
constraints | g | _ type _of_F[is_ o
' v | I' |
| i | Inspect muxes| |
Encodings/ I . |
: bitstream | . | lgu” |
| | representations : Det.eCtIOH of I ofa nE
of DSP genuine IPs/ICs | registers an
| application I I vendor type of| |
| (g(l:si : ' | FUs '
| gner’s | I I
| hosen I | v |
| I | Datapath of :
: Proposed key- Verification the DSP |
Stego-keys + driven Hash- | Block | core |
chaining | | |
| I ~o | |
| + |
: Bitstream :
I truncation to | .
|| designers | Detection of tampered/cloned/
| | chosen size | counterfeited IPs/ICs
| |
| + I
| | Conversion of | |
Stegq- truncated |
consFramts bitstream to |
size : stego-constraints :

Fig. 3.13. Detection process of key-driven hash chaining based steganography

38

extracting the hidden information from the design and verifying it with the

stego-constraints obtained using the key-driven hash chaining process.

3.3.4. Metrics for evaluating security of key-driven hash-chaining based

steganography

Security of key-driven hash chaining based steganography is evaluated using
the following metrics: (i) probability of coincidence (Pc) metric (ii) maximum
possible size of stego-key (iii) the attacker’s maximum effort of decoding the
valid stego-key (iv) attacker’s effort in terms of finding encoded bits (v)

attacker’s total effort in determining the stego-constraints.

(1) Probability of coincidence of key-driven hash-chaining based

steganography: This metric is measured using the following formula:

1 f1 1 f2
Pe=(1-1) x (1 - (zo) (3.3)

Where, the first term in the equation corresponds to the Pc due to embedding
constraints in the register binding phase and the second term corresponds to
the Pc due to embedding constraints in the FU vendor allocation phase. Here,
in the first term, G denotes the number of registers before embedding
steganography, and fl denotes the number of stego constraints added to the
CIG. Further, in the second term, ‘y’ denotes the types of resources in the DSP
application, N(Zi) denotes the number of instances of each FU type and {2
denotes the number of stego constraints added during the FU vendor allocation

phase.

(i) Maximum possible size of stego-key: The maximum possible size of the

stego-key (keyy,) is computed as follows:
keyym = U X [log, U] bits (3.4)

Where, ‘U’ denotes the total possible encodings for a DSP application. The
value of U is computed to be 2, where ‘X’ is the number of operations in the
DSP application. The U=2" also represents the total number of key-driven
hash blocks that can be chained in the hash-chaining process. Further, [log,U]

is the size of the stego-key used to drive each key-driven hash block.

39

(ii1) Attacker’s maximum effort of decoding the valid stego-key: This metric is

given by the following equation:
Ask = 2UxllogzU] (3.5)
Where, A$X denotes attacker’s max effort in terms of deducing the stego-key.

(iv) Attacker’s effort in terms of finding encoded bits: This metric is given by

the following equation:
A(rerkl) — 2380X2n (36)

Where, AP denotes the attacker’s effort in terms of finding the encoded bits,
380 bits is the output of a padding block and 2n is the total number of hash

blocks in the hash-chaining process.

(v) Attacker’s total effort in determining the stego-constraints: This metric is
given as follows using eq. (3.5) and eq. (3.6):
— aAsk b
T = AR X A
A'SI‘ — 2U><[log2U] X 2380><2n

AS, = 2(UxTlogUl+(380x2n) (3.7)

Where, A3 denotes the attacker’s total effort in determining the stego-

constraints imposed onto the intended design.

3.4. Metric for Evaluating Impact of Proposed Steganography

Techniques on Design Cost

Embedding stego-constraints to the designs may impact the design cost. This
is because, adding the constraints may require additional hardware or control
steps to accommodate them. Therefore, to evaluate the feasibility of the
proposed steganography approach, the design cost post embedding stego-
constraints is required to be computed. The following function is used to
compute the design cost:

Lt AT

Cf(Zi) =B + B> (3.8)

Lmax Amax

Where, C«Zi) is the cost of the design scheduled using the resource
constraints Zi, further, Lt and At denote the design delay and area at the given

resource constraints, Apm,x and Ly.x denote the maximum design area and

40

delay within the possible design space, B; and B, denote the weights which are

kept to be 0.5 to assign equal preference to both delay and area.
3.5. Summary

The IP core piracy threat was handled using the proposed IP core
steganography methodologies. The proposed entropy based steganography
approach offers the flexibility of controlling the amount of stego-information
to be inserted into the design using an entropy threshold value. The IP
designer/vendor can vary the entropy threshold from low to high value to
achieve the higher strength of the stego-mark. Additionally, the proposed
approach is measured in terms of its security and design cost to evaluate its
effectiveness. Further, the key-driven hash-chaining based hardware
steganography approach was discussed in this chapter. This approach involves
vendor’s large size stego-key and a robust hash-chaining process to generate
the stego-constraints. This approach overcomes the potential threat of evading
IP counterfeiting due to a copied stego-mark in the fake designs. Achieving a
robust security against IP piracy, while incurring negligible cost overhead, is
the strength of the proposed steganography approaches. The experimental
results of the entropy based steganography and key-driven hash chaining
based steganography have deeply been analyzed in the chapter 10 of this

thesis.

41

Chapter 4

Hologram based Structural Obfuscation to Thwart
Reverse Engineering based Attacks

Reverse engineering (RE) is a process of extracting a desired higher level of
abstraction from a given lower level of abstraction of an intended design by
analyzing its internal details. It can be performed at following various levels:
(1) to extract the layout of the design from the IC through de-packaging,
delayering, imaging and pattern recognition technique (ii) to extract the gate
level netlist from the layout of the design through analyzing transistors
interconnectivity and matching it against the standard cells (logic gates) in the
library (iii) to extract high level functionality (e.g. datapath and controller)
from a given gate level netlist by partitioning it into sub-circuits and then
matching them against the RTL components in the module library. RE can be
legally performed for the aim of teaching, analyzing, or evaluating the ideas or
methods applied in the intended circuitry. This is supported by the
Semiconductor Chip Protection Act, USA. However, reverse engineering has a
darker side as well. An adversary in an untrustworthy design house or foundry
may perform the RE to realize his/her ill intentions of stealing the design
intents or inserting a malicious logic (hardware Trojan) inside the design.
More explicitly, the RE can result into IP piracy and Trojan attack which may
not only harm the vendor’s or designer’s revenue but also ruin his/her
credibility. The RE based attack can be thwarted by making RE as hard and
time consuming as possible. Considering the today’s attacker competence, the
absolute security against RE cannot be deployed. However, rendering the
illegal actions by the attacker/adversary highly expensive through RE is
considered as enough security. Towards the protection against RE by a
potential adversary, structural obfuscation is a technique of internal
architecture concealment which makes the design structure unobvious to be

interpreted by the adversary hence hindering the RE process [1]-[4].

This chapter presents a novel structural obfuscation technique based on the
security image hologram feature to secure the DSP circuits against the RE
based attack of IP piracy and potential hardware Trojan insertion. The first

section formulates the problem. The second section discusses the hologram

42

based structural obfuscation approach under the following sub-sections:
overview, elaborating hologram based obfuscation technique and metric for
evaluating the security achieved. Next, the third section demonstrates the
generation of hologram obfuscated design. Further, the fourth section
highlights the similarity between the hologram obfuscated design and a

security image hologram. Finally, the fifth section summarizes the chapter.

4.1. Problem Formulation

Given the data flow graph (DFG) representations of two target DSP
applications, module library, resource constraint, along with the objective of
securing IP cores against RE based attacks, generate a secured (structurally

obfuscated) integrated RTL design of DSP cores.
4.2. Hologram based Structural Obfuscation Approach

This section discusses the proposed hologram based structural obfuscation

approach under the following sub-sections:

4.2.1.Overview
The overview of the hologram based structural obfuscation technique is

depicted in Fig. 4.1. This obfuscation technique takes inputs in the form of

Input

Scheduled Data Flow Graph (DFG) of two DSP applications

¥

Perform hologram based obfuscation during high level synthesis (HLS)
Rule #1: Multiplexing of inputs of only similar portions of both applications
Rule #2: Multiplexing of all inputs of both applications

Rule #3: Multiplexing of inputs of only similar components of both applications

\ 4

Hologram obfuscated RTL
design

Output

Fig. 4.1. Overview of Hologram based obfuscation approach

43

data flow graph (DFG) of two DSP applications and generates a hologram

obfuscated design at the output. Thus generated obfuscated design is a

camouflaged integrated RTL datapath of the input DSP applications. To

perform the hologram based obfuscation technique, following three rules

(highlighted in Fig. 4.1) are applied:

(i) The first rule: only a sub-set of inputs of two DSP applications are
subjected to multiplexing to generate the obfuscated datapath.

(ii) The second rule: all inputs of two DSP applications are subjected to
multiplexing to generate the obfuscated datapath.

(iti) The third rule: only inputs of similar operations of both DSP

applications are subjected to multiplexing.

To produce a hologram obfuscated design, the application of the above
mentioned rules depends on the level of similarity of two intended DSP

applications.

4.2.2. Elaborating hologram based obfuscation technique

This section elaborates the proposed approach of generating a hologram based
obfuscated design. Fig. 4.2 shows the details of the process of deploying
hologram based structural obfuscation which employs three different rules
during the datapath synthesis phase of the HLS process. As shown in the
figure, the DFG forms of two DSP applications (DSP-1 and DSP-2) are first
subjected to pre-synthesis phase of HLS where scheduling, allocation and
binding are performed. The pre-synthesis phase produces scheduled, allocated
and binded DFG (DFGgu) of two DSP applications. Further, DFGg,,-1 and
DFGga-2 are subjected to datapath synthesis phase of HLS where proposed
hologram based obfuscation is applied to generate a structurally obfuscated
integrated RTL datapath of DSP-1 and DSP-2. The elaboration of proposed

rules for hologram based obfuscation is as follows:

(i) The first rule: multiplexing sub-set of inputs of two DSP

applications:

If a portion of DFGg,p-1 of DSP-1 matches with the DFGgy,-2 of DSP-2 (the

matched portions of DSP-1 and DSP-2 contain similar operations with similar

44

DFG-1 representing DFG-2 representing
DSP application -1 DSP application -2

;I‘ .I‘

A 4 A 4

Scheduling, Resource

Scheduling, Resource

Scheduled DFG-1 Scheduled DFG-2
i | 1

Datapath synthesis complying with three rules

A portion of two designs is
similar?

Rule #1

Perform multiplexing of inputs of only similar
portion

Two Designs have similar
Scheduled DFG/CDFG?2

No

Rule #2
Perform Multiplexing of inputs of two

desifus

Two Designs have some similar
components?

Yes \L Rule #3

Multiplexing of inputs of similar components
having different input paths
L

%

Fig. 4.2. Flow of generating a Hologram obfuscated DSP design

Pre-
Synthesis
phase of

HLS

Datapath

Synthesis

phase of
HLS

input-output connectivity), then the datapath synthesis phase undergoes

following actions:

1.

The inputs of only matched portions of DSP-1 and DSP-2 applications

are multiplexed using multiplexers (Muxes) in the integrated datapath.

The outputs of DSP-1 and DSP-2 applications are also multiplexed

using a multiplexer in the integrated datapath.

In the obfuscated integrated datapath, switching between two designs is

executed using multiplexers of size 2x1. And, the switching is regulated using

a designer control input ‘C’ which acts as a select line for the switching

45

Muxes. At control input ‘C’=0, one DSP core becomes functional by taking
inputs through switching Muxes whereas at ‘C’=1, another DSP core becomes
functional in the obfuscated integrated datapath. This rule of hologram based
obfuscation is demonstrated in section 4.3 by selecting finite impulse response
(FIR) filter application as DSP-1 and infinite impulse response (IIR) filter
application as DSP-2.

(ii) The second rule: multiplexing of all inputs of two DSP

applications:

If the DFGgp-1 of DSP-1 fully matches with the DFGgp-2 of DSP-2 (i.e.
possessing identical number of inputs and outputs and same operations with
the same input-output connectivity), then the datapath synthesis phase

undergoes following action:

1. All inputs of DSP-1 and DSP-2 are multiplexed using Muxes in the
integrated datapath.

At control input ‘C’=0, one DSP core becomes functionally active whereas at

‘C’=1, another DSP core becomes functionally active.

(iii) The third rule: multiplexing of the inputs of same operations in

two DSP applications:

The applicability of this rule depends on the presence of similar operations
(nodes) in the DFGgyp,-1 of DSP-1 and DFGgyp-2 of DSP-2 with different inputs
and output. If some operations are similar in two DSP applications then the

datapath synthesis phase undergoes following action:

1. The inputs of the functional modules corresponding to the similar
operations of two DSP applications are multiplexed using Muxes in the
integrated datapath. The functional modules of DSP-1 get inputs when
the control signal ‘C’ is =0 whereas the functional modules of DSP-2
get inputs when the control signal ‘C’ is =I1. In this fashion,
functionality of one of the application is activated at a time using the

control input ‘C’.

Post applying these rules of hologram based obfuscation on DFGg,-1 of DSP-
1 and DFGgp-2 of DSP-2 during the datapath synthesis phase of HLS

46

framework, a structurally obfuscated integrated RTL design is produced. The
structurally obfuscated RTL design acts as a common datapath for both DSP
cores. The hologram based obfuscation approach enables the camouflaging of
two DSP cores into a single RTL datapath to ensure the internal architecture
concealment or structural obfuscation. Thus produced structurally obfuscated
design is harder to be reverse engineered by an adversary, hence thwarting the
theft of original design intents and also the potential insertion of hardware

Trojan in an untrustworthy design house or foundry.
4.2.3. Metric for evaluating security of hologram based obfuscation

A strength of obfuscation (S,) metric is used to analyze the security achieved
using the proposed hologram based obfuscation technique. The S, metric is

given as follows:

f
Ge
Sn = G_Z (41)

Where, Gcf denote the number of gates affected due to applying obfuscation

and GI denote total number of gates in the respective un-obfuscated design.

Further, the number of gates affected (Gcf) post structural obfuscation is

computed using the following equation:
G/ = AG!" + GP? (4.2)

Where, AGCf ? denotes the difference in gate count between obfuscated design

and un-obfuscated version and Gcip denote the number of gates altered in terms

of input connectivity post obfuscation.

4.3. Demonstration on Generating Hologram Obfuscated

FIR-IIR Filter Integrated Datapath

This section elaborates the process of generating structurally obfuscated FIR-
IIR filter integrated datapath using the proposed hologram based obfuscation
approach. The hologram based structural obfuscation mechanism is a
promising solution to protect both the IIR and the FIR filter cores concurrently

at low cost, against the RE based attacks. The first rule of the hologram based

47

obfuscation is applied to generate the structurally obfuscated integrated
datapath of FIR-IIR filter. The generic equation of IIR and FIR filters are as

follows:
(1) IIR filter equation:

Y[n]=b0*X[n]+ bl*X[n-1]+ b2*X[n-2]+b3*X[n-3]- al*Y[n-1]- a2*Y[n-
2]-a3*Y[n-3] (4.3)
Where, Y[n] is the output of IIR filter, al to a3 and b0 to b3 are the input
coefficients of IIR filter, X[n] is the current input, X[n-1], X[n-2] and X[n-3]
are the previous inputs of IIR filter and Y[n-1], Y[n-2] and Y[n-3] are the

previous outputs of IIR filter.
(1) FIR filter equation:
Y’[n]=h0*X’[n]+h1*X’[n-1]+h2*X’[n-2]+h3*X’[n-3] (4.4)

Where, Y’[n] is the output FIR filter, hO to h3 are the input coefficients of FIR
filter, X’[n] is the current input and X’[n-1], X’[n-2] and X’[n-3] are the

. Y[n-1] y[n-1] X[n-3] X[n-2 -
_ag[n 3 Y -a1[]baln]bz[] le[n 1] bOX[|n] CS 0
|
v
1 v M1
CS1
v Y MI
Y.¥Y M1 \i ¥
4 3+ Al
v\ CS3
6 vy M1 \
< + CS4
\
«q
o Vle 7 +K
W Al CS5
vy \4 /
10 Ml 9 <y oS 6
— /
vy Y4
12 ML 110+ 4 CS7
K
130+ 4 Cs 8
1
v
Y(n]

Fig. 4.3. Scheduling of IIR filter based on 1 adder and 1 multiplier

48

b3 X3l h2 xp2 w1 Xe-1] RO X7In]

€S0 \ \ AN

\V
1
M1
CSl\ \ \ /
VLA e/
M1 2
Cs2 L4

4 Al 3
CS3) 4
L v T A
6 NG
CS 4 5
Mlv \ /

+ 7
cs's Al |

v

Y’[n]

Fig. 4.4. Scheduled DFG of FIR filter based on 1 adder and 1multiplier

previous inputs of FIR filter.

Firstly, the algorithmic representations of IIR and FIR filters in their given
mathematical form are converted into the corresponding DFG representations.
Thereafter DFGs are subjected to the pre-synthesis phase of HLS where
scheduling, allocation and binding are performed using the resource
constraints of one adder (A1) and one multiplier (M1), resulting into DFGg,p-1
and DFGg,p-2. The Fig. 4.3 and Fig. 4.4 show the DFGgp-1 of IIR filter and
DFGqap-2 of FIR filter respectively, where CS denotes the control step.

Post obtaining the DFGg,p,-1 and DFGgyp-2, they are subjected to the first rule
of hologram based obfuscation approach during the datapath synthesis phase
of HLS process. As per the rule, inputs of only matched portions of DFGg,p-1
and DFGgy-2 are subjected to multiplexing using 2:1 Muxes (switching
elements of the hologram) and output of both DFGy,, are also subjected to
multiplexing using a single 2:1 Mux (another switching element of the
hologram) during the datapath synthesis phase of HLS. Activation of either of
the filter application in the integrated datapath depends on the value of control
input ‘C’. In other words, the specific bit value of the control input ‘C’
manifests the respective datapath architecture in the hologram design.

Specifically, the functionality of IIR and FIR filter in the hologram obfuscated

49

datapath is enabled at IP designer controlled input ‘C’=0 and ‘C’=1
respectively. Post applying the first rule of proposed hologram based
obfuscation during the datapath synthesis phase of HLS, we obtain an
obfuscated integrated RTL datapath of both IIR+FIR filter cores

simultaneously as shown in Fig. 4.5.

4.4. Similarity of Hologram Obfuscated Design with a Security

Image Hologram

The proposed structurally obfuscated hologram design is motivated from the

security image hologram feature. In a security image hologram, switching or

ol Xol] Xol] X'n]

Y3 X Ywn| 33X | S | S .
W E
@ RiZ i
K.
10

¥
Y[o] OR Y’ [n]

Fig. 4.5. Hologram based structurally obfuscated integrated RTL design of IIR and FIR filter
cores (note: switching Muxes are highlighted in red dotted ovals)

50

flipping elements are embedded during their creation. These flipping elements
execute the switching between two (or more) images when the image is
viewed from different viewing angles [55]. Similarly in a structurally
obfuscated hologram design, a number of additional multiplexers (acting as
flipping elements) are exploited to realize the hologram feature. These
multiplexers execute the switching between two designs integrated in the

single RTL datapath, when a specific bit (control input ‘C’) value is applied.
4.5. Summary

The hardware threats of potential Trojan insertion and stealing the original
design intents can be realized by an adversary if the RE can be performed
successfully. The potential RE based attacks can be handled by performing the
concealment of internal architecture of the design using a structural
obfuscation technique. We proposed a novel hologram based structural
obfuscation technique which makes the RE arduous for an attacker, hence
preventing against the potential Trojan insertion and IP theft attacks. We
proposed multiple rules of generating hologram based obfuscated designs
during the datapath synthesis phase of the HLS process. The security using the
proposed structural obfuscation was evaluated using strength of obfuscation
metric which measure the total affected gate count post obfuscation w.r.t. the

un-obfuscated counterpart.

51

Chapter 5

Double Line of Defense Approach using Integrated
Structural Obfuscation and Crypto-steganography to
Secure IP Cores

This chapter presents a double line of defense approach to secure IP cores
against IP piracy and potential hardware Trojan insertion (resulting from
reverse engineering) by an adversary in an untrustworthy design house or
foundry. A structural obfuscation mechanism is performed during high level
transformation to deploy the first line of defense to counter the threat of
potential hardware Trojan insertion. Further, crypto based steganography is
performed during high level synthesis (HLS) to deploy the second line of
defense to counter the threat of IP piracy. The chapter also demonstrates the
structural obfuscation and crypto-steganography based double of defense
approach on joint photographic expert group (JPEG) compression processor

and a discrete Fourier transform (DFT) processor.

Outline of the chapter is as follows. The first section formulates the problem.
The second section discusses the double line of defense approach under the
following sub-sections: overview, elaborating structural obfuscation acting as
a first line of defense and crypto-steganography acting as a second line of
defense, detection of steganography and metric for evaluating the security
achieved using double line of defense. Further, the third section demonstrates
the securing of application specific processors using double line of defense for
the following two applications (i) JPEG compression (ii) DFT. Finally, the

fourth section summarizes the chapter.

5.1. Problem Formulation

Given the data flow graph (DFG) representation of a target application,
module library, resource constraint, along with the objective of securing IP
cores against IP piracy and hardware Trojan insertion attacks, generate a

secured (structurally obfuscated and stego-embedded) IP core.

5.2. The Double Line of Defense during High Level Synthesis

Process for Securing IP Cores

52

A high level representation of input

application
DFG
: v i
Resource |:> g- Y A
constraints 5 Perform tree high N/
= transformation (THT) based o
2 structural obfuscation 1 line of
|:> = defense
(¢}
Module library g {}
(¢
g Scheduling, allocation and binding
3
= X
Stego-keys 7)) @
Perform crypto-based \K
steganography an line of
ine o
defense

$

Structurally obfuscated and stego-
embedded IP core

Fig 5.1. Overview of double line of defense based security mechanism for securing IP cores

In an untrustworthy design house or foundry, the IP cores are susceptible to
both piracy and hardware Trojan insertion threat. We employ a double line of
defense mechanism to counter both threats simultaneously. The double of
defense approach for securing the IP cores is discussed under the following

sub-sections:
5.2.1. Overview

An overview of the proposed double line of defense approach is shown in Fig.
5.1. As highlighted in the figure, the double line of defense technique is
unified with the HLS process, leading to a security aware HLS framework. In
the security aware HLS framework, the primary input is a high level
description (e.g. C/C++ code or mathematical function) of input application.
The major steps of securing the IP cores by performing double line of defense
during the HLS process are as follows: (i) converting algorithmic description
of the input application into corresponding data flow graph (DFG) (i1)
subjecting the DFG to tree height transformation (THT) based structural

53

obfuscation that works as first line of defense (iii) performing scheduling,
allocation and binding of structurally obfuscated DFG using resource
constraints and module library (iv) performing crypto-based steganography (as
a second line of defense) on the obfuscated scheduled, allocated and binded
DFG (ODFGg,) using a large size stego-key. Post applying structural
obfuscation and crypto-steganography as double line of defense during HLS
process, a secured RTL design of intended application is produced at the
output. The first and second line of defense is discussed in more detail as

follows:

5.2.2. Elaborating structural obfuscation and crypto-steganography

an line of defense

Colored
interval graph
1St line of defense (CIG)
Inout Tree Height Secret design
applilc)ation Transformation data extraction
: (THT) based process
in form of tructural
DFG structura
obfuscation @
@ Secret design Stego-
Structurally data keys
transformed @
DFG
Q
@ Stego-constraints =
Resource generation s
: =2
Constraints ——— Scheduling & processes 3
(¢
hardware {} 2
Module allocation of %
Lib oS
7 bFG Secret stego- E
constraints L]
S
Obfuscated design Cover @ &
in the form of design ‘ sz
scheduled allocated data Embeddmg stego- g
and binded DFG S, constraints g
(ODFGsab) I
A4

RTL design

Stego-embedded obfuscated

Fig. 5.2. Flow of the process of securing JPEG codec processor using structural obfuscation

(first line of defense) and crypto-based steganography (second line defense)

based double line of defense approach

The double line of defense approach is elaborated in Fig. 5.2. The details are

discussed as follows:
(i) Structural obfuscation as a first line of defense

Applying structural obfuscation in designs conceal their internal architectures
to thwart reverse engineering (RE), thus hindering backdoor (Trojan) insertion
and IP theft. We applied a high level transformation to realize the structural
obfuscation where tree height of DFG is transformed to create an obfuscated
DFG. In order to apply the tree height transformation (THT), the serial
execution flow of addition operations in the DFG is broken and parallel sub-
computations are enabled. Thus applied THT based structural obfuscation
incurs considerable alterations in the structure of the design in terms of the
following: (a) alterations in the interconnectivity of high level components
such as adders, and multipliers etc. (b) alterations in the total count of
interconnect binding units such as Muxes and Demuxes (c) alterations in the
total count of storage units such as registers. These alterations makes the
design structure unobvious to be interpreted (through RE) by an attacker. This
prevents an attacker from launching RE based attacks of backdoor insertion

into hardware and the design theft.

Secret design data

$ Generating Stego-constraints

Stego- s State-matrix creation Byte substitution
Keyl ¢
Stego- > Multi-layered Trifid cipher Row diffusion < Stego-
Key3 ¢ Key2
Sléeg‘;' - Alphabet substitution Matrix transposition
ey
Stego- Byte concatenation Mix column diffusion
Key5 > s
Bitstream truncation Bit-mapping

y

Stego-constraints

Fig. 5.3. Steps of stego-constraints generation process of crypto-based steganography encoder
system

55

Fig. 5.2 shows the flow of applying first line of defense using structural
obfuscation. As shown in the figure, the DFG of input application is first
subjected to THT based transformation to create a corresponding obfuscated
DFG. Further it is subjected to scheduling allocation and binding steps of HLS
to produce an obfuscated scheduled, allocated and binded DFG (ODFGygyp).
Further, ODFGg,, of input application is fed to the process of applying second
line of defense based on crypto-steganography technique.

(ii) Crypto-steganography as a second line of defense

The crypto-steganography technique embeds secret stego-constraints into the
design during two distinct steps of HLS process viz. register allocation step
and functional unit (FU) vendor allocation step. The embedded stego-
constraints into a design enable the identification of authentic and pirated
(counterfeited or cloned) designs during the detection process. In the proposed
approach, the stego-constraints (or stego-information) are generated through
various steps of crypto-steganography encoder system. As shown in Fig 5.2,
the crypto-steganography encoder system requires following inputs to generate
the stego-information: (a) secret design data and (b) stego-key. The secret
design data is extracted from the colored interval graph (CIG) which in turn is
created from the ODFGyg,, of input application as shown in Fig. 5.2. The secret
design data is defined as follows. It is a set ‘S’ of indices pairs of nodes of

same colors in the CIG. The details of stego-constraints generation and

Stego-key2

Stego-key3 Stego-key4 Stego-key5

Roles of
individua Decides the number of : -
1stego- Shoaie elements (according to four Dot heher ol Decides the mode of | [Decides the concatenation
8 elements of set (g encryption for each unique ; : £ 3
key - . modes) by which circular : R computing equivalentdigit | sequence of elements
g puting eq g!
/ according to| s et _ alphabet of the state matrix : = G R
: right shift for each row will S : corresponding to each | | (based on six modes) for
six modes (a distinct key is chosen for encrvoted alphabet each column
be performed each unique alphabet) il Iy
Key- e Key- 5T Defnition for || Key- | Modes | Concatenation
B [s DT b;gs Modes | Defmition computing bits seq]uence of
Choose every 2 elements Circularright || Key- equivalent elements
a0 e and skip next 2 elements 00 1 shift by 1 bits | Modes digit of an (E0-E3) fora
001 % Choose every 4 elements element encrypted column
- and skip next 4 elements Circular right alphabet 000 1 EOE1EZES
010 3 Choose every 8 elements 01 7 shift by 2 000 1 xFyz 001 2 EOE1E3E2
and skip next § elements elements 001 7 XTyiz 010 3 EQE2E1E3
011 4 Choose every 16 elements Circularright || 010 3 [x-y-z] 011 4 EOEZE3E]
and skip next 16 elements 10 3 shift by 3 011 3 [5yzl 100 5 EOE3E1E2
100 5 Choose every 32 elements elements 100 5 (zty)x 101 6 EOE3E2E1
and skip next32 elements Circularright || 101 6 Zix)Yy
101 6 Choose every 64 elements iy 4 shift by 4
and skip next64 elements elements

Fig. 5.4. Roles and various modes of stego-key! to stego-key5

56

embedding process are discussed below.
(1) Stego-constraints generation

The crypto-steganography encoder system performs the steps shown in Fig.
5.3 to generate the stego-information in the form of a bitstream. These steps

are elaborated as follows:
>i) State-matrix creation

A state matrix is formed using selected elements of the set representing the
secret design data. The elements are selected based on stego-keyl and the state
matrix is created by arranging four selected elements in each row. There are
various modes of choosing the elements depending on the value of 3-bit stego-

keyl as shown in Fig. 5.4.
(ii) Byte substitution

Each element of the state matrix is subjected to the byte substitution or
nonlinear bit-manipulation performed using forward S-box. The relationship
of final stego-constraints with the stego-key is obscured (Shannon’s property

of confusion) using this process.
(iii) Row diffusion

The row diffusion process obscures the relationship of stego-constraints with
the input secret design data in the matrix (Shannon’s property of diffusion).
The row diffusion is driven through stego-key2. The value of stego-key2
determines the amount of circular right shift to be performed in each row.
Let’s say the number of rows in the matrix are ‘W’, then the stego-key2 size is
2xW bits. The role of stego-key2 and its various modes are highlighted in Fig.
5.4. As per the definition of different modes, the rows of the state matrix are

subjected to diffusion.
(iv) Trifid cipher based encryption

The Trifid cipher provides certain amount of confusion and diffusion to
obscure the relationship of the stego-constraints with the secret design data
and stego-keys. The Trifid cipher based encryption is accomplished on each
unique alphabet of the matrix. The encryption key for each unique alphabet is

determined by the stego-key3. The chosen encryption key contains 27 unique

57

characters to encrypt each unique alphabet. Because of total 27! possible
permutations of 27 characters, the number of bits needed to indicate the key
for an alphabet is (log2(27!)q . If the number of unique alphabets in the
matrix post diffusion is N, then the total size of stego-key3 to encrypt all
unique alphabets is = Nax (log2(27!)q . To perform the encryption of an
alphabet, the 27 characters of the key are divided into three 3x3 matrices. An
encrypted alphabet is represented in the form of a 3-digit value “xyz”, where
X, y and z denote the row number, column number and the matrix number in

which the input alphabet is located.
v) Alphabet substitution

Post obtaining encrypted alphabets in the form of 3-digit value “xyz”, the
equivalent single digit is calculated based on stego-key4. There are various
modes of stego-key4 which decide the mathematical expression to be used to
calculate the equivalent single digit for each encrypted alphabet, as shown in
Fig. 5.4. Therefore, the size of the stego-key4 is computed to be
Nax r(loga(number of modes for calculating single digit equivalent)y . Post
obtaining the equivalent single digits, they are used to substitute the

corresponding alphabets of state matrix.
(vi) Matrix transposition

In this step, the matrix is transposed.
(vii) Mix column diffusion

Each column of the transposed matrix is subjected to mix column diffusion to
incur the Shannon’s property of diffusion. A circulant MDS (Maximum

Distance Separable) matrix is used to perform the mix column diffusion.
(viii) Byte concatenation

To generate a sequence of bytes, the elements (bytes) of each column in the
updated matrix are concatenated. However, the concatenation for each column
is performed based on the value of stego-key5. There are different modes of
concatenation based on the value of stego-key5 as shown in Fig. 5.4. The size
of stego-key5 is computed to be (number of columns)x (logx(number of

modes for concatenation)q . Post concatenating all bytes of the state matrix,

58

the obtained byte sequence is converted into a bitstream. Further, the bitstream

can be truncated to the designer’s specified size.
(ix) Bit mapping

The bit ‘0’ and bit ‘1’ in the truncated bitstream are mapped into respective
stego-constraints to enable the embedding into the design during the HLS

process. The mapping of bit ‘0’ and bit ‘1’ is given below.
‘0’—> add an edge between node pair (even, even) of CIG

‘1’-> odd operations are allocated to FU of vendor type 1 and even operations

are allocated to FU of vendor type 2
(2) Stego-constraints Embedding during HLS

The stego-constraints corresponding to bit ‘0’ and bit ‘1’ are embedded into
the design during register allocation and FU vendor allocation phase
respectively. As per the mapping of bit ‘0’ into stego-constraints, the obtained
constraint edges are embedded into the CIG as additional edges. The
embedding of constraint edges, in some cases, may require additional
colors/registers, thus resulting into design overhead. Further as per the
mapping of bit ‘1’ into stego-constraints, the operations of the ODFGg,, are
allocated to the particular FU vendor type specified through the mapping rule.
Thereby, the stego-information is implanted into the design during two
different phases of HLS process. The embedded stego-information enables the

detection of IP theft/piracy.
5.2.3. Detection of IP piracy using crypto-steganography

The detection of steganography in the intended designs enables the
identification of counterfeiting and cloning. The three major processes are
involved in detecting steganography information: (i) secret stego-constraints
generation process (ii) concealed stego-constraints extraction from stego-
embedded RTL datapath of the design (ii1)) matching of generated and
extracted stego-information to confirm the existence of vendor’s stego-mark

into the design.

5.2.4. Metric used to evaluate the security of double line of defense

59

Following metric are used to evaluate the security achieved using structural

obfuscation and crypto-steganography based double line of defense:
1. Strength of structural obfuscation:

The measure of strength of structural obfuscation is the amount of gates
affected owing to change in overall gate count and the alterations in the
interconnectivity of gates. It is important to note that the modification in the
number and size of RTL components affects the gates of the design; therefore
the change in amount of gates does not follow any fix pattern hence hindering

the attacker in deducing the correct structure of the design.
2. Probability of coincidence of crypto based dual phase steganography:

This metric is measured using the following formula:

f2

Pe=(1- %)fl x (1 - m) 5.1)
Where, the first term in the equation corresponds to the Pc due to embedding
constraints in the register binding phase and the second term corresponds to
the Pc due to embedding constraints in the FU vendor allocation phase. Here,
in the first term, G denotes the number of registers before embedding
steganography, and fl denotes the number of stego constraints added to the
CIG. Further, in the second term, ‘y’ denotes the types of resources in the DSP
application, N(Zi) denotes the number of instances of each FU type and 2
denotes the number of stego constraints added during the FU vendor allocation

phase.
3. Total stego-key size:

Total stego-key size (St) (in bits) of the crypto-based steganography is given

as follows:

St= 3 bits+ 2xW+ (Na)* r(loga(27!)q + (Na) % r(loga(number of modes for
calculating single digit equivalent) + (number of columns) X (logx(number

of modes for concatenation)q (5.2)

5.3. Demonstration of Securing Application Specific

Processors using Double Line of Defense

60

The proposed double line of defense approach is applied on following two
application specific processors for demonstration: (i) JPEG compression

processor (ii) DFT processor.
5.3.1. Securing JPEG compression processor

The application specific processor of the JPEG compression application can be
designed in the RTL form using the HLS process. The HLS process first takes
the algorithmic description of the computational intensive portion of the JPEG
compression application as input and creates a DFG. The computational
intensive portion of a JPEG application is the DCT transformation using the
2D-DCT coefficient matrix followed by compression using the quantization
matrix. The equations that compute the DCT transformation and quantization
are presented in detail in [8], [47]. The corresponding DFG is shown in Fig.
5.5(a).

Structural e
obfuscation in T Obfuscated IP1 e
micro-IP ol

>/

Structural
obfuscation in (S5
mactro-IP

136

{1“p1x el of the com pressed
image)

(17 pixel of the com pressed im aze)
(a) (b)
Fig. 5.5. (a) DFG of JPEG compression application (b) THT based obfuscated DFG

61

To secure the JPEG compression processor using structural obfuscation and
crypto-steganography based double line of defense against the threats of

potential backdoor insertion and IP piracy, following steps are performed:
(1) Applying structural obfuscation based first line of defense

The DFG of JPEG compression application is subjected to THT based
structural transformation technique to produce obfuscated DFG as shown in
Fig. 5.5(b). This obfuscated DFG is further subjected to scheduling, allocation
and binding steps of HLS using the resource constraints of 3 multipliers and 3
adders, resulting into ODFGy,,. Further, this ODFGy,, is fed to the crypto-

steganography process for deploying second line of defense.
(2) Applying crypto steganography based second line of defense

The ODFGg,, of JPEG compression application is applied with crypto-based
steganography in the following steps:

(1) Obtain a register allocation information or CIG from the ODFGyggp,.

(11) Extract the secret design data from the register or color assignment of
ODFGgap.

(i) Apply the various steps of crypto-steganography based on the
following values of stego-keys:
Stego-keyl: “001” (mode-2: select 4 elements and skip 4 elements)
Stego-key2: “11-10-00-01-00-10-10-10-11-10-00-00-10-01-11-11-11-
11-10-00-00-10-10-11-01-11-11-01-11-01-00-11-11-11-00-11-01-11"
Stego-key3:
To encrypt the alphabet ‘a’ = v§qawsedrftgyhujikolpzmxncb
To encrypt the alphabet ‘b’ = qawsedrftgyhujik$olpzmxncbv
To encrypt the alphabet ‘c’ = olpzmxncbv$qawsedrftgyhujik
To encrypt the alphabet ‘d’= gyhujik$olpzmxncbvqawsedrft
To encrypt the alphabet ‘e’= ftgyhujikolpzmxncbv$qawsedr
To encrypt the alphabet ‘t"= lpzmxncbvqawsedrftgyhujik$o
Stego-key4: “010-001-100-101-011-001"
Stego-key5: “000-001-010-011-100-101-001-011-010-100-100-000-
100-100-011-010-001-000-100-101-011-010-001-000-101-011-001-
000-100-101-011-010-001-011-101-011-011-100"

62

The total size of stego-key is computed to be 775 bits using eq. (5.2).
(iv) Post applying the crypto-steganography, the generated bitstream is
truncated to the size of 400.
(v) Post mapping the bits of truncated bitstream into stego-constraints
(using the mapping rules discussed in section 5.2.2), the constraints are
added during the register allocation and FU vendor allocation phase of

HLS.

Post adding the stego-constraints to the design, datapath is synthesized to
generate the stego-embedded and obfuscated RTL design of application
specific processor of JPEG compression application. Because of applying the
proposed double line of defense, the processor becomes secured against the

hardware threats of potential backdoor insertion and piracy.
5.3.2. Securing DFT processor

Discrete Fourier Transform (DFT) is a conversion of a signal from its discrete-
time representation to a discrete-frequency representation. In order to design a
secured application specific processor for a DFT application, the proposed
double line of defense mechanism is integrated with the HLS design process.
In the security aware HLS design flow, the mathematical form of a DFT
application is first subjected to conversion into corresponding DFG

—jm j3m

wo] wl1] 1 owl2l o wBl T wlol gy S wlz] ¢ wi3] ez

AN \VanW ¥47&5 _\}767M V8 \vo_pio |ViI 7/3124113#/1480
VoA, v v

X
\ V16 A VIS =& V17

\va Vs v ¥6

v7 1 N
A1 A% X | omMpoX oM XOME

- V18 V19 PV21 V22) 23
v \ v 8
A
A v24 Cs3
| V20 -
A
wio] 1 10 CS4
= V25
v
1
TP CSs
e V26
wl]

Fig. 5.6. ODFGyy, of obfuscated 4-point DFT based on 3M and 2A

Note: For an FU resource F{, superscript ‘a’ indicates the vendor type and subscript ‘b’ indicates the instance
number

63

representation. In the proposed approach, the DFG of 4-point DFT application
is constructed to enable the computing of two output values (W[0] and W[1])
concurrently to accelerate the execution. Further the DFG is subjected to

following double line of defense mechanism during HLS process.
(1) Applying structural obfuscation based first line of defense

The DFG of 4-point DFT application is subjected to THT based structural
transformation technique to produce obfuscated DFG. This obfuscated DFG is
further subjected to scheduling, allocation and binding steps of HLS using the
resource constraints of 3 multipliers and 2 adders, resulting into ODFGg,, of
DFT application as shown in Fig. 5.6. Further, this ODFGg,, is fed to the

crypto-steganography process.
(2) Applying crypto steganography based second line of defense

The ODFGg,, of DFT application is applied with crypto-based steganography

in the following steps:

(1) Obtain a register allocation information or CIG from the ODFGg, of
DFT application.
(i1) Extract the secret design data from the register or color assignment.
(iii)) Apply the various steps of crypto-steganography based on the
wol wil w2l 1 wBL L w0l gy o w6 wisl e
M fe el R o o e s pe
Y YV, v

M;

X mp X M2 X

5

CS1

1
M cs2
23
11 v \, v
Al
t - (.
A V24 Cs3
e V20 —
v v/
AZ
wio] L Cs4
}-‘ V25
v
2
A 12 CSs5
e V26
wl1]

Fig. 5.7. ODFGgy,, of 4-point DFT post embedding stego-information

64

(iv)

following values of stego-keys:

Stego-keyl: “001” (mode-2: select 4 elements and skip 4 elements)
Stego-key2: “01 00”

Stego-key3:

To encrypt the alphabet ‘a’ = v#fqawsedrftgyhujikolpzmxncb

To encrypt the alphabet ‘b’ = qawsedrftgyhujik#olpzmxncbv

To encrypt the alphabet ‘d’= gyhujik#olpzmxncbvqawsedrft

To encrypt the alphabet ‘t"= lpzmxncbvqawsedrftgyhujik#o
Stego-key4: “001 001 100 100”

Stego-key5: “001 000”

Post applying the crypto-steganography, the generated bitstream is

truncated to the size of 27.

|

4]@
]

i

fin o

WIi]

Wi+1]

Fig. 5.8. Secured 4-point DFT processor at RTL (note: red ovals highlight the change in
input of Muxes due to embedded stego-information)

65

V)

54.

Post mapping the bits into stego-constraints (using the mapping rules
discussed in section 5.2.2), the constraints are added during the register
allocation and FU vendor allocation phase of HLS. Post adding the
stego-constraints, the ODFGg,;, is shown in Fig. 5.7. Due to adding the
stego-constraints, the storage variables are subjected to constraint
based register allocation and the operations are subjected to constraints
based FU vendor allocation as shown in Fig. 5.7.

Further, datapath is synthesized to generate the stego-embedded and
obfuscated RTL design of application specific processor of DFT
application. Fig. 5.8 shows the RTL design of secured (structurally
obfuscated and stego-embedded) DFT processor.

Summary

Backdoor insertion and piracy both pose serious threats to hardware security.

This chapter discussed a double line of defense mechanism where structural

obfuscation is applied to combat the potential backdoor insertion threat and

crypto-steganography is applied to combat the IP piracy threat. The metrics

employed to measure the security using the double line of defense approach

were also discussed in the chapter. Further, we demonstrated the process of

generating secured application specific processor IPs for JPEG compression

and DFT applications.

66

Chapter 6

Double Line of Defense Approach using Integrated
Multi-key based Structural Obfuscation and Physical
Level Watermarking to Secure IP Cores

This chapter presents a double line of defense approach employing multi-key
based structural obfuscation as preventive control against potential backdoor
insertion and physical level watermarking as detective control against IP
piracy. The chapter also demonstrates the structural obfuscation and physical
level watermarking based double of defense approach on a finite impulse
response (FIR) filter core. Outline of the chapter is as follows. The first
section formulates the problem. The second section discusses the double line
of defense approach under the following sub-sections: overview, elaborating
multi-key based structural obfuscation acting as a first line of defense and
physical level watermarking acting as a second line of defense, detection of
watermark and metric for evaluating the security achieved using double line of
defense. Further, the third section demonstrates the securing of FIR filter core
using the double line of defense. Finally, the fourth section summarizes the

chapter.

6.1. Problem Formulation

Given the data flow graph (DFG) representation of a target application,
module library, resource constraint, along with the objective of securing IP
cores against IP piracy and hardware Trojan insertion attacks, generate a

secured (structurally obfuscated and watermark embedded) IP core.

6.2. The Double Line of Defense during High Level and

Physical Synthesis Processes for Securing IP Cores

The proposed double line of defense mechanism is employed to counter both
backdoor (Trojan) insertion (resulting from reverse engineering attack) and IP
piracy threats simultaneously. We exploited two different design synthesis
processes to employ the double line of defense viz. high level synthesis and
physical synthesis. The double of defense approach for securing the IP cores is

discussed under the following sub-sections:

67

DFG repre'sen.ting Loop
DSP application S/ unrolling <
u Key driven structural [DFG
-e S :
. obfuscation partitioning e
Resource \l'
y - ROE <— -
— 5 THT
l.\“ ¢
library Structurally obfuscated W Folding
RTL design)
| Early Floorplanning -
Author’s Loglc_
nd signature Watermarking synthesis
2 line of defepseprising of
o, Bandy Obfuscated
digits watermarked ‘ Gate-level design
floorplan (netlist)

Fig.6.1. The flow of proposed key-driven structural obfuscation and physical level
watermarking based double line of defense

6.2.1. Overview

The overview of the proposed double line of defense approach is shown in
Fig. 6.1. As highlighted in the figure, the structural obfuscation based first line
of defense technique is unified with the HLS process, rendering the HLS
framework security aware. In the security aware HLS framework, the primary
input is a DFG form of input application. The major steps of applying first line
of defense during the HLS process are as follows: (i) subjecting the DFG to
the key driven five different structural obfuscation technique viz. key driven
loop unrolling, key driven partitioning, key driven redundant operation
elimination, key driven tree height transformation, and key driven folding
transformation alongwith performing scheduling, allocation and binding using
resource constraints and module library to obtain obfuscated scheduled,
allocated and binded DFG (ODFGg,,) (i) synthesizing the obfuscated RTL
datapath secured against the potential backdoor insertion. Thereafter, we
perform the extraction of the list of RTL components from the structurally
obfuscated datapath. Further, the major steps of applying second line of

defense during the physical synthesis process are as follows: (i) creating an

68

Table 6.1 Roles and key-size of different keys used for proposed structural obfuscation

Keys Role Key size in bits

Key-1 To regulate the Unrolling Factor (UF) rlogy(UF yaxh

Key-2 To regulate the number of cuts applied r (log, (Max. cut) q
to partition the DFG

Key-3 To regulate ROE across the partitions r (log, (Max. RO) 4

Key-4 To regulate THT across the partitions r (log, Max. THT) 5

Key-5 To regulate the folding of resources r (log, (Max. folding)
across the partitions

early floorplan using the RTL components (ii) applying IP vendor’s signature
(composed of multiple variables viz. a, B and y) to the early floorplan to obtain
a watermarked floorplan. Post applying the watermarking, subsequent phases
of physical synthesis such as creating final floorplan, placement and routing

are performed to obtain the structurally obfuscated and watermarked IP.

6.2.2. Elaborating multi-key driven structural obfuscation and physical

level watermarking based double line of defense approach
The double line of defense approach is elaborated as follows:
(i) Multi-key based structural obfuscation as a first line of defense

The DFG of input DSP application is subjected to structural obfuscation by
applying five different key-driven techniques. Table 6.1 shows the role of each
structural obfuscation key (SOK) and the corresponding size in bits. The
applied key-driven techniques for structural obfuscation are elaborated as

follows:
(a) Key-driven loop-unrolling technique

The loop body of a DSP application is unrolled in this technique, as per
designers’ chosen SOK-1 indicating the loop unrolling [49] factor (UF) value.
Table 6.1 highlights the role and size of SOK-1. This structural obfuscation
technique results into alterations in the architecture in terms of change in size
of Mux/Demux, number of functional units (FUs) in case of unconstrained
resources, and number of storage elements in the RTL design, thus rendering

the reverse engineering harder to an attacker.
(b) Key-driven DFG partitioning technique

This technique applies m cuts to the unrolled DFG of DSP application in order

to partition it into total ‘m+1’ partitions. The number of cuts applied is driven

69

through the SOK-2. The DFG is portioned in such a way that each resulting
partition holds atleast two connected nodes (operations). Table 6.1 highlights
the role and size of SOK-2. The partitioning based structural obfuscation
technique incurs massive changes in terms of interconnectivity of
Muxes/Demuxes and FU resources, adding to significant obscurity in the RTL

structure of the intended DSP circuit.
(c) Key-driven redundant operation elimination technique

An operation/node is considered to be redundant if its parent and operation
type are same as an existing node in the DFG. This structural obfuscation
technique is applied to the partitions of the DFG, where the redundant
operations are removed based on the value of SOK-3. Table 6.1 highlights the
role and size of SOK-3. This type of obfuscation affects the size and

complexity of the Mux/Demux interconnections in the RTL.
(d) Key-driven tree height transformation technique

The key-driven tree height transformation technique alters the data dependency
of addition operations by converting serial computations into parallel
computations, based on the value of SOK-4. Table 6.1 highlights the role and
size of SOK-4. This technique adds in the obfuscation by incurring the

variations in the interconnectivity of FUs and Muxes/Demuxes inputs/outputs.
(e) Key-driven folding transformation technique

Post performing the scheduling of each individual obfuscated partition
(generated after applying above four structural obfuscation techniques), the
key-driven folding transformation technique is applied to enhance the
obscurity. In an obfuscated scheduled partition, the folding with factor 2 is
performed on two operations of same type executing in different control steps
to enable their execution through the same respective FU resource. The
number of instances where the folding transformation is applied is driven
through the value of SOK-5. Table 6.1 highlights the role and size of SOK-5.
This technique adds in the obfuscation by incurring the structural variation in
terms of reduction in FUs and increase in size of several Mux/Demux and

storage elements.

70

Once the key-driven structural obfuscation techniques are applied, the
datapath of individual obfuscated partitions are synthesized. Further, the
individual obfuscated datapaths are integrated together to generate the single
obfuscated RTL datapath of the target DSP application. This process is
followed by extraction of following RTL modules from the structurally
obfuscated datapath: adders, multipliers, subtractors, comparator, Muxes and
Demuxes. A sorted list ‘T’ of RTL modules is prepared based on their
decreasing size [56]. This list ‘T’ of RTL modules is used in the physical

synthesis process to construct an early floorplan.
(ii) Physical level watermarking as a second line of defense

The early floorplanning stage of physical synthesis process [57] is exploited to
embed the vendor’s watermark that enables detection of IP piracy. The early
floorplan is constructed using the RTL modules. To do so, the list “T” of RTL
modules is traversed from left to right to fetch the modules one by one and
place them so as to grow the floorplan diagonally. Once the early floorplan is

constructed, following steps are performed to embed the watermark.

(a) Choosing vendor’s signature composed of three variables viz. a, and .
The variables have following mapping into corresponding watermarking
constraints:

a = Odd FU module takes the position on the top of even FU module, by
swapping two FU modules of same type.

B—> Odd Mux takes the position on the top of even Mux, by swapping two
Muxes of same size.

y=> Odd Demux takes the position to the right of even Demux, by
swapping two Demuxes of same size.

(b) Three different sorted lists T1, T2 and T3 of FU, Mux and Demux
modules respectively are prepared.

(c) For embedding, a, B and y digits of the signature, the sorted lists T1, T2
and T3 respectively are traversed. During embedding, if swapping of
modules (FUs or Muxes or Demuxes) satisfies the watermarking
constraints (or participates in implanting a signature digit (o or B or vy))

then the module pair is removed from the respective list (T1 or T2 or T3).

71

Further, the updated lists are exploited to embed remaining respective

digits of the signature.

Post embedding the signature digits, we obtain the watermarked floorplan of

the obfuscated design of target DSP application.
6.2.3. Detection of IP piracy using watermark

The detection of watermark is accomplished in the final floorplanned design
file generated through the physical design tool. The following inputs are
required to generate the final floorplanned design file during the physical
design phase: (i) Verilog file of the design netlist (ii) obfuscated watermarked
early floorplan file (iii) configuration file (iv) library files (f) other applicable
files. Further, the arrangement (positions) of modules in the floorplanned
design file is checked according to the vendor’s signature digits. By examining

the presence of secret watermark in the design, IP piracy can be detected.
6.2.4. Metric used to evaluate the security of double line of defense

Following metrics are used to evaluate the security achieved using multi-key
based structural obfuscation and physical level watermarking based double

line of defense:
1. Strength of structural obfuscation:

The strength of structural obfuscation is measured in terms of change in gate
count. The change in overall gate count due to obfuscation depends on the
change in size and number of the Muxes and Demuxes and number of storage
elements which in turn depends on the potential resource sharing and type of
the application (i.e. number of operations and their dependency) as well as the
applicability of each design transformation technique of obfuscation. More
explicitly, the gate count changes due to applying various techniques of
structural obfuscation. Moreover, alteration in the interconnectivity of various
RTL resources also adds in considerable structure modification in the design.
This makes the design structure unidentifiable for an adversary, thus hindering

malicious effort of backdoor insertion and IP theft.
2. Total structural obfuscation key size:

Total size of structural obfuscation key (Ssok) (in bits) is given as follows:

72

Ssok= ([10g2(UFmax)q)+(1 (logz (Max. cut)q)+(r(loga (Max. RO) 9)+(
(logz(Max. THT)q)+(r(logz(Max. folding)) (6.1)

3. Probability of coincidence of physical level watermarking:

This metric is measured using the following formula:

1 B 1 Y 1
Pc = “:—_*H_—_*H_—_> 6.2
< ! Suer, 1>)—a++) (D=1 S, e 1))—b++> (! Saep A e -ct+ ©.2)

Where, ‘v’ indicates number of instances of FU type U,, where r is the total

types of FUs; ‘x’ indicates number of Muxes of size X,, where v indicates
various sizes of Mux in the design; ‘d’ indicates number of Demuxes of size
D., where e indicates various sizes of Demux in the design. Further, the
variables a, b and c vary in the following range: 0< a< a-1, 0< b< B-1, 0< c< y-
1, where a, b and ¢ represent the corresponding count of swapping pairs
embedded for a, B and y digits respectively. In the eq. (6.2), the first term
indicates the Pc corresponds to embedding a digits, the second term indicates
the Pc corresponds to embedding B digits and the third term indicates the Pc

corresponds to embedding y digits.
4. Tamper tolerance:

The proposed watermark is tamper tolerant or resilient against the removal
attack as it covertly inserts vendor’s signature consisting of three distinct
variables (a, f and y) in the early floorplan of the design. The following metric

is used to measure the tamper tolerance (Ts) ability of the watermark:
Ts =Q” (6.3)

Where, Q denotes the number of distinct variables in the chosen signature and
Z denotes the size of the signature. The value of Tg also represents the total
signature space. Larger the signature space, higher is resilience of watermark

against the removal attack.

6.3. Demonstration of Securing IP Cores using Double Line

of Defense

The demonstration of the proposed double line of defense is performed using
FIR filter application. The following equation represents the 160-tap FIR
filter:

73

Y[n] = X180h[i] * X[n — i] (6.4)
Here, Y[n], h[i] and X[n-1] are the output, constant and input to FIR filter
respectively, where variable ‘1’ is varied from 1 to 160. The corresponding
DFG is shown in Fig. 6.2(a). The multi-key driven structural obfuscation and
physical level watermarking based double line of defense is applied as

follows:
(1) Applying multi-key based structural obfuscation on DFG of FIR filter

The multi-key based structural obfuscation is applied in following steps: (i)
the DFG is unrolled based on UF=16 as shown in Fig. 6.2(b), to perform
unrolling based structural transform. (i) The unrolled DFG is partitioned into
5 partitions by applying 4 cuts. The applied cuts are highlighted in Fig. 6.2(b)
using red dotted lines. (iii) Further, THT based structural obfuscation
technique is performed on all five partitions as shown in Fig. 6.3 (note: ROE is
not applicable due to absence of redundant nodes). (iv) All partitions are
scheduled followed by applying folding transformation at four different
instances (highlighted in red dotted ovals) of the scheduled obfuscated DFG as
shown in Fig. 6.4.

| alv all alZI aI} al als i 16
b10| bll | bi12 .h13 bi4 Ibls 160
PP Ey

: - i. ® e

(a) (b)
Fig. 6.2(a) DFG representing 160-tap FIR filter (b) loop unrolled FIR filter with UF=16

\4 RL EE pETE e
!\' |\'? | \% ;
l Pj.\‘? : ;P4.\.? :PS‘}’ \oi

| | i i vin]

P1

Fig. 6.3 Post applying THT based obfuscation in all partitions

74

a8

a4 as a7 © a0 all a2 g 5
bﬁ by 3] b bs |bﬁa T b8 b | b0 b1 [o2] b1;]Tb14a |b1§al‘ i* %
"2 1'% SEININIE SR
' ’ ‘ ||| | | ity 11 | 160
\4‘\ AR v‘ o T T T ‘ ! I
J_ / ? 1 . Yy | y ¥ ‘\! | " I| ?
| f [|

Folding knob 4l /

I] I i
applied once N |Sl _‘."_ ! / | | ‘ :l ‘ | |
/ | |
st i iy | | ‘] | | |
Y y | | L[||
1 1 T
o g e [T T
appulpunm.c \.v,, Y T T ‘ T ‘ 1 | - |
I 82 e | \ | |
. \ I \
I \ y I — L
I Fo]'ykncb*,’,-'] | | ||
. applied thice g [
| | 83 :
! ! L
i i =
; ; ' l
| | |
,) .
! ! |
I I I '
Pl B B ! !
[

Fig. 6.4. Obfuscated scheduled FIR filter with applied folding at 4 instances

b12 b4

al2 a4

b13 b5

al3 as

b15 b7

b1lp3
x9 %1

alSa7

bl4 b6 al4a6

o

o

yln]

Fig. 6.5. Key-driven structurally obfuscated RTL datapath of FIR filter

Post performing various key driven techniques of structural obfuscation, the
datapaths of individual partitions is synthesized followed by integrating into a
single obfuscated RTL datapath of FIR filter core as shown in Fig. 6.5.
Further, a following list ‘T’ of RTL modules (arranged in the decreasing order
of their size) is extracted: T={M1, M2, M3, M4, dl, x1, x2, C, d2, d3, d4, d5,
d6, d7, dg, d9, d10, x3, x4, x5, x6, x7, x8, x9, 10, x11, x12, x13, x14, x15,

75

Fig. 6.7. Watermarked floorplan of obfuscated FIR filter (note: the change in the position of
modules due to embedding signature is highlighted using bold)

x16, x17, x18, 19, x20, Al}. Using this list of RTL modules, an early

floorplan is created as shown in Fig. 6.6.

(2) Applying physical level watermarking on structurally obfuscated FIR filter

core

The physical level watermarking is applied on the early floorplan of the
structurally obfuscated FIR filter core. Let’s assume the designer’s signature
to be “afafyy”. As per the mapping of signature digits into watermarking

constraints, the embedding of watermark is performed on early floorplan. Post

76

embedding the aforementioned signature, the watermarked floorplan of
structurally obfuscated FIR filter is shown in Fig. 6.7. Post obtaining the
watermarked floorplan, the different phases of physical synthesis are
performed to obtain an obfuscated and watermark embedded layout of FIR

filter application.
6.4. Summary

This chapter discussed a double line of defense mechanism where multi-key
driven structural obfuscation is applied to combat the potential backdoor
insertion threat and physical level watermarking is applied to combat the IP
piracy threat. In the double line of defense approach, the structural obfuscation
technique and watermarking are applied during HLS process and physical
synthesis process respectively. The metrics employed to measure the security
using the double line of defense approach were also discussed in the chapter.
Further, we demonstrated the process of generating secured IP (structurally

obfuscated and watermarked) for the FIR filter application.

77

Chapter 7

Secured Hardware Accelerator Design Approach for
Image Processing Filters

Image processing has important applications in extracting desired information
from images to facilitate detection of objects and individuals etc. Moreover,
the image processing applications find utility in security systems such as
detection of license plates of vehicles, biometric fingerprinting, character
recognition systems, robotics vision and healthcare systems etc. The various
types of filters such as blurring, edge detection, and embossment etc are
exploited to acquire useful information from an input image. In case of real
time image processing, a general purpose processor cannot provide the desired
performance in dealing with larger size of images. With the rapid evolution of
digital imaging technology, image processing applications are progressively
becoming computational-intensive due to increasing complexity of algorithm
and larger image sizes. Thus, real-time processing of images entails expediting
the performance [50]-[52]. Further, low power is also a constraint of mobile
devices. Therefore, low power and high performance requirement encourages
execution of image processing functions through a dedicated hardware

accelerator.

Security of hardware accelerator filter design against reverse engineering
(resulting into secret Trojan insertion) is highly relevant due to globalization
of the chip design process involving offshore untrusted design houses and
foundry. These offshore houses cannot be blindly trusted as an adversary may
illegally reverse engineer the design netlist of the hardware accelerator filter
design and insert Trojan secretly [8]. Thus Trojan infected filter designs could
unknowingly be integrated in the products such as digital camera, cell phones,
webcam etc., and therefore raising grave concern of consumers’ safety. The
consumers’ safety and reliability due to Trojan can be compromised in one or
more of the following forms: leakage of secret information, excessive heat
dissipation, functional failure due to negative bias temperature instability
(NBTI) stress, performance degradation, denial of service etc. [1], [2].
Employing structural obfuscation to the proposed hardware accelerator filter

designs thwart reverse engineering (RE) and hence Trojan insertion by making

78

I Input Structurally obfuscated
. nput pixels hardware accelerator
e matrix |—— Output Filtered

2D-Convolution jw ixels :
Filter Kernel IFI’latI‘iX mase

Fig. 7. 1. Generating filtered image using secured hardware accelerator of image processing
filters

the design functionality and structure un-obvious to understand by an attacker.
Further, employing structural obfuscation through high level transformation in
high level synthesis (HLS) framework is aptly suitable for data intensive filter
hardware accelerators designs as they rely on HLS framework. Fig. 7.1
highlights the process of generating filtered images using structurally

obfuscated hardware accelerator for image processing filters.

This chapter discusses a novel approach of designing hardware accelerator
architecture for image processing filters of 3x3 and 5x5 kernels using high
level synthesis process. Further, structural obfuscation mechanism is added to
the proposed approach for designing secured (structurally obfuscated)
hardware accelerator architecture for both 3x3 and 5x5 filters. And, this
chapter also discusses the designing of structurally obfuscated 3x3 filters for
five specific image processing applications such as blurring, sharpening,
vertical embossment, horizontal embossment and Laplace edge detection.
Furthermore, a secured 3x3 filter design in reconfigurable functionality mode
is presented where a specific image processing functionality can be configured
using a control input. Outline of the chapter is as follows. The first section
formulates the problem. The second section discusses the design approach of a
secured 3x3 filter hardware accelerator under the following sub-sections:
mathematical foundation of a 3x3 filter design, generating structurally
obfuscated 3x3 filter hardware accelerator, designing re-configurable
structurally obfuscated 3x3 filter architecture and generating secured five
different application specific 3x3 filter designs. Further, the third section
discusses the design approach of a secured 5x5 filter hardware accelerator
under the following sub-sections: mathematical foundation of a 5x5 filter
design and generating structurally obfuscated 5x5 filter hardware accelerator.

Finally, the fourth section summarizes the chapter.

7.1. Problem Formulation

79

Given the mathematic functions of 3x3 and 5x5 filter of image processing
applications, along with module library, resource constraint and the objective
of securing the designs against potential hardware Trojan insertion attacks,

generate secured (structurally obfuscated) hardware accelerators architecture.

7.2. Design Approach of a Secured 3x3 Filter Hardware

Accelerator

Some image processing applications that involve 3x3 filter to produce filtered
image are as follows: (i) blurring, (ii) edge detection, (iii) sharpening, (iv)
vertical embossment and (v) horizontal embossment etc. This section
discusses the mathematic foundation of a 3x3 filter processing followed by
generating structurally obfuscated filter hardware accelerator in reconfigurable
functionality mode. Further, we also discuss 3x3 filter designs for

aforementioned five application specific image processing applications.
7.2.1. Mathematical foundation of a 3x3 filter design

An image of size Ix] pixels can be represented using an IxJ matrix [A] i« as

follows.
Xo0 Xo1 (3-1) —‘
A< X:10 X:ll Xl(:J_l) (7.1)
X(I—l)o X(I—l)l N '1)(J_1)JI><J

Xijis a pixel value of the input image where 1 and j vary from 0 to I-1 and 0 to
J-1 respectively. Further, a generic filter or kernel matrix of size nxm is
represented by [F]uxm) . For the kernel of size 3x3, the matrix [F] is given

below:

foo for fo2
F=| fio fi1 fi2 (7.2)
fr0 fa1 f2 5,

f,q denotes kernel values, where p and q both vary from 0 to 2.

To compute the filter output, 2D-convolution is performed between input and
kernel matrix. The ‘same convolution’ provides output image of same size as
input image. To execute ‘same convolution’, the input matrix is padded with g

number of zero-rows and zero-columns based on the following padding rule:

80

)
2 (7.3)

g

Where, f denotes the size of filter i.e. {=3 for 3%3 kernels. The enhanced input

matrix, post padding, is shown below:

0 0 0 0 0]

0 Xoo Xo1 - (3-1) O
N

0 X(r-1)0 X(-typ - a)@-1) 0

00 0o - 0 V| N (7.4)

Where, NxM is the dimension of enhanced input matrix which is given as
(I+2)x(J+2) and a pixel value is represented by a;; where 1 and j vary from 0 to

N-1 and 0 to M-1 respectively.

Suppose [O] is an output matrix which contains the output of the same
convolution between the input and kernel matrix. The dimension of [O] is
given as (N-n+1)x(M-m+1). The following ‘for loop’ is used to compute the

output matrix [O]:
for (w=0; w<(N-n+1) x (M-m+1); w++){

i,p=upper value j,q=upper value

Oy = > (Y axfy)) (7.5)
i,p=lower value j,q=lower value

For 3x3 filters, p and q take the values from 0 to 2 (i.e. lower value is 0 and
upper value is 2) during calculating each output value Oy,. And values of i and
j vary from 0 to N-1 and M-1 respectively across the entire output matrix
computation. During computation of each output value, lower and upper
values of 1 and j vary in the window of 3 (because kernel matrix of size 3x3
slides over the modified input matrix). For example, for computing 1* output
value Oy using (7.5), lower and upper values of i and j are 0 and 2
respectively. Hence, Oy is given as follows:

1=2,p=2 j=2,q=2

Og= ¥ (X ajjxfyg)
i=0,p=0 j=0,q=0 (7.6)

Further, this equation is expanded as follows:

81

foo for for fio i1 fiz fo D

aoﬂ/ aoj/ ato a1 ai] oo @ azj/

3(+)
5(+)
7(+)
N
9
11 28
13 30
15 =
17 (+) 34 (x)
Y7 v
Oo O1

Fig. 7.2. Loop unrolled DFG of 3x3 image filter application

foo for for fe D1 fio po B1 2 R for for fip Dt fiz fy D1 f22
a a

21

Fig. 7.3. THT obfuscated loop unrolled DFG of 3%3 image filter application

00 =[(ag0 x foo) + (a1 x for) + (ao x fo2)] +
(aloxflo)+(all xf11)+(a12 Xflz)]-l- (77)

[(a20 x £20) + (221 x £21) + (a2 x 2)]
7.2.2. Generating structurally obfuscated 3x3 filter hardware accelerator

Using the eq. (7.7) as an algorithmic description of 3x3 filter application, the
corresponding hardware accelerator can be designed in the form of RTL
through the HLS process. Further in order to generate a secured 3x3 filter
design, structural obfuscation mechanism is integrated with the HLS design
process. Following two structural transformations are applied for obfuscation:
(1) loop unrolling (ii) tree height transformation. In the loop unrolling based
transformation, the ‘for loop’ represented in eq. (7.5) is unrolled twice. The
loop unrolled DFG computes Oy and O; concurrently as shown in Fig. 7.2,
where the Oy is computed using eq. (7.7) and O; is computed using the

following equation:

82

=[(a1 x oo) + (02 x for) + (a03 x fop)] +

[(311 xf10)+(a12 xf11)+(a13 xflz)] (7.8)

[(a21 xf20) + (a2 x 1) + (223 x £
Further, the unrolled DFG is applied with THT based obfuscation where some
sequential addition operations are executed in parallel as shown in Fig. 7.3.
These obfuscation techniques would impact the design structure by incurring
the changes in the size and number of Muxes and Demuxes, interconnection
path and storage resource count, thereby rendering the design structure non-
interpretable by an attacker. This thwarts the adversary from performing
reverse engineering (RE) and potential backdoor insertion. Further, the
obfuscated DFG is subjected to scheduling phase of HLS using FU constraints
of 3 multipliers (M) and 1 adder (A). Post perming HLS, we obtain a

structurally obfuscated RTL design of 3x3 filter hardware accelerator.

7.2.2.1. Designing re-configurable structurally obfuscated 3x3 filter

hardware accelerator architecture

The functionality of different 3x3 filter applications can be incorporated into a

Reconfigurable functionality

O B gpf gl £ fy f fn ref 65, f5 fh 51 B £ B

foaJ_foo 5 J--(l]- f-?-l e J_f J_f"2 f_}F,_J_ -Liﬂ _&1 f‘”’ -121 izf fzo_J_f _th fleJ-f _Lf 4 IEJ- J_f 2

8:1 8:1 8:1 lé_'_/ i

A8l M M 2\ . /B A_J RS A |
T

CECICO‘

a1 ﬂma)ﬂlo (az ﬂo;ﬂjﬂln 3 83 a)ﬂﬂ
a %24 ay, a1 ay a2
34 430 13 - 4 e
8:1 8:1 8:1 8:1 8:1
\& l/ X\‘ Z & ‘/ c2clcd Filter type Kernel
M1 M2 M3 coefficient
: b
000 Blur foq
_H__l_'s lf__ 1'_8_ - 001 Sharpening =
L i :—i -‘- T 010 Vertical fer
‘ embossment
I 011 Horizontal {5
embossment
fle
rq

[edge
T I detection

‘ 100 Laplace
f

o Oy

Fig. 7.4. Structurally obfuscated hardware accelerator architecture for 3x3 image filter
applications with reconfigurable functionality (note: the reconfigurable functionality is

highlighted within a red box. Red hyphens show the registers needed for storing primary
intermediate inputs-outputs)

83

and

single obfuscated hardware accelerator by designing a reconfigurable
architecture. The proposed reconfigurable architecture can be configured to
execute functionality of five different image-processing applications viz.
image blurring, sharpening, vertical and horizontal embossment and Laplace
edge detection. A specific image processing hardware accelerator design is

enabled using a control bit pattern.

In order to design the re-configurable structurally obfuscated 3x3 filter
hardware accelerator architecture, the scheduled obfuscated DFG (obtained in
previous sub-section 7.2.2) is subjected to allocation, binding and datapath
synthesis phases of HLS. In this process, the reconfigurable functionality is
enabled through the Muxes acting as switches for different kernel coefficient
inputs. These Muxes are controlled through a bit pattern “c2c1c0” which has
five different modes to execute five different applications. The re-configurable
structurally obfuscated 3x3 filter hardware accelerator architecture along with

five modes of “c2¢c1c0” is shown in Fig. 7.4.
7.2.3. Generating secured five application specific 3x3 filter designs

Using eq. (7.7) and eq. (7.8), the mathematical expression of different 3x3
filters of specific applications can be deduced based on their kernel matrix.
This sub-section presents the secured hardware accelerator designs of

following 3x3 filter applications:
7.2.3.1. 3x3 Blur filter design

The kernel matrix of a 3x3 mean filter for blurring is given below:

1 1 1
F=1/9(1 1 1 (7.9)
1 1 1lsys

Based on the kernel coefficients, the equation of concurrent output pair “Oy

and O,” for the 3x3 blur filter is derived as follows:

0o = [(ago +ag1 +apz +a19 +a11 + a5z +az +az; +az) X (1/9)] (7.10)
01 = [(ap; +app +ag3 +ar; + a5z +a53 +az; +az+azs) X (1/9)] (7.11)

In order to generate the structurally obfuscated 3x3 Blur filter design, the

above equations are first converted into corresponding DFG representing the

84

unrolled version. Further it is subjected to THT based obfuscation followed by
HLS process to generate the structurally obfuscated RTL design of Blur filter.
The end to end image processing using a secured Blur filter design is shown in

Fig. 7.5.
7.2.3.2. 3x3 sharpening filter design

The kernel matrix of a 3x3 sharpening filter is given below:

-1 -1 -1
F=[-1 9 -1 (7.12)
—1 -1 —1l5

Based on the kernel coefficients, the equation of concurrent output pair “Oy

Input_Image 11 (225x225) Output Image (Blu

25 afp

A portion of Filter output

Pre-processing 7177 107.5 107.4]

1075 161.1 160.8

<L 107.1 160.4 160.2 P
11 Ap; 430 dp % gy 3 2w
d13 a; d12
apy | 2o ais | ERE] 1 -':111__11 1 an
e el il 19 19
] 1
Emmn || ’JL_‘L‘
16:1 ‘ 16:1 ‘ 21 2:1
" L
Ve NN S
N EE fjAl \'-\ x /Ml
\l__."l T."
| 1:16 ‘
g - = +
01 0{)

3x3 Blur Filter Hardware Accelerator

Fig. 7.5. End to end demonstration of image blurring application using 3x3 blur filter

85

and O,” for the 3x3 sharpening filter is derived as follows:

0o = [(ago + ap1 +ag2 + @19 + a2 + a9 + a1 +az2) X (=1)] + (a1 X 9)
(7.13)

0; = [(ap; +apz +ag3 + 211 +as3 +az; +az+azs) X (—1)] + (az X 9)
(7.14)

In order to generate the structurally obfuscated 3x3 sharpening filter design,

Input Image 21 (225x225) Output Image (Sharp)

25 afin

Pre-processing A portion of Filter output | Post-processing

974 652 643
- 642 160 162 4

646 166 158

A7 A3 an am 23 ap & ap
471 ag [aw | an
iz | am |22 |3 S L |30 |
Esl E=o=t iR 4 9
: | ““r“‘ i - g
| 1t |
M1 REE ||+
161 | 16:1 | el =
_'\\,/_x.-' T\. e
b +.-"l.l Al \ \IQ :;. Ml
J! Y
| 1:16 | ==
TR T]
Oy
O;

3%3 Sharpening Filter Hardware Accelerator

Fig. 7.6. End to end demonstration of image sharpening application using a 3x3 filter

86

the above equations are first converted into corresponding DFG representing
the unrolled version. Further it is subjected to THT based obfuscation
followed by HLS process to generate the structurally obfuscated RTL design
of sharpening filter. The end to end image processing using secured

sharpening filter design is shown in Fig. 7.6.
7.2.3.3. 3x3 vertical embossment filter design
The kernel matrix of a 3x3 vertical embossment filter is given below:

00 0
F'= 11 0 -1 (7.15)
0 0 0 l3xs

Owing to non-symmetric nature of the kernel matrix of vertical embossment

filter, a horizontal flip followed by a vertical flip are applied. This results into

Input_Image 31 (717x956) Output Image (Vertical Embossment)

o r

Pre- ay; ay -1 -1 a3 An Post-
processing I$ 1_ + + + T |$ processing

‘ z-.1| 2:1 ‘ |2.—1 ‘ ‘ 2:1 | 48 2 —1]
48 2 -1
\ / \ / 48 2 -1
¥ oo . S A portion of
M1 | Ryl R Filter output
e =+

3x3 VE Filter Hardware Accelerator

Fig. 7.7. End to end demonstration of vertical embossment application using 3x3 filter

87

the following kernel matrix of vertical embossment filter:

0 0 0
F'= -1 0 1 (7.16)
0 0 0lsxs

Based on the kernel coefficients, the equation of concurrent output pair “Oy

and O,” for the 3x3 vertical embossment filter is derived as follows:
0o = [(ago X (=1))] + [(a12)] (7.17)
01 = [(a11 X (=1))] + [(a13)] (7.18)

In order to generate the structurally obfuscated 3x3 vertical embossment filter
design, the above equations are first converted into corresponding DFG.
Further it is subjected to THT based obfuscation followed by HLS process to
generate the structurally obfuscated RTL design of vertical embossment filter.
The end to end image processing using secured vertical embossment filter

design is shown in Fig. 7.7.
7.2.3.4. 3x3 horizontal embossment filter design
The kernel matrix of a 3x3 horizontal embossment filter is given below:

0 1 0
FHE= [0 0 0] (7.19)
0 —1 O0lzxs

Owing to non-symmetric nature of the kernel matrix of horizontal embossment
filter, a horizontal flip followed by a vertical flip are applied. This results into

the following kernel matrix of horizontal embossment filter:
0 -1 0
FHE= !0 0 0] (7.20)
0 1 Ol3xs

Based on the kernel coefficients, the equation of concurrent output pair “O

and O,” for the 3x3 horizontal embossment filter is derived as follows:
0o = [(az1)] + [(apy X (=1))] (7.21)
01 = [(azp)] + [(agy X (—=1))] (7.22)

In order to generate the structurally obfuscated 3x3 horizontal embossment
filter design, the above equations are first converted into corresponding DFG.

Further it is subjected to THT based obfuscation followed by HLS process to

88

generate the structurally obfuscated RTL design of horizontal embossment
filter. The end to end image processing using secured horizontal embossment

filter design is shown in Fig. 7.8.
7.2.3.5. 3x3 Laplace edge detection filter design
The kernel matrix of a 3x3 Laplace edge detection filter is given below:

0O -1 0
FFP= [—1 4 —1] (7.23)
0 -1 03

Based on the kernel coefficients, the equation of concurrent output pair “Oy
and O,” for the 3x3 Laplace edge detection filter is derived as follows:
0o = [(a01 +az0 + a1z +a31) X (=1)] + (a1 x 4) (7.24)

01 = [(apz tag1 +a13 +azz) X (—1)] + [(a12 X 4)] (7.25)

Input Image 41 (717%x956) Output Image (Horizontal Embossment)

g
o: e & oA @
> = g post

prol::,:;ing |$ + —|— —\— +| T __ __ _J) processing

2:1 : 2:1 2:1 46 48 48
0 0 0]
/ 0 0 0
.0 s . S — A portion of
. Ml R Al Filter output
12
(0] O

3x3 HE Filter Hardware Accelerator

Fig. 7.8. End to end demonstration of horizontal embossment application using 3x3 filter

89

In order to generate the structurally obfuscated 3x3 Laplace edge detection
filter design, the above equations are first converted into corresponding DFG.
Further it is subjected to THT based obfuscation followed by HLS process to
generate the structurally obfuscated RTL design of Laplace edge detection
filter. The end to end image processing using secured Laplace edge detection

filter design is shown in Fig. 7.9.

7.3. Design Approach of a Secured 5x5 Filter Hardware
Accelerator
Some image processing applications e.g. deep embossment uses 5x5 filter to

produce filtered image. This section discusses the mathematic foundation of a

5x5 filter processing followed by generating structurally obfuscated filter

Input Image 52 (717%x956) Output Image (Edge Detection)
Pl'e-pI'OCCSSiIlg A pOI'tiOl’l of Filter output Post-processing
[90 50 49]
4 L 44 2 1 {}
44 2 1
az g A1z ap 411 a;; 2 ap ap -1 ' 4
M] o= _| apy ‘ E 4
1 i
i = [Tk st
5:1 ‘ 8:1 | 4T] [%L]
%l Al v M1
! v
| 18 | 14
S g
1 1
j I
Ol O;)

3x3 Laplace edge detection Filter Hardware Accelerator

Fig. 7.9. End to end demonstration of edge detection using 3%3 edge detection filter

90

hardware accelerator.
7.3.1. Mathematical foundation of a 5x5 filter design

For the kernel of size 5x5, the filter coefficient matrix [F] is given below:

foo for foo fo3 fo4
fio fir fizo fiz fig
F=\|f fi fn fH fxn (7.26)
f30 331 f3p f33 f34
fao far fao fa3 fag |5 4

f,q denote the kernel values, where p and q both vary from 0 to 4.

To execute ‘same convolution’ of 5x5 filter with the input image pixels, first
the input matrix [A], given in (7.1), is padded with g number of zero-rows and
zero-columns based on the padding rule given in eq. (7.3). Since =5, therefor
g is computed to be 2 using eq. (7.3). The enhanced input matrix, post

padding, is shown below:

[0 0 0 0 0 0 0]
0 0 0 0 0 0 0
0 0 Xoo Xor - (1-1) 0 0
w00 e Mg 0
0 0 X(r-1)0 X(1-1yn - _a)g-1) 0 0
0 0 0 0 0 0
(7.27)
0 0 0 0o .. 0 0 0y

Where, NxM is the dimension of enhanced input matrix which is given as
(I+4)x(J+4) for executing the ‘same convolution’ using 5x5 filter. And the
pixel values are represented by ajj where 1 and j vary from 0 to N-1 and 0 to

M-1 respectively.

The output pixels generated using convolution of updated input matrix [A] and
5x5 filter kernel [F] can be calculated using the ‘for loop’ given in eq. (7.5),
where p and q take the values from 0 to 4 (i.e. lower value is 0 and upper value
is 4) during calculating each output value Oy,. And values of i and j vary from
0 to N-1 and M-1 respectively for computing the the entire output matrix [O].
For computing 1* output value Oy using (7.5), lower and upper values of i and
j are 0 and 4 respectively. Hence, Oy is given as follows:
i=4,p=4 j=4,q=4

Op= Y (X ainqu)

i=0,p=0 j=0,q=0 (7.28)

91

Further, this equation is expanded as follows:

0o =[(ago foo) + (o1 x for) + (aga x foo) + (a3 x fo3) + (aoa x fou)]
+[(aio xfig) + (ary x fiy) + (arn x fi2) + (ay3 xfi3) + (a1g x fis)]
+[(an x 29) + (any x f21) + (a2 x £55) + (223 x £23) + (ang x f24)]
+[(az0 x f30) + (a3y x f31) + (aza x 3) + (a33 x f33) + (aza x f33)] ~ (7.29)
+[(ago < fa0) + (agy x f41) + (agn x f4) + (243 x f43) + (a4q x fag)]

7.3.2. Generating structurally obfuscated 5xS5 filter hardware accelerator

Using the eq. (7.29) as an algorithmic description of 5x5 filter application, the

corresponding hardware accelerator can be designed in the form of RTL

fo fu fo fs £ fo fn £ f fu

ago| 801 aozj a3 304‘ a| aﬁ ay ay
Nofofofotofon

fo fn fo B fu] fp fn fo fs £y

a0 &1 a3

Gy a | aul W ag & ay |SI 82 83 54
A AN \ Al “I W /

az A f3. f1p f3, fiy as ap fin fin fi3
am|ﬂ>u| ago f4o|%|m| flou 3¢|1|ﬂ|zl| alm f4|1 %Ijl flm miz ﬂlz’ aloz ﬁl ,i) Im a4|3 alu| ﬂo fu ful fu3 344|§u| agy fua |fu| fos
|
St 8:1 LB 21 8:1 8:1 8.1 8:1 8:1 8:1
1:8 > 1:18I : 18 N Hl- 1!-g! :
e ; s
= i g = HESS !
1 1 H— .
AL “Er e | aviey @ 4:1 4:1

8:1 8:1 e el
Ford D2
4% T
— 'ﬁw‘g!@
@zﬁf W Waray 2 4242 4
o

Fig. 7.11. Structurally obfuscated RTL datapath of 5x5 image filter hardware accelerator

through the HLS process. Further in order to generate a secured 5x5 filter

design, structural obfuscation mechanism is integrated with the HLS design

92

process. Following two structural transformations are applied for obfuscation:
(1) DFG partitioning (ii) tree height transformation. In the DFG partitioning
based structural obfuscation technique, five cuts are made to create 6
partitions. Further, each partition of the DFG is applied with THT obfuscation.
Thus obtained obfuscated partitioned DFG of 5x5 filter application is shown
in Fig. 7.10. Further, FU constraints of SM and 2A are applied to perform
scheduling of obfuscated DFG. Finally, structurally obfuscated RTL datapath
of 5x5 filter application is synthesized to generate the secured hardware

accelerator as shown in Fig. 7. 11.
7.4. Summary

This chapter discussed a novel appproach of designing 3x3 and 5x5 filter
hardware accelrators for image processing applications using HLS design
process, to address the low power and high performance requiremrnt. Further,
the threat of RE based hardware Trojan insertion attack was handled by
employing the structural obfuscation during the HLS design process of image
processing filters. The proposed structurally obfuscated 3x3 and 5x5 filter
designs are resilient against the RE by an attacker. Furthermore, we also
demonstrated the image processing applications for five specific structurally

obfuscated filters.

93

Chapter 8

Techniques for Securing Functionally Obfuscated DSP
Cores against Removal Attack

The IP core steganography and watermarking techniques, discussed in the
previous chapters, act as detective control against IP piracy. However, these
approaches cannot prevent IP piracy from happening. A functional obfuscation
mechanism [36] is a preventive control against IP piracy, where the
functionality is obfuscated by locking the design using some key gates or
locking blocks. Thus the functional obfuscation technique produces a locked
netlist which can only be activated by applying a correct key [37]. The
adversary, being unaware of the correct key, cannot illegally use the IP core.
For securing digital signal processing (DSP) cores, functional obfuscation has
been performed by adding IP core locking blocks (ILBs) at the output of
functional units (FUs) [36]. However, a functionally obfuscated design is
susceptible to removal attack [39] where the attacker attempts to remove the
ILBs in order to de-obfuscate it and acquire an unlocked netlist. Thus removal

attack can defeat the goal of functional obfuscation and facilitate IP piracy.

This chapter discusses proposed SHA-512 based key generation hardware and
anti-removal logic (ARL) based key generation unit to secure the ILBs used in
functionally obfuscated DSP cores against the removal attack. The security is
achieved by offering re-configurability to ILBs structures based on the output
of proposed key generation hardware units. The outline of the chapter is as
follows. The first section formulates the problem. The second section provides
the overview of an ILB and its various features. The third section discusses the
SHA-512 based ILB-keys generation hardware under the following sub-
sections: overview, design of custom SHA-512 based key generation
hardware, key based reconfiguration of ILB structure and advantages of using
SHA-512 based ILBs-key generation hardware over AES hardware [53] to
secure against the removal attack. Further, the fourth section discusses the
ARL unit under the following sub-sections: overview, design of ARL unit
based key generation hardware, and advantage of using ARL unit over AES
and SHA-512 based logic to secure against removal attack. Finally, the fifth

section summarizes the chapter.

94

DA [P)

Fig. 8.1. A sample ILB structure requiring an 8-bit key k1’ to activate

8.1. Problem Formulation

Given the data flow graph (DFG) representation of a target application,
module library, resource constraints, along with the objective of securing IP
cores against IP piracy, generate a removal attack resilient functionally

obfuscated DSP IP core.

8.2. Overview of ILB and its Features

An ILB is interweaved structure of various logic gates such as XOR, XNOR,
AND, NAND, and NOT gates. A sample ILB structure is depicted in Fig. 8.1.
An ILB requires 8-bit long key to be activated. The ILBs are placed into the
design at output bit of each FU such as multiplier and adder to enable logic
locking or functional obfuscation of DSP cores. The various ILB structures are
placed into the gate level design through a repetition pattern of a particular
ILB. A random variable p is used to achieve this repetition pattern, where p is
given as follows: 1 < u <T.p. More explicitly, same ILBs is placed ‘p’ times
and post ‘u’ repetitions, next ILB from total ILBs (T) is chosen and placed
‘w times. The total ILBs Ty g are determined as follows: (total number of

FUs) x (# of output bits of a FU).
The ILBs exhibit following security properties:

(1) Multi-pairwise security: The ILBs are multi-pair wise secured because
one bit of key cannot be sensitized to output without monitoring
remaining key bits.

(i1)) Protected against key gate isolation: Since the keys gates are associated
in such a manner that one gate is linked with the key inputs of other

gates; hence an individual key gate of ILBs cannot be isolated. Thus,

95

(iii)

(iv)

)

8.3.

8.3.1.

the key gate isolation is prohibited to thwart the key sensitization
attack.

Protected against run of key-gates: The keys gates have been
intertwined in order to thwart the replacement of run of key gates with
single key gate by an adversary, hence hindering key sensitization.
Non-mutable key gates: The robust composition of keys gates prevents
against muting them without monitoring all the key bits hence
hindering key sensitization.

Thwarting IP piracy: The locked or functionally obfuscated netlist
cannot be misused by an adversary to make illegal income, without
knowing or deducing the correct key. Since the locking using ILBs
involve a larger size key (making brute force almost infeasible) and it
is also protected against key sensitization, therefore the correct key

value cannot be recovered by the adversary.
SHA-512 based ILB-keys Generation Hardware to
Secure against Removal Attack

Overview of SHA-512 based ILBs-key generation hardware

m-bit Input

Custom Hardware for SHA-512
based ILBs-key generation
logic unit

512 bits (64*8 bits) encrypted
output used as keys for ‘B’
ILBs (B=64)

Reconfigured
‘B’ ILBS

Non-encrypted ‘L (T, B) ILBS ‘ « Primary
keys for ILBs Input

Functionally Obfuscated
DSP Core

Primary Output

Fig. 8.2. Overview of securing a functionally obfuscated DSP core against the removal attack

using SHA-512 based ILBs-key generation hardware

The overview of employing security using SHA-512 based ILBs-key

generation hardware against the removal attack on a functionally obfuscated

96

design is shown in Fig. 8.2. As shown, the custom hardware of SHA-512
based ILBs-key generation logic takes arbitrary length (m bits) input to
produce output of B*8§ bits, where ‘B’ denotes the count of ILBs to be
reconfigured and ‘8’ denotes the size of key (in bits) per ILB. Since the overall
length of the hash digest is 512-bit and one ILB requests an 8-bit key,
therefore ‘B’ can have the maximum value of 64. More explicitly, upto 64
ILBs of the functionally obfuscated design can be reconfigured using the 512-
bit hash digest generated from the SHA-512 based key generation hardware.
And, the keys of remaining ILBs can be fed without encryption as shown in
the Fig. 8.2. Obtaining ILB keys using SHA-512 based key generation logic
offers strong structural reconfiguration of several ILBs simultaneously. This is
because, an ILB structure is not fixed rather it is determined by the key
generation logic and its arbitrary input of m-bit. Moreover, the architecture of
custom SHA-512 based key generation hardware, its m-bit input and hash
output are not known to the attacker. This thwarts the identification of any
particular ILB in the obfuscated design by an attacker, thus securing against

the removal attack.

The custom SHA-512 based key generation logic is shown in Fig. 8.3. The
following two units participate in the logic: (1) SHA-512 custom logic (i1) ILB
keys-extraction logic. An m-bit string (can be chosen arbitrarily) and initial
hash buffer values are given as input to the SHA-512 custom unit and 512-bit
hash digest is produced at the output. The initial values (standard) of eight

Custom Hardware for SHA-512 based
ILBs-Key Generation Logic

>
K1

m-bit Custom SHA- 8
Input 512 unit ~ ——————7 é ILB Keys B*g
npu : K2 Extraction :
512-bit Hash Unit bits
digest .

8
ﬁ K64
Initial Hash values

Fig. 8.3. Block diagram of custom hardware for SHA-512 based ILBs-key generation logic

97

hash buffers (a, b, ¢, d, e, f, g and h), each of size 64 bits, are given below:
a > “6A09E667F3BCC908”, b > “BB67AE8584CAA73B”,

¢ 2 “3C6EF372FE94F82B”, d> “AS4FF53A5F1D36F1”

e 2 “510E527FADE682D1”, f 2 “9B05688C2B3E6CI1F”

g 2 “1F83D9ABFB41BD6B”, h > “SBEOCD19137E2179”

The custom SHA-512 unit first translates the m-bit input into a chunk of size
1024-bit, followed by processing of 1024-bit chunk and eight hash buffer
values to produce updated values of the hash buffers in each round. Instead of
choosing fixed 80 rounds of traditional SHA-512, the number of rounds of
execution is customized based on designer’s choice. The final round produces
the 512-bit digest contained in the eight hash buffers. Thereafter, the ILB
keys-extraction unit divides the 512-bit hash digest into the 8-bits long
bitstreams that function as encrypted keys for ILBs. Based on the count of
ILBs to be reconfigured, the corresponding number of bitstreams can be
obtained from the 512-bit digest. Hence by extracting B*8 bits using the key-
extraction unit, ‘B’ number of ILBs of a functionally obfuscated DSP core can

be structurally reconfigured.
8.3.2. Design of custom SHA-512 based key generation hardware

Figure 8.4 shows the internal steps of the custom SHA-512 based key
generation logic. The process of generating ILB-keys is elaborated below

using the following steps:

1. Appending padding bits: The input bitstream of random length (e.g. m
bits) is padded with the following bit sequence “1000...0” to enhance the
length upto 896-bit (considering the length of input bitstream is less than
896 bits).

2. Appending input bitstream length: The length of obtained 896-bit long
chunk is further enhanced to a chunk of 1024-bit by padding the 128 bits
of the length of initial input bitstream.

3. Word extraction: The 64-bit words are extracted to be exploited by the
round function computation (RFC) logic as shown in the Fig. 8.4. The

word is either taken out from the 1024-bit chunk or derived using ‘word

98

computation logic’ (same as standard SHA algorithm). For the first 16
rounds, 64-bit words (WO0-W15) are taken out from the 1024-bit chunk.

For the 17" round onwards, a 64-bit word is derived from the ‘word

computation logic’.

Constant extraction: The custom SHA-512 logic also exploits sixteen 64-

bit constants (KO, k1,..., K15) which are all standard values. One constant

is extracted from the set of constants for each round of RFC logic.

5. Hash buffer processing: The first round of RFC uses the initial hash buffer.

Word
ﬁ Computation
Logic
WO >
W1
>
Mux
16:1
W15 >
64*8
Appending Appending ; ILBs
padding length of Word Round Eunctlon °
bits 79 input bit- 77 > Extraction 7<> Computation (RFC) Key.
1024 64 d 7‘% Extraction
(1000...) 896 pattern an; logi
Addition Logic 512 ogic
'T\ bits \1/
digest *
Input Bit- 64 N. 8
pattern (m-bits) bits
Constant
Extraction
KO >
K>
Mux
16:1 ->
KI5|=>

Fig. 8.4. Block diagram of custom SHA-512 based key generation hardware

99

Further, the updated hash buffer values are generated in the subsequent
rounds of RFC.

6. Round Function Computation (RFC): the processing of round function
exploits the output from the previous 3 steps viz. word extraction, constant
extraction and hash buffer. The RFC logic executes the following six
elementary functions: MAJORITY function, SUMMATION/ ROTATION
‘a’, CHOOSE function, SUMMATION/ ROTATION ‘e’, MIX function-1,
MIX function-2. The hardware of RFC alongwith the logic of each of six

functions is shown in Fig. 8.5. The number of rounds (customized) of the

MAJORIY FUNCTION

DD

SUMMATION/ROTATION ‘a’

SUMMATION/ROTATION ‘¢’

)

Fig. 8.5. Round Function Computation hardware of custom SHA-512, where a, to h, indicate updated

hash buffer values, W, and K, indicate 64-bit word and constant respectively in the round ‘r’

100

RFC logic is decided by the designer. The hash buffer values obtained post
final round indicate the 512-bit hash-digest.

7. ILBs keys extraction: The ILBs key extraction unit uses the 512-bit hash-
digest to extract the B*8 bits that act as keys for ‘B’ number of ILBs of a
functionally obfuscated design. Using the 512-bit digest, upto 64 ILBs can
be structurally reconfigured by reordering their internal gates such that the
functionality of ILBs is not affected and the output of ILBs is correct only
on applying actual key bits.

The integration of the custom SHA-512 based ILBs-key generation hardware
with a functionally obfuscated DSP core is performed by connecting its output
to the key bits of ILBs. Thus generated the functionally obfuscated DSP

design is resilient against the removal attack.
8.3.3. Key based reconfiguration of ILB structure

The structural reconfiguration of ILBs using the key bits generated from SHA-
512 based key generation hardware is shown in Fig 8.6. Since an ILB needs 8-
bit key to be activated, therefore an 8-bit block is extracted from the 512-bit
output of the SHA-512 based key generation logic to reconfigure the ILB. To
obtain the keys for ‘B’ ILBs, B*§ bits are extracted by the designer. For
demonstration, a single ILB structure is configured based on the following 8-
bit key value obtained from the ILB key selection unit: “10110000”. Thereby,
different ‘B’ number of ILBs can be structurally reconfigured based on the key

bits by reordering the internal gates in an appropriate manner.

8.3.4. Advantage of using SHA-512 based ILBs-key generation hardware

over AES hardware to secure against removal attack

Following cryptographic properties of SHA-512 based key generation
hardware makes its suitable for producing keys for the ILBs: (a) collision
resistance makes difficult to find two such inputs that produce same hash
output (b) one-way random functionality ensures that the input message
cannot be derived from the output hash (c) deterministic property means that
the same hash value is always generated for a given input and (d) each bit of
the digest is a function of every input bit. These security properties of hashing

prevent an attacker to find actual input pattern from output bits. Further, SHA-

101

/P

o/P
Ky 0 é
Ky 4

I
Ky 1 Ky2 Ky 7

Ky 3 Kys5 Kvo

Fig. 8.6. Example of a configured ILBy based on the output “10110000” produced from ILB

key selection/extraction logic

512 based ILBs-key generation logic offers the following advantages over

AES based logic:

1.

AES based key generation logic relies upon fixed secret key for generating
the encrypted output bits that act as key bits for ILB reconfiguration.
However the fixed secret key is vulnerable to standard side channel
attacks, hence can be compromised by the attacker. On the contrary, the
proposed ‘SHA-512 based key generation logic’ does not depend on fixed
secret key to produce the key bits for ILBs reconfiguration, thereby
rejecting the likelihood of side channel attack.

AES based logic has capability to provide key-bits to maximum 16 ILBs
using its 128-bit output (since 16*8=128, where each ILB requires 8-bit
key). This prevents a designer from reconfiguring more than 16 ILBs using
AES128 for larger designs (containing several ILBs). This would demand
more than one instance of AES in the obfuscated design to enable
reconfiguration of more ILBs concurrently, hence resulting in excessive
design and power overhead. On the contrary, the proposed ‘SHA-512
based key generation logic’ can generate keys for upto 64 ILBs using its
512-bit hashed output. This leads to lower design and power overhead
compared to AES based logic.

Since the AES based logic offers reconfiguration of maximuml6 ILBs
only, hence provides less security against removal attack. On the contrary,
the proposed SHA-512 based logic offers reconfiguration of maximum 64

ILBs in its single execution, thus employs higher security compared to

102

AES for securing functionally obfuscated DSP designs against the removal
attack.

8.4. Anti-removal Logic (ARL) Unit to Secure against

Removal Attack
8.4.1. Overview of lightweight ARL based ILBs-key generation

hardware

As we discussed earlier, removal attack on ILBs can nullify the goal of
functional obfuscation. The removal attack can be handled by making ILBs
structure undetectable to an adversary. To make the ILBs undetectable,
reconfigured ILBs can be used in place of standard ILB structures. The
structural reconfiguration of ILBs can be performed by producing their keys
from AES128 and SHA-512 based logic. However, SHA-512 and AES128
based ILBs-key generation hardware result in substantial design overhead and
provide lesser security against removal attack in terms of number of input bits
to be decoded to find the ILB key. Here, we discuss a custom lightweight and

highly secure solution against the removal attack using an anti-removal (ARL)
x*(n+m)
challenge bits

Custom Anti-removal Unit

ARL

ARL B ARL
block-T' p1ock-2 block-x
x=B*8 bits output used as
keys for ‘B’ ILBs
Reconfigured
‘B’ ILBS
Primary
Input
Keys for non- @ ‘(TILB - EIEE
reconfigured
ILBs Functionally Obfuscated DSP
Core
Primary Output

Fig. 8.7 Overview of using ARL unit to protect a functionally obfuscated

DSP core against the removal attack

103

unit. The key-bits for ILBs of a functionally obfuscated design are produced
using the ARL wunit. Thus produced key-bits determine the structural

configuration of ILBs to enable the security against removal attack.

The security of a functionally obfuscated design using ARL unit is highlighted
in Fig. 8.7. As shown, an ARL unit is a composition of several ARL blocks.
The number of ILBs that the designer has to reconfigure decides the number
of ARL blocks used in an ARL unit. For example, the designer targets to
reconfigure ‘B’ ILBs where each requires an 8-bit key to be activated. Since
each ARL block produces only one bit of ILB key, hence total B*§ ARL
blocks are required to be employed in the ARL unit. Because an adversary is
not known with the custom ARL unit design, he/she cannot recover the keys
of reconfigured ILBs. Hence the adversary is not able to deduce the ILB
structures based on 8-bit keys. This makes the ILBs un-identifiable for the
adversary, thereby hindering the removal attack. Additionally, the ARL unit
itself remains protected against the removal attack as its architecture is
customizable and also not recognizable to the attacker. Moreover, further
camouflaging of the internal gates of ILBs and ARL unit in the entire design
takes place after synthesis. This renders the identification of ILBs by the
adversary highly challenging, thus improving the security against the removal

attack.
8.4.2. Design of ARL based key generation hardware

Multiple ARL blocks are used to constitute an ARL unit, where each ARL
block generates only a single key-bit for ILBs. For generating ‘x’ number of
key-bits, ‘x> ARL blocks are employed in an ARL unit, where x=B*8. Here, B
indicates the count of ILBs to be reconfigured. Fig. 8.8 depicts the internal
architecture of an ARL block. As depicted in the figure, an ARL block is a
combination of multiple AND-OR networks which produce a single bit of
output. The size and number of AND-OR networks is decided by the
following two sets of the challenge inputs: S = {S0, S1, ..., Sn} and C = {C0,
Cl, ..., Cm}, where the length of challenge inputs ‘S’ and ‘C’ is given as ‘n’
and ‘m’ respectively. The parameter ‘n’ decides the size of AND-OR network
and the parameter ‘m’ decides count of AND-OR networks in an ARL block.
Total 2™ AND-OR networks are employed in an ARL block. Further, ‘m’ also

104

decides the size of multiplexer exploited in the ARL block. The value of a
key-bit produced from a selected AND-OR network is decided by the bit-
pattern of challenge input set ‘S’. The challenge input set ‘C’ determines
which AND-OR network will be selected. An AND-OR network architecture,

which is flexible, is shown in Fig. 8.9.

The factors such as the count of ARL blocks, the size of challenge inputs ‘S’
and ‘C’ determine the structure of ARL blocks and the configuration of AND-
OR networks, which in turn determines the architecture of an ARL unit. Since,
these various factors of ARL architecture are tuned by the designer, therefore
only s/he possesses the details of the custom ARL unit. Hence an adversary
cannot know the exact architecture of ARL unit. This makes infeasible for an
adversary to know the ILB keys, therefore the reconfigured ILBs using the
keys generated from the ARL unit go undetected. Thereby, the removal attack
on the ILBs is thwarted.

Challenge
bitsh\

4
CO0CI ...Cm

ARL Network-fNetwork-

block 1 2
\.\'\ m m
~. Mux 2 :1

Fig. 8.8 Overview of ARL block

S1 Sn

. N
e BT (B 2

‘<.
~.
~.

Fig. 8.9 Overview of an AND-OR network used in ARL block

105

8.4.3. Advantage of using lightweight ARL based ILBs-key generation

1.

8.5.

hardware over AES and SHA-512 based logic to secure against

removal attack
The ARL unit offers higher security in terms of number of challenge bits
needed to decode the keys of reconfigured ILBs (from an attacker’s
standpoint). Generating the one bit of an ILB key requires total n + m bits
of the challenge inputs, as discussed earlier. In order to reconfigure 64
ILBs, total 64*8=512 key-bits need to be generated. The 512 key-bits are
generated from 512*(n+m) bits of challenge input of ARL unit. More
explicitly, for n=3 and m=3, determining 512 key-bits require total 3072
bits of challenge input. On the other hand, four instances of AES128 will
be required to generate 512 key-bits to reconfigure 64 ILBs. To decipher
512 bits, total 1024 bits (4x128 bits of fixed secret key + 4x128 bits of
input) of challenge inputs will be required. And, in case of SHA-512 based
logic, input of 1024-bit is required to know by the attacker to decipher the
512-bit output (acting as key-bits for ILBs). Thereby, an ARL unit offers
higher security due to more number of challenge-bits required for cracking
the same number of ILB keys and determining the ILB structures.
Producing key-bits for ‘Z’ more ILBs can be performed simply by adding
7*8 more ARL blocks in the ARL unit. However, producing key-bits for
more ILBs using AES-128 or SHA-512 based logic demands one extra
instance to be used with the functionally obfuscated design. This impacts
area and power requirement. Hence, the ARL unit offers a lightweight

solution to secure a functionally obfuscated design against removal attack.

Summary

The threat of removal attack is imperative to address to secure the functionally

obfuscated IP cores or to preserve the goal of functional obfuscation. This

chapter discussed SHA-512 and lightweight ARL unit based ILBs-key

generation hardware to handle the removal attack on functionally obfuscated

DSP cores. This chapter discussed the internal architecture of custom SHA-

512 based key generation hardware and ARL unit. Further, we also discussed

the advantages of using SHA-512 and lightweight ARL unit based ILBs-key

generation hardware compared to an AES based solution.

106

Chapter 9

Robust Logic Locking Technique for Preventing IP
Piracy

The IP piracy can be prevented by locking the functionality of the design
through some key gates which are activated using correct keys only. This kind
of technique of obscuring the design functionality is referred to as logic
locking [36]. This chapter discusses a proposed robust logic locking technique
for securing IP cores for DSP applications, by placing DSP locking cells
(DLCs) at selected locations in the design. The proposed novel structure of
DLC uses sequential elements such as flip-flops (FFs) alongwith
combinational elements such as logic gates. The robustness of the proposed
DSP locking cell structure lies in the fact that the probability of recovering the

correct key even in exhaustive trials is rendered considerably lesser than one.

The outline of the chapter is as follows. The first section formulates the
problem. The second section discusses the proposed logic locking technique
for securing DSP cores against IP piracy under the following sub-sections:
overview, proposed DSP locking cells (DLCs) structure, security assessment
of DLCs, insertion of DLCs in the design, metrics used to evaluate security of
the logic locking technique. The third section discusses the different attack
scenarios addressed by the proposed technique. Finally, the fourth section

summarizes the chapter.

9.1. Problem Formulation

Given the data flow graph (DFG) representation of a target application,
module library, resource constraints, along with the objective of securing IP
cores against IP piracy, generate a locked (functionally obfuscated) netlist of

the IP core.
9.2. Logic Locking Technique for Securing DSP Cores
against IP Piracy

This section discusses the proposed logic locking technique for securing DSP

cores under the following subsections:

9.2.1. Overview

107

The overview of logic locking technique for securing DSP IP cores is depicted
in Fig. 9.1. The proposed technique takes following inputs: DFG representing
the target DSP application, module library, resource constraints, designer
specified tuning variable ‘@’ and keys for the DLCs. The logic locking
technique integrated with the design flow generates a locked netlist at the
output. The following three steps are executed to accomplish the logic locking
process as shown in Fig. 9.1: (i) design a RTL datapath of target DSP
application using high level synthesis (HLS) process (ii) perform locking of
RTL datapath through insertion of reconfigured DLCs based on encoded value
of ‘@’ which determines the place for DLCs insertion as per its encoding rules
(ii1) perform synthesis of locked gate-level netlist. The keys for DLCs to

produce reconfigured DLC structures are obtained from AES-128 output.

To perform the locking of the functionality of the DSP core, we proposed a

Inputs for Proposed Logic Locking

Resource Encrypted Non-
constraints Designer | | keys from encrypted
odio g selected AES keys
odule(| Encoding i
D_SP . library || Rules Vt;ril;%%e + *
application (©) Keys for DLCs
(DFG)

Proposed Locking for DSP cores

Generate a Register Transfer Level (RTL) datapath of DSP application using
HLS framework

Generate locked RTL datapath by inserting reconfigured DLCs in the un-locked datapath
based on encoded ‘o’ (DLCs are reconfigured based on AES output to render them
undetectable into the design)

|

Synthesize and generate functionally locked gate-level netlist

Output

Locked netlist

Fig. 9.1. Overview of proposed logic locking methodology for DSP IP cores

108

robust and reconfigurable structure of DLC. This reconfiguration of DLCs is
accomplished using AES128 output. From the security perspective, the
proposed logic locking approach achieves the probability of deducing correct
key in all possible trials (attempting exhaustive key combinations) extremely
lesser compared to the probability of deducing the same in exhaustive trials
using existing logic locking techniques [36], [37]. In other words, in the
proposed technique, the correct key is only possible to be obtained by an
attacker if he/she attempts it at first combination. If the attacker fails to apply
correct key combination at first trial, during providing various key
combinations, then he/she cannot deduce the correct key in the leftover trials.
On the other hand, in the existing logic locking approaches, the probability of
deducing the correct key using exhaustive trials is 1. Thus, the proposed
structure of DLCs ensures higher security than the existing logic locking

technique [36] for DSP cores.

9.2.2. Proposed DSP locking cells (DLCs) structure and its security

properties

The proposed DSP locking cell structure is constituted using following two
logic locking sub-cells (i) sequential logic locking cell (SLLC) (ii)
combinational logic locking cell (CLLC) as shown in Fig. 9.2. A SLLC
comprises of two D flip-flops. We refer these flip-flops as key-FFs in this
chapter, as their functioning is driven by the key bits. Each key-FF acts in
toggling mode. The initial state of each key-FF is required to set to ‘0’. This
setting of key-FFs can be achieved using power on reset. Further, a CLLC
comprises of various logic gates such as OR, NOR, EX-OR, EX-NOR, AND,
NAND and NOT gate. Different arrangements of various logic gates in CLLC
and variations of edge triggering (such as positive and negative) of the key-

FFs in SLLC can produce various reconfigured functional structures of DLCs.

The proposed DLCs exhibit various security properties such as (i) pair-wise
security, protection against key-gate isolation, protection against run of key-
gates, protection against muting of key gates to hinder the sensitization of key
bits at output (ii) involving the outputs of key-FFs with key-gates makes the
hybrid structure of proposed DLC more robust (iii) deducing the valid key

using all possible combinations of key is infeasible, given that the valid key

109

KI —9——O> j‘>

K2

Fig. 9.2. Proposed sample reconfigured DLC structures (where, “K1K2” is a two-bit key)

combination is not provided at the first trial (iv) since both type of cells viz. D-
FFs and logic gates participate in the logic locking, therefore detection of only
key-gates or only key-FFs is not enough for an attacker to perform the attacks.
All the key-gates and key-FFs of a DLC are required to be identified by the
attacker. This renders the attacker’s effort tremendously challenging due to
camouflaging of key-FFs and key-gates in the many similar resources of the
gate level netlist of the DSP core (v) the proposed DLC structure requires
lesser number of key-bits (only two per DLC structure), therefore keys for

more DLCs can be obtained from an AES instance.
9.2.3. Security assessment of DLCs

Using the proposed DLCs, obtaining the correct key is only possible if the

attacker attempts it at first trial. The reason of not finding the correct key in

110

Fig. 9.3. Waveforms showing that correct output is not obtained unless the correct key is
applied only in the first trial (note- R: right key combination, W: wrong key combination. At
W, output (O) is either complement of input (I’) or 0 and at R, O is always 0)

exhaustive combinations except applying it at the first trial is explained in this
sub-section with the help of proposed DLC and timing diagram shown in Fig.
9.2(a) and 9.3 respectively:

The proposed DLC structure leverages the toggling nature of FF elements. A
FF can work in toggling mode on applying a certain input alongwith a clock
signal. In the proposed DLCs, organization of logic gates and key-FFs is such
that the unique feature of toggling of FFs can be exploited for robust security
of logic locking against the brute force attack. To generate a correct output
through proposed DLCs, the output of each key-FF must stay at 0 while
applying the correct key. As shown in Fig. 9.2, the key bits are connected with
the clock 1input of the key-FFs. Therefore during exhaustive
combinations/trials of key value, variation in key-bits would lead to flipping of
the flip-flop output. This guarantees that the output of a FF does not stay at 0

upon applying the correct key after a wrong key combination applied in the

111

first trial. Hence, the attacker cannot obtain the correct output on exhaustive

key combinations unless the valid key is provided only in the first trial. This

idea is further explained below with the help of the proposed DLC structure,

given Fig. 9.2(a), for different scenarios:

Note: Since each DLC requires two-bit key to activate therefore exhaustive

trials in deducing the correct key of a DLC are four.

1.

Scenario of applying valid key in the first trial: If the initial setting of each
key-FF output is 0 and the correct key “01” is provided to the DLC (Fig.
9.2(a)) in the first trial, then the DLC functions correctly. In this case, the
path of DLC from input (I) to output (O) bit is unlocked and valid output is
generated. Thus, the correct output can be produced using DLC on
providing valid key in the first trial. This could be achieved because the
flip-flops output “Q1Q2” are “00” during the application of correct key.
Therefore, the probability of obtaining valid output on providing valid key
in the first trial is 1.

Scenario of applying valid key in the second trial: Let’s suppose an invalid
key is applied in the first trial and the valid key “01” is applied in the
second trial. This will make the transition in either of the key bits (K1 or
K?2) as depicted in the waveforms shown in Fig. 9.3(a), (b) and (c). This
transition on a key-bit (which is the clock input of flip-flop) will result in
flipping (toggling) on output of respective key-FF and thus “Q1Q2” will
no longer remain at “00”. For example, if invalid key “00” is provided in
the first trial then providing valid key “01” in the second trial results in
transition on key-bit ‘K2’ (as shown in Fig. 9.3(a)) which toggles the
output Q2. This toggling in the output of key-FF results in incorrect output
of the DLC on feeding correct key in the second trial. Therefore, the
probability of obtaining valid output on providing the valid key in the
second trial is 0.

Scenario of applying valid key in the third trial: If valid key is fed in the
third trial post two wrong trials, then the valid output is not obtained from
the DLC (Fig. 9.2(a)) as depicted in the waveforms shown in Fig. 9.3(d),
(e), (f), (g), (h) and (1). The underlying reason is that the applying valid

key after two wrong trials results in the transition on key-bits. This

112

transition toggles either Q1 or Q2 or both, hence “Q1Q2” is not
maintained at “00”. Therefore, the probability of obtaining valid output on
providing valid key in the third trial is 0.

4. Scenario of applying valid key in the fourth trial: Similarly, applying valid
key after three wrong trials makes the output of the DLC invalid as
depicted in waveforms shown in Fig. 9.3 (j), (k), (I), (m), (n) and (o).
Therefore, the probability of obtaining valid output on providing valid key
in the fourth trial is also 0.

Although it does not match with our intuition that the probability of obtaining
valid output by feeding valid key is not always 1, however it has been
achieved for the proposed DLC structure as shown in Fig. 9.3. Therefore, the
valid key cannot be deduced through the proposed DLCs in exhaustive trials

except first and this makes the proposed logic locking more robust.
9.2.4. Insertion of DLCs in the design

Figure 9.4 shows the insertion technique of proposed DLCs in the DSP core
design. Before the DLCs insertion process, the structure of DLCs and
locations for their insertion are determined. To determine the locations of the
DLC insertion, the designer specified tuning variable ‘@’ is used which varies

from 0 to 3 and conform to the following encoding rules:

= o =0: select even output bits of functional units (FUs) for DLCs insertion

= o =1; select odd output bits of FUs for DLCs insertion

= o =2; select prime output bits of FUs for DLCs insertion

= o =3; select all output bits of FUs for DLCs insertion

The total number of DLCs (Tpyc) to be placed in a DSP design is determined

using the following equation:
Tprc =(total # of FUs)x(# of output bits per FU chosen based on) (9.1)

For example, if a design contains three FUs each of size 32-bit then total
output bits of FUs are 3x32=96. Therefore, on choosing @ =3, total 96 DLCs
are placed in the design. Post determining the number of DLCS and their
location of insertion based on ®, the DLCs are inserted at selected locations in
the RTL datapath of the DSP design. It is noteworthy that the proposed DLC

structure is not predefined rather it is reconfigurable based on its key value. As

113

DLCs Insertion Process

1. @ =0; select even output""z. Decision of the location 128-bit input

bits of FUs for DLC insertion for DLCs insertion Al};S 128-bi
2. o =1; select odd output « 8_kléjecret

))) Encoding
bits of FUs for DLC insertion Rules ﬂ
3. o =2; select prime output; = ¢

))) . Non-
bits of FUs for DLC 1nsert10.n ™ Designer 128-bit output encrypted
4. o =3; select all output bits, ; . (Encrypted keys kevys for

/| selected tuning for DLC y

of FUs for DLC insertion ' variable (@) or) DLCs

i 1 |

Insert DLCs based on above conditions

Fig. 9.4. The process of DLCs insertion into RTL datapath of DSP cores

shown in Fig. 9.4, a subset of DLCs obtains the keys from AES128 output in
order to generate the reconfigured structure of respective DLCs. Since a DLC
is activated using a two-bit key, therefore 128-bit AES output can be used to
reconfigure upto 64 DLCs. This structural reconfiguration of DLCs disables
an attacker in identifying them in the design, hence hindering the removal

attack.
9.2.5. Metrics used to evaluate security of the logic locking technique

Following metrics are used to evaluate the security achieved using the

proposed logic locking technique:
1. Probability of obtaining valid key in exhaustive trials (Py)

The P, is the metric for assessing security of the proposed logic locking in
compared to the existing logic locking techniques [36], [37]. The P, metric
indicates the probability of deducing the correct key by trying all the possible

key combinations. The equation of Py is formulated as follows:

P, = (P"k(ﬂ)) (on(l)) + (P”k(z))) (P”"(z)) ot (PVk(zkb)) _ (on(Zkb)) 9.2)

appl obt appl obt appl obt

Where, k;, and 2Xb represent the total number of key-bits and the exhaustive

key-combinations or trials respectively.

(P::;;))=probability of applying valid key at 1% trial.

(p:;‘;?): probability of applying valid key at 2" trial.

114

vk zkb . . .)
(P angz))=pr0bab111ty of applying valid key at (2k0) trial.

(Povbot(l))= probability of obtaining valid output on applying valid key at 1%

trial.

(POUbOt(z))= probability of obtaining valid output on applying valid key at

2™¢rial.

vo
(Pobt(zkb))=pr0bability of obtaining valid output on applying valid key

at (2%0)™ trial.

It seems to be likely that the valid output can be obtained by applying valid
key at any trial (with probability=1). However, this fact is challenged using the
proposed DLC based logic locking technique where an attacker cannot find
valid output even on applying valid key unless it is fed only in the first trial.

More explicitly, this fact is explained for the following two cases:

(@) In case of existing techniques of logic locking [36], [37]: Valid
output can be obtained by applying valid key at any trial with
probability 1. In this case, the trial number in which the correct key is
applied does not matter. The probability of applying valid key at any
trial can be formulated as 1/2X» as the total possible trials are 2X» and
the favourable trial is only one in which valid key is fed. Thus, the
probability of obtaining valid key in exhaustive trials (i.e. P,) is

derived as follows using (9.2):

P, ! 1 ! 1 ! 1 2Kt
v = 5K, +2Kb' +2Kb' + - times
1
Pvzszsz
P,=1

(9.3)
The above eq. (9.3) shows that the probability of obtaining valid key in

exhaustive trials is 1 in case of existing logic locking techniques.

(ii) In case of proposed DLC based logic locking: The probability that
the valid output can be obtained on feeding valid key at any trial is not
always 1. Only the probability of obtaining valid output on feeding the
valid key in the first trial is 1. In case of other trials, this probability is
0 due to the structural nature of the proposed DLC. Thus, the

115

probability of obtaining valid key in exhaustive trials is derived as

follows using (9.2):
1 1
B, = 1/2Kb 94)

In other words, if the valid key is only fed at the first trial, only then
DLC is activated and the attacker can deduce the correct key.
Thereby, security (strength of logic locking) of the logic locking
technique in terms of the probability of obtaining valid key in

exhaustive trials is achieved to be 1/2X? instead of 1.

2. Encryption strength

Encryption strength (En®) metric measure the percent of DLC key bits

encrypted using an AES128 output. This metric is given as follows:

NAES

S

En® = Ntotal
kbits

(9.5)

Where, NOAFI;:S indicates the number of encypted output bits generated from

AES128 and N{9%! indicates the total number of DLC key bits in a design.

9.3. Addressing different Attacks Scenarios

To launch attacks, an attacker is assumed to have access of the following: (i)
locked gate-level netlist or a layout/GDS-II file (i1) sophisticated tools for
reverse engineering to obtain locked gate-level netlist (iii) functional IC of
the locked design. Using the abovementioned facilities, the attacker can try to
unlock the design through various attacks such as: key-sensitization based
attacks [37], SAT attack [40], removal attack [39]. Post obtaining the unlocked
netlist, the design becomes susceptible to IP piracy attack. Various attacks are

addressed using the proposed logic locking technique as follows:

1. Addressing key-sensitization based attacks: A key-bit can be sensitized
at primary output by feeding a suitable input pattern to primary input. In

the proposed DLC, one key bit obstructs the path of sensitization of the

116

other key bit and the complex organization of key-gates and key-FFs
renders the logic locking resilient against the key-sensitization attack
based on the following: (i) isolated key-bits (ii) run of key-gates (iii)
mutable key-gates.

. Addressing brute force attack: Performing brute-force attack almost

infeasible because of the proposed DLCs based logic locking. This is due
to the fact that the probability of obtaining valid key even in exhaustive

trials is 1/2Kv (highly lesser than one).

. Addressing SAT attack: The SAT attack works by rejecting wrong key

combinations iteratively with the help of distinguishing input-output (DIO)
pairs. Since the proposed logic locking is employed for DSP IP cores
which contain several multiplication operations, hence the SAT attack is
not feasible due to its non-scalability for multipliers. However, efficient
SAT attack algorithms may be assumed to be developing for DSP cores in
future. The proposed logic locking can be used as a proactive
countermeasure against the potential SAT attack, which can work as
follows. The keys for the proposed DLCs are extracted from the encrypted
output of the custom- AES block which executes a one-way random
function. This prevents an attacker from determining the AES inputs from

its output.

. Addressing removal attack: If the attacker is assumed to be aware of

some templates of DLC structures and has access to the locked netlist, then
s/he can attempt removal attack on DLCs. However, locked design netlist
using DLCs cannot be subjected to removal attack due to the following
reason. The inside structures of DLCs are reconfigured using the different
combinational logic gates and positive/negative edge triggered D-FFs,
according to the output of AES128 hardware. Thereby multiple DLC
structures are possible, depending on AES output, which are all unknown
to the attacker. Hence, the attacker cannot detect DLCs fully in the locked
design because of his/her unawareness of the DLCs structure, encrypted
output of AES and its corresponding secret key. This prevents an attacker
from matching the reconfigured DLC structures with the available

templates and thus thwarts his/her attempts to remove DLCs.

117

5. Addressing IP piracy attack: The security against IP piracy using logic
locking cannot be realized unless the logic locking is strong enough. The
strength of logic locking is challenged by some key based attacks and
removal attack etc. However, security against these attacks can be ensured
as discussed earlier in this section. Further, the proposed logic locking
prevents the IP piracy as the attacker cannot misuse the IP without
unlocking it using the correct key. Since the probability of finding valid
key in the exhaustive trials is very less due to the proposed logic locking,

hence impeding an attacker from deducing the valid key value.

9.4. Summary

The logic locking technique has been proposed as a preventive measure
against IP piracy. This chapter discussed the proposed DLC based logic
locking technique which is resilient against various attacks such as key
sensitization based attack, removal attack, SAT attack and brute force attack.
Further, the robust structure of proposed DLC makes it nearly infeasible to
obtain valid key even in the exhaustive trials. Various security properties
discussed in the chapter makes the proposed approach highly robust to prevent

the IP piracy attack.

118

Chapter 10

Experimental Results and Analysis

The experimental results and analyses of the proposed techniques of
hardware/IP core security for DSP and multimedia applications are presented
in this chapter. The results have been calculated for various DSP and multi-

media benchmarks [8], [58], [59].

10.1 Results and analysis: Hardware steganography

techniques for securing IP cores against piracy

The experimental results of the proposed hardware steganography techniques
discussed in chapter 3 are presented in this section. 15 nm open cell library
[60] was used to calculate different design parameters such as area and delay.
The following subsections present the results for entropy based steganography

and key-driven hash chaining based steganography techniques respectively.
10.1.1 Evaluating entropy based steganography

The proposed entropy based steganography technique has been
implementation in java and run on processor with specifications “4 GB, DDR3
memory at 1.9 GHz”. The implementation run time ranges between 2.41 to
7.01 seconds. Unlike signature-based IP core security techniques, the proposed
technique is entirely signature free. The amount of vendor’s secret information
embedded can be totally controlled by the vendor/designer using an entropy
threshold value. The security of proposed steganography technique and its

impact on design cost are assessed as follows:
10.1.1.1 Security analysis

For analyzing the security achieved in terms of strength of IP ownership proof,
the probability of coincidence (Pc) metric presented in eq. 3.2 in the section
3.2.5 of chapter 3 is used. Table 10.1 shows the Pc value for the increasing
value of entropy threshold TF. As shown, increasing T" leads to increase in the
number of stego-constraints ‘f* embedded into the design hence resulting into

decreasing value of Pc. The lower Pc value is desirable which represents

119

Table 10.1. Impact on Pc using proposed IP steganography for different entropy threshold (varying
number of stego-constraints ‘f”)

Benchmark # of # of registers Value of threshold entropy
storage before T =4 TE=6 T =8
variables steganography
f P, f P, f P,

DCT 22 8 13 1.8E-01 24 4.1E-02 | 43 | 3.2E-03
FIR 30 8 20 6.9E-02 57 4.9E-04 57 | 4.9E-04
JPEG IDCT 135 29 50 1.7E-01 203 8.1E-04 | 317 | 1.5E-05
MPEG 41 14 21 2.1E-01 52 2.1E-02 59 | 1.3E-02
JPEG _sample 44 12 18 2.1E-01 30 7.4E-02 72 | 1.9E-03
IDCT 49 10 63 1.3E-03 125 1.9E-06 125 | 1.9E-06
EWF 35 7 12 1.6E-01 34 5.3E-03 57 | 1.5E-04

B constraints to be added M constraints to be added

effective constraints added (proposed work) effective constraints added (proposed work)
effective constraints added ([25] [31]) effective constraints added ([25] [31])
n 50 250
€ 2
‘s 60 £ 200
3 g
v =
< 40 & 150
o S 100
o 20 4 Y=
3 5 0 L
e 0 -g 0 -
=1 . .
2 A A O SA 5 A A 6 QA
Q(’ A \QQ & ’b&Q \0(, ((/& c Q(J A \0(.) @QQ, ,_;b((\ \Q(J &
&7 (9(/9 &7 &7
§ § § N
(a) E™=4 (b) E™=6

Fig. 10.1. Estimation of the number of effective constraints added for both solutions (considering
same number of constraints) at different entropy threshold

stronger proof of authorship. Hence, a large entropy threshold value can be

chosen to achieve a stronger proof of authorship.

The comparison of proposed steganography approach with the related works
[25], [31] in terms of the effective stego-constraints embedded in the design is
shown in Fig. 10.1, for designer specified different entropy threshold values.
As shown in Fig. 10.1, the proposed approach embeds more number of
constraints effectively than related approaches [25], [31]. This is because,
[25], [31] possess several constraints by default which is out of designer’s
control. So, effectively lesser constraints are inserted. However the proposed
technique does not contain the constraints by default, thus offering full control

over the number constraints embedded than [25], [31].
10.1.1.2 Design cost analysis

The metric used to compute the design cost of the proposed steganography in

terms of area and delay is discussed in eq. (3.8) of section 3.4 of chapter 3.

120

Table 10.2.

Benchmark Proposed Lr(ps) Ar(pum) Cost
Solution
DCT 1A 4M 928 327.15 0.47
FIR 4A 4M 994 383.78 0.44
JPEG_IDCT 12A 12M 1988 1155.27 0.33
MPEG 3AT™M 795 596.11 0.36
JPEG_sample 6A IM 1325 198.18 0.58
IDCT 4A 3M 1723 309.85 0.48
EWF 2A 1M 2716 118.75 0.66

Design cost of the proposed approach in terms of area and latency

Table 10.3. Impact on storage overhead on increasing threshold entropy

Benchmark # of # of registers Value of threshold
storage before entropy resulting into
variables steganography ‘q’ more registers
q=0 | g=1 | g=2 | ¢=3 | g=
DCT 22 8 2-6 7 NA | NA | NA
FIR 30 8 2-5 | NA | NA | NA | NA
JPEG_IDCT 135 29 299 | NA | NA | NA | NA
MPEG 41 14 2-7 | NA | NA | NA | NA
JPEG _sample 44 12 28 | 9 | NA | NA | NA
IDCT 49 10 2-5 | NA | NA | NA | NA
EWF 35 7 2-7 8 NA | 9,10 | 11

Table 10.4. Comparison of proposed approach with [25], [31] in terms of the # of registers for

the same # of constraints (Note: C - # of constraints added,; P — proposed solution; R — related

works; % RR — register reduction % obtained w.r.t. [25], [31])

Benchmark # of Registers required after embedding same number of constraints
" =4 " =5 " =6

#C P R % RR #C P R % RR #C P R % RR

DCT 13 8 9 11 % 18 8 10 20% 24 8 10 20%
FIR 20 8 9 11 % 57 8 10 20% 57 8 10 20%
JPEG_IDCT 50 | 29 | 29 - 124 | 29 | 30 3.3% 203 29 | 30 3.3%
MPEG 21 14 | 15 | 6.6% 46 14 | 15 6.6% 52 14 | 15 6.6%
JPEG sample | 18 | 12 | 13 | 7.6 % 20 12 | 13 7.6% 30 12 | 13 7.6%
IDCT 63 | 10 | 11 9.1 % 125 10 | 18 | 44.4% 125 10 | 18 | 44.4%
EWF 12 7 8 12.5% 30 7 8 12.5% 34 7 8 12.5%

Table 10.2 presents the design cost of the proposed approach. Further, Table
10.3 presents the impact on register overhead with varying entropy threshold
value. The variable ‘q’ denotes the number of extra registers needed to implant
the stego-information. As presented in Table 10.3, the register overhead either
increases marginally or remains same with varying entropy threshold value.

This indicates the low overhead attribute of the proposed technique.

Further, the proposed approach is compared with [25], [31] in terms of
registers count as shown in Table 10.4. As shown, the number of registers
needed to embed the same number of constraint edges in case of proposed
approach and [25], [31] is compared. Where # of C denotes the number of

constraints edges to be inserted in both cases, P and R denote the number of

121

registers needed in the proposed approach and [25], [31] respectively. The
results in the table show that the proposed steganography incurs lesser storage
overhead than [25], [31]. The reason is that the storage overhead in the
signature-based protection techniques [25], [31] depends on the signature
combinations and its encoded meaning. Additionally, foreseeing the
relationship of signature combination with the storage overhead is also not
feasible. On the other hand, the proposed steganography technique is signature

free and hence independent of signature combination.
10.1.2 Evaluating key-driven hash chaining based steganography

The proposed key-driven hash chaining based steganography was
implemented in C++ and run on a processor with specifications “4 GB, DDR3
memory”. The following subsection presents the analysis on security and

design cost of the proposed technique:
10.1.2.1 Security analysis

For analyzing the security achieved in terms of strength of IP ownership proof,
the probability of coincidence (Pc) metric presented in eq. 3.3 in the section
3.3.4 of chapter 3 is used. Table 10.5 shows the Pc value for varying size of
stego-constraints embedded in two different phases (register allocation and FU
vendor allocation) of HLS design process. As shown, we achieved lesser Pc as
the stego-constraints size is increased. Further, implanting stego-information
into two distinct phases shows that the higher amount of digital evidence are

hidden into the design. This strengthens the stego-mark.

Additionally, we analyze the security offered by the proposed technique in
terms of key strength and an attacker’s effort in determining the stego-

constraints embedded into the IP core. The key strength in terms of maximum

Table 10.5. Variation in Pc for increasing size of stego-constraints using proposed key-driven
hash-chaining approach (note: f1 indicates #0s and f2 indicates #1s embedded effectively)

Benchmarks # of #constraint Pc #constraint Pc #constraint Pc
re*‘f’ilét)ers fl 2 fl 2] 2

DCT 8 13 10 9.9E-3 24 12 1.3E-3 43 12 1.0E-4
FIR 8 20 6 4.7E-2 57 23 1.1E-4 57 23 1.1E-4
JPEG IDCT 29 203 109 | 3.8E-4 | 317 109 6.9E-6 355 109 1.8E-6
MPEG 14 21 16 9.6E-2 52 23 6.9E-3 59 23 4.1E-3
JPEG sample 12 30 21 1.6E-3 72 31 6.7E-6 116 31 1.4E-7
EWF 7 34 18 2.0E-8 57 28 5.7E-13 86 28 6.5E-15

122

stego-key size (in bits) and attacker’s effort in determining the key are given
using eq. (3.4) and eq. (3.5) respectively discussed in section 3.3.4 of chapter
3. This represents the stronger security of proposed technique against
determining the valid stego-key value by an attacker. The maximum key size
and attacker’s effort in terms of key security are reported in Table 10.6.
Moreover, the attacker is also required to deduce the encoded bits used in each
hash block for finding the stego-constraints embedded into the design. The
attacker’s effort of finding encoded bits, calculated using eq. (3.6) discussed in
section 3.3.4, is shown in Table 10.6. Further, the attacker’s total effort,
calculated using eq. (3.7) discussed in section 3.3.4, is also reported in Table

10.6.

The security achieved in terms of maximum stego-key size is compared with
the entropy based steganography technique. In contrast to the entropy based
steganography technique, the proposed approach offers very large stego-key
size (in bits). This is because the entropy-based steganography technique does

not require stego-key; hence the key size remains zero.
10.1.2.2 Design cost analysis

The metric used to compute the design cost of the proposed hash-chaining
based steganography has been discussed in eq. (3.8) of section 3.4 of chapter
3. Table 10.7 presents the design cost of the proposed approach. As shown, the
design cost either remains same or increases by a nominal value with the
growing size of constraints (#0s and #1s). The reason is that the design may

require extra register in some cases to satisfy larger number of constraints.

Further, Table 10.8 analyzes the design cost overhead by comparing the
baseline cost with the post embedding steganography cost. The table shows

Table 10.6. Security of proposed approach in terms of maximum key size and attacker’s total

effort
Benchmark Maximum key Maximum attacker Maximum attacker effort Total attacker
size using (3.4) effort in terms of key | in terms of finding encoded effort
security (using (3.5)) bits (using (3.6)) (using (3.7))
DCT 491520 >10]47603 102059 >10149662
FIR 192937984 >1057’939334 102059 >105794]393
JPEG_IDCT 5.8153x10% >10" 710 102 >10! 719
MI?EG 7516192768 >102277634]72 102059 >10227763623]
JPEG sample | 283467841536 >1 (8899343920 107 >1(889B34
EWF 584115552256 >10177004712804 102059 >101770047148()3

123

Table 10.7. Impact of increasing size of stego-constraints on the design cost of proposed key driven
hash chaining based steganography approach

Benchmarks effective # of #constraints Design cost effective # of #constraints Design cost
constraints 0s Is post phasel constraints 0s Is post phasel &
embedded &2 embedded 2
DCT 23 13 10 0.45357 26 24 12 0.45357
FIR 26 20 6 0.44465 80 57 23 0.44467
JPEG_IDCT 312 203 109 0.3258 426 317 109 0.3258
MPEG 37 21 16 0.37445 75 52 23 0.37479
JPEG_sample 51 30 21 0.47476 103 72 31 0.47783
EWF 52 34 18 0.6632 85 57 28 0.6655

Table 10.8. Comparison of design cost of proposed approach with respect to baseline

Benchmarks Design Cost effective # of Design cost Cost overhead in
(Baseline) constraints embedded (proposed) %
DCT 0.453 23 0.453 0%
FIR 0.445 26 0.447 0%
JPEG _IDCT 0.325 312 0.326 0.3%
MPEG 0.374 37 0.374 0.2%
JPEG_sample 0.473 51 0.475 0.3%
EWF 0.661 52 0.663 0.3%

that the proposed steganography has nominal impact on the design cost due to

incurring only a trivial cost overhead (< 0.3 %).

10.2 Results and analysis: Hologram based structural

obfuscation to thwart reverse engineering based attacks

The experimental results of the proposed hologram based obfuscation
technique discussed in chapter 4 are presented in this section. For experiments,
we generated following five different hologram based obfuscated DSP
designs, where each is an integration of two DSP cores. (i) IIR-FIR hologram
based obfuscated design, (ii) 4 point DCT- 4 point IDCT, (iii) 8 point DCT- 8
point IDCT (iv) 8 point DCT - 4 point DCT and (v) 8 point DIT-FFT - 4 point
DIT-FFT. Further, for comparative analysis, same DSP applications were also
subjected to HLT based obfuscation technique [45]. A 15nm technology scale
open cell library [60] was used to calculate the gate count and delay overhead

of the designs of proposed technique and [45].

The gate count affected due to proposed obfuscation and [45] is presented in
eq. (4.2) of section 4.2.3 of chapter 4. The comparison of affected gate count
of proposed technique and [45] w.r.t. the baseline counterpart is presented in
Table 10.9 and 10.10 respectively. Further, the comparison of security (in

terms of %gate count affected) due to proposed obfuscation and [45] is

124

presented in Table 10.11. Based on these results, following subsections

present the analysis of obfuscated design area, delay and security.
10.2.1 Security analysis of proposed hologram based obfuscation

The security is analyzed using the strength of obfuscation metric which has
been discussed using eq. (4.1) in section 4.2.3 of chapter 4. Table 10.11
presents the comparison of obfuscation strength (security) in terms of affected
gate count (using eq. (4.1)) due to proposed hologram based obfuscation and
[45]. Results show that we achieve more security due to larger # of gates
affected compared to [45]. Further, as shown in Table 10.11, affected gate
count for 4-point and 8-point DIT-FFT is 0% using [45] because of non-
applicability of HLT based obfuscation. On the other hand, the proposed
obfuscation offers considerable strength of obfuscation for 8 point DIT-FFT -
4 point DIT-FFT wrt baseline.

Table10.9 Comparison of affected gate count between proposed obfuscation and baseline

DSP kernels Gate Count Gate Count of Gate count Affected gate
of baseline (un- proposed reduction count through
obfuscated) obfuscation (through proposed proposed
obfuscation) obfuscation
IIR+FIR 9248 6544 2704 29.2 %
8-pt DCT+8-pt IDCT 101632 55424 46208 45.5%
4-pt DCT+4-pt IDCT 26240 14400 11840 45.1%
8-pt DCT +4-pt DCT 63936 52352 11584 18.1%
8-pt DIT-FFT + 14016 9856 4160 29.7%
4-pt DIT-FFT

Table 10.10 Comparison of affected gate count between [45] and baseline

DSP kernels Gate count of Gate count of # of gates changed | # of gates affected [45]
baseline obfuscated design in terms of input (based on eq. (4.2)]
(un-obfuscated) [45] connectivity
IR 5968 5968 160 160
FIR 3280 3280 64 64
8-pt DCT 50816 50816 1792 1792
8-pt IDCT 50816 50816 1792 1792
4-pt DCT 13120 13120 256 256
4-pt IDCT 13120 13120 256 256
8-pt DIT-FFT 9344 9344 0 0
4-pt DIT-FFT 4672 4672 0 0

Table 10.11 Comparison of security of proposed obfuscation and [45]

DSP kernels # of gates affected # of gates Affected gate count Affected gate
(proposed obfuscation) affected ([45]) (proposed obfuscation) count ([45])
IIR+FIR 2704 224 292 % 2.4%
8-pt DCT+8-pt IDCT 49792 3584 45.5 % 3.5%
4-pt DCT+ 4-pt IDCT 9024 512 45.1% 2.0%
8-pt DCT +4-pt DCT 12096 2048 18.1% 3.2%
8-pt DIT-FFT + 4160 0 29.7% 0%
4-pt DIT-FFT

125

10.2.2 Design area analysis of proposed hologram based obfuscation

The Table 10.10 shows that the gate count of DSP cores due to HLT based
obfuscation [45] remains same as the baseline. Whereas, the gate count of
proposed hologram based obfuscated DSP cores are decreased considerably
compared to its baseline as shown in Table 10.9. Therefore, the proposed
hologram based obfuscation technique offers on average 33.5% savings in

gate count (design area) than [45].
10.2.3 Delay analysis of proposed hologram based obfuscation

The tree height transformation (THT) [45] impacts the critical delay of design.
Therefore, for the chosen DSP benchmarks, the THT technique increases the
tree height by one control step where an operation is executed using the
respective functional unit. Because of this additional control step, the overall
delay using [45] is increased. However, in case of proposed hologram based
obfuscation, the switching elements of hologram obfuscation (which are the
2x1 Muxes) lead to the additional propagation delay. Since the propagation
delay of a 2x1 Mux is considerably lower than a FU, hence lesser delay
overhead is incurred than [45]. Thus, the proposed approach is capable to

provide higher strength of obfuscation at lesser delay overhead than [45].

10.3 Results and analysis: Double line of defense approach
using integrated structural obfuscation and crypto-

steganography to secure IP cores

The experimental results of the proposed structural obfuscation and crypto-
steganography based double line of defense technique discussed in chapter 5
are presented in this section. 15 nm open cell library [60] was used to calculate
different design parameters such as area and delay. The proposed approach has
been implementation in C++ and run on processor with specifications “4 GB,
DDR3 memory at 1.9 GHz”. The experimental results have been analyzed on
JPEG compression processor and DFT processor. The security of proposed

technique and its impact on design cost are assessed as follows:

10.3.1 Security analysis

126

Table 10.12 Comparison of JPEG compression hardware resources pre and post obfuscation

Resource configuration Structural changes due
to proposed obfuscation
Non-obfuscated JPEG 4+, 8%, 12(8:1) mux, 12(16:1) mux, 6 (1:8 10064 gates
hardware demux), 6 (1:16 demux)
Structurally obfuscated 3+, 3%, 10(32:1) mux, 2(16:1) mux, 5 (1:32
JPEG hardware demux), 1 (1:16 demux)

Table 10.13 Security analysis in terms of strength of obfuscation for 4-point DFT processor

Strength of obfuscation of proposed design w.r.t Strength of obfuscation of proposed
baseline (unsecured) design w.r.t baseline (%) = Total gates
Due to difference # of gates Total gates affected due to obfuscation/ total gates in
in gate count modified affected baseline
336 4000 4336 (4336/5760)*100 = 75.28%

The security achieved through structural obfuscation based first line of defense
is analyzed in terms of strength of obfuscation and the security achieved
through crypto-based steganography is analyzed in terms of probability of

coincidence metric for both JPEG compression processor and DFT processor.
10.3.1.1 Strength of structural obfuscation analysis

The strength of obfuscation of proposed technique has been defined in section
5.2.4 of chapter 5. The significant amount of structural obfuscation is achieved
in terms of the following: (a) alterations in the interconnectivity of high level
components such as adders, and multipliers etc. (b) alterations in the total
count of interconnect binding units such as Muxes and Demuxes (c)
alterations in the total count of storage units such as registers. Because of the
internal architecture concealment using the proposed obfuscation, the attacker
fails to realize his/her ill intentions of inserting malicious logic (backdoor) or
steal the design. For the JPEG compression hardware, the impact of structural
obfuscation on architectural resources and gate count is presented in Table
10.12. Further, the strength of obfuscation analysis for DFT processor is
shown in Table 10.13.

10.3.1.2 Probability of coincidence analysis of crypto-steganography

For analyzing the security achieved using proposed crypto-steganography in
terms of strength of IP ownership proof, the probability of coincidence (Pc)
metric presented in eq. 5.1 in the section 5.2.4 of chapter 5 is used. Table
10.14 shows the Pc value achieved for JPEG compression processor for
varying size of stego-constraints embedded in two different phases (register

allocation and FU vendor allocation) of HLS design process. As evident from

127

Table 10.14 Security analysis (in terms of Pc) of proposed crypto-based steganography approach on
varying size of stego-constraints for different design solutions of JPEG compression processor

Design Pc
solution # of constraint =100 # of constraint =200 # of constraint =300 # of constraint =400
3+, 3% 1.6245¢e-3 4.4e-6 2.4e-7 9.89¢-8
3+, 5% 1.732e-2 3.39¢-4 2.228e-5 9.497¢-6
5+, 5% 6.329¢-2 4.913e-3 5.907e-4 2.518e-4
7+, 9* 2.092e-1 4.6le-2 1.515e-2 6.87¢-3
9+, 9* 2.552e-1 6.496¢-2 2.146e-2 1.051e-2
11+, 11* 3.001e-1 8.816e-2 2.821e-2 1.166e-2

Table 10.15 Comparison of security of 4-point DFT in terms of Pc with the entropy
based steganography approach (Note: G=14, fl1=14, f2=10, y=2)

Pc (proposed crypto-based steganography) Pc (entropy based steganography)
5.72E-2 3.54E-01

the table, the Pc value reduces with the increasing size of stego-constraints.
The reason is that the effective # of Os (fl) and the effective # of 1s (f2)
embedded into the design increase with the increasing size of stego-
constraints. Thus, we can achieve lower value of Pc by choosing the large size
of stego-constraints to enhance the strength of steganography. In addition, the
resource constraints (design solutions) used also affect the Pc metric as shown
in Table 10.14 as the number of Os and 1s of the stego-constraints vary as per

the chosen design solution.

Further, the Pc value in case of DFT processor is presented and compared with
the entropy based steganography approach in Table 10.15. The proposed
crypto-based steganography results in lower Pc because of implanting stego-
information in two distinct phases of HLS compared to implanting only in
single phase in the entropy based steganography. Hence, the proposed
technique implants more digital evidence which leads to stronger proof of

ownership.
10.3.2 Design cost analysis

We used eq. (3.8) as the metric to compute design cost of the proposed
approach. Table 10.16 presents the design cost of the proposed approach for
JPEG compression processor. As evident from the table, the design cost post
crypto-steganography marginally increases for different size of stego-
constraints. The reason is that, post embedding stego-constraints, the design

may undergo more FU allocation of vendor type-2 than that of type-1. As the

128

Table 10.16 Design cost analysis of proposed approach on varying size of stego-constraints for
different design solutions of JPEG compression processor

Design Pre- Design cost of JPEG compression processor pre and post crypto-steganography
solution steganograp # of constraint # of constraint # of constraint # of constraint
hy cost =100 =200 =300 =400
3+, 3* 0.2167 0.2167 0.2169 0.2173 0.2173
3+, 5% 0.1917 0.1920 0.1924 0.1929 0.1929
5+, 5% 0.1713 0.1713 0.1713 0.1719 0.1719
7+, 9% 0.1718 0.1720 0.1725 0.1729 0.1729
9+, 9* 0.1752 0.1754 0.1757 0.1763 0.1763
11+, 11* 0.1785 0.1785 0.1789 0.1794 0.1794

Table 10.17 Comparison of design cost of DFT processor with baseline and entropy based

steganography
Baseline Proposed obfuscated and crypto-
Metric design steganography secured design 52“;?3’ lr):sﬁd
Post obfuscation Post steganography ganography
Cost 0.4674 0.4674 0.4680 0.466

area and latency of FUs of vendor type-2 is marginally higher than the vendor

type-1, therefore it results in marginal increase in the cost.

Further, Table 10.17 shows the comparison of design cost of baseline N-point
DFT processor with that of proposed secured design and entropy driven
steganography based secured design. As shown, the design cost of proposed
crypto-steganography is nominally affected due to changes in the size of

Muxes.

10.4 Results and analysis: Double line of defense approach
using integrated multi-key based structural obfuscation and

physical level watermarking to secure IP cores

The experimental results of the proposed multi-key driven structural
obfuscation and physical level watermarking based double line of defense
technique discussed in chapter 6 are presented in this section. 15 nm open cell
library [60] was used to calculate the design cost. The proposed approach has
been implementation in java and run on processor with specifications “4 GB,
DDR3 memory at 1.9 GHz”. The experimental results have been analyzed for
various DSP benchmarks. The security of proposed technique and its impact

on design cost are assessed as follows:
10.4.1 Security analysis

The security achieved through multi-key driven structural obfuscation based

first line of defense is analyzed in terms of strength of obfuscation and total

129

Table 10.18 Strength of multi-key structural obfuscation in terms of gate count modified

DSP Total gates in baseline | Total gates in proposed Difference in gate count due to
benchmarks (non-obfuscated) approach proposed obfuscation
FIR 688 8832 8144
IIR 4464 4128 336
ARF 7360 5888 1472
DCT 3680 4208 528
Differential 2560 8704 6144
Equation

Table 10.19 Total key size for the proposed Table 10.20 Security of proposed watermarking

obfuscated watermarked design using probability of coincidence (Pc)
DSP Key size (in bits) of DSP Pc
benchmarks structural obfuscation benchmarks
FIR 20 FIR 8.93E-26
IIR 7 IIR 1.81E-11
ARF 9 ARF 8.6E-16
DCT 7 DCT 8.5E-10
Differential 17 Differential 6.0E-37
Equation Equation

key size and the security achieved through physical level watermarking is
analyzed in terms of probability of coincidence and tamper tolerance for

various DSP benchmarks.
10.4.1.1 Strength of multi-key structural obfuscation analysis

The strength of obfuscation of proposed technique has been defined in section
6.2.4 of chapter 6. Table 10.18 shows the comparative study between non-
obfuscated versus proposed key based structurally obfuscated design. The
change in gate count shown in Table 10.18 happens due to applying various
phases of proposed multi-key structural obfuscation. Moreover, alterations in
the interconnectivity of various resources also incorporate huge variation in
the structure of the design. This makes the structure unidentifiable for an

attacker, thus hindering the malicious attempt of backdoor insertion.
10.4.1.2 Total key size of multi-key structural obfuscation

Incorporation of multiple keys in the proposed obfuscation makes the
decoding of the structural obfuscation highly challenging from an attacker’s
perspective. Hence, the security against the malicious intent of RE and
backdoor insertion is enhanced. The total key size of proposed obfuscation
technique has been defined in eq. (6.1) in section 6.2.4 of chapter 6. And,
Table 10.19 reports the total key size for various DSP benchmarks.

10.4.1.3 Probability of coincidence of physical level watermarking

130

Table 10.21 Tamper tolerance (Ts) and brute-force attack analysis of proposed obfuscated
watermarked design

DSP Ts (total combinations representing Probability of finding WM signature using
benchmarks signature space) brute-force attack= (1/Ts)
FIR 4.9*%10° 2.0E-07
IR 7.3*10° 1.4E-03
ARF 5.9%10" 1.7E-05
DCT 7.3*10 1.4E-03
Differential 3.9%10° 2.6E-09
Equation

Table 10.22 Design cost analysis of proposed approach

DSP benchmarks Design cost of baseline design Design cost of proposed approach
FIR 1 0.326
IIR 0.517 0.491
ARF 0.431 0.412
DCT 0.483 0.482
Differential Equation 0.76 0.455

For analyzing the security achieved in terms of strength of IP ownership proof
using proposed physical level watermarking, the probability of coincidence
(Pc) metric presented in eq. 6.2 in the section 6.2.4 of chapter 6 is used. Table
10.20 presents the Pc of the proposed approach. As shown, considerably lower

Pc has been obtained for the various DSP benchmarks.
10.4.1.4 Tamper tolerance analysis

For analyzing the security achieved against removal attack on watermark, the
tamper tolerance metric (Ts) presented in eq. 6.3 in the section 6.2.4 of chapter
6 is used. Table 10.21 shows the higher tamper tolerance of the proposed
technique for the designer chosen watermark strength. Higher value of Ts

represents stronger security against removal attack.
10.4.2 Design cost analysis

We used eq. (3.8) as the metric to compute design cost of the proposed
approach. The design area is computed using the area of the enveloping
rectangle of the floorplan, whereas the execution latency is determined from
the scheduled design. Table 10.22 compares the design cost of proposed
double line of defense technique wrt the baseline design. As shown in the
table, the proposed technique does not incur overhead due to applying
security. The overall design cost is reduced either due to substantial reduction

in latency or floorplan area.

131

10.5 Results and analysis: Secured hardware accelerator

design approach for image processing filters

The experimental results of the proposed secured hardware accelerator design
approach for image processing filters discussed in chapter 7 are presented in
this section. 15 nm open cell library [60] was used to calculate the design cost.
The experimental results have been analyzed for generic 3x3 and 5x5 filters
and various application specific 3x3 filters. The security of proposed

technique and its impact on design cost are assessed as follows:
10.5.1 Security analysis

Structural obfuscation technique is employed to achieve security of proposed
filter hardware accelerators against the threat of RE and potential backdoor
insertion. Applying obfuscation techniques such as loop unrolling, graph
partitioning and THT incur considerable alteration in the RTL datapath,
without affecting the functionality. A structurally obfuscated netlist obtained
in the proposed technique is considerably altered than the original version in
terms of alteration in the overall gate count and gates connectivity. This
prevents an attacker from reverse engineering the obfuscated netlist to identify

the original structure.

10.5.1.1 Security analysis of generic 3x3 and 5xS filter hardware

accelerators

Table 10.23 shows the comparison of the RTL modules in the datapath of 33
and 5x5 filter hardware accelerators pre and post employing structural
obfuscation. Further, impact of structural obfuscation at gate level is measured
in terms of number of gates affected due to employing obfuscation techniques.
Table 10.24 compares the gate count of 3x3 and 5x5 filter hardware
accelerators pre and post employing structural obfuscation. As shown in the
table, substantial change in number of gates is achieved. This is due to the fact
that the count of datapath modules such as Muxes, Demuxes, FUs and
registers and the size of Muxes and Demuxes noticeably changes post
obfuscation. This change in the datapath is also reflected at gate level post

logic synthesis, resulting in an obfuscated netlist.

132

10.5.1.2 Security analysis of application specific 3x3 filters

hardware accelerators

Security of five image processing applications specific 3%3 filter hardware
accelerators, achieved using structural obfuscation, is analyzed in terms of
number of gates affected. Table 10.25 shows the comparison of the gate count
of blur, sharpening, vertical embossment, horizontal embossment and Laplace
edge detection filter before and after structural obfuscation. The structural

obfuscation incurs huge change in gate count as shown in Table 10.25.
10.5.2 Design cost analysis

We used eq. (3.8) as the metric to compute the design cost of the proposed
approach. Table 10.26 presents the design cost and power of the different

application specific hardware accelerator. The result shows that the design

Table 10.23 RTL components of image processing filters of size 3x3 and 5x5 (note: ‘M, ‘A’
and ‘Reg’ denote multipliers, adders and registers respectively)

Benchmarks RTL components
Baseline Proposed
3x3 Filter M=1, A=1, 8x1 mux=2, 1x8 dmux=1, M=3, A=1, 8x1 mux=15, 1x8 dmux=3, 16x1
16x1 mux=2, 1x16 dmux=1, Reg=20, mux=2, 1x16 dmux=1, Reg=86, Latches=12
Latches=6
5x35 Filter M=5, A=2, 8x1 mux=10, 1x8 dmux=>5, M=5, A=2, 2x1 mux=12, 1x2 dmux=6, 4x1
16x1 mux=4, 1x16 dmux=2, Reg=76, mux=6, 1x4 dmux=3, 8x1 mux=14, 1x8 dmux=7,
Latches=21 Reg=78, Latches=21

Table 10.24 Gate count of proposed filter hardware accelerators

Benchmarks # Gates
Proposed processor Proposed obfuscated processor
3x3 Filter 7408 19312
5x5 Filter 23456 22560

Table 10.25 Security analysis of proposed application specific image processing filters

Benchmarks Gate count Gate
Proposed processor Proposed obfuscated processor | difference

Blur Filter 3152 6544 3392

Sharpening Filter 3488 7232 3744

Vertical embossment Filter 1120 1792 672

Horizontal embossment Filter 1120 1792 672

Laplace edge detection Filter 2288 4368 2080

Table 10.26 Power and design cost of proposed application specific 3x3 filter
hardware accelerators

Benchmarks Power (uWW) | Design cost
Blur Filter 21.257 0.682
Sharpening Filter 23.306 0.685
EV Filter 10.012 0.758
EH Filter 10.012 0.758
Laplace edge detection Filter 17.159 0.728

133

cost and power dissipation of the proposed designs are low.

10.6 Results and analysis: Techniques for securing

functionally obfuscated DSP cores against removal attack

The experimental results of the proposed techniques for securing functionally
obfuscated DSP cores against removal attack discussed in chapter 8 are
presented in this section. 15 nm open cell library [60] was used to calculate the
design cost. The experimental results for the following proposed techniques
for securing functionally obfuscated DSP cores against the removal attack are
presented in this section: (i) SHA-512 based ILBs-key generation technique (i)
ARL based ILBs-key generation technique. Further, the experimental results
are compared with [36] to analysis the impact of proposed techniques. The
experimental results have been analyzed for various DSP benchmarks. The
security of proposed techniques and its impact on design cost are assessed as

follows:

10.6.1 Results and analysis for SHA-512 based ILB-keys generation

technique

This proposed technique has been implementation on a processor with
specifications “on MD A8- 4500M APU with 4 4 GB DDR3 memory at 1.9
GHz”.

10.6.1.1 Security analysis

Security of the proposed SHA-512 based technique is assessed in terms of the
number of encrypted keys (to reconfigure the ILBs) generated for securing a
functionally obfuscated design. The security comparison of proposed
technique with [36] is accomplished for the same number of locking key-bits
for the ILBs of functionally obfuscated DSP cores. As presented in Table
10.27, the proposed technique generates more number of encrypted key bits
for the ILBs in a functionally obfuscated design than [36]. This results in
larger number of ILBs structure reconfiguration using the proposed technique.
The reason is that the output of proposed key generation logic using SHA-512
is 512-bit long compared to 128 bit output of AES based key generation
approach for ILBs [36]. Even, two AES blocks [36] are capable to provide 256

134

Table 10.27 Comparison of security in terms of key-bits encrypted for the ILBs of obfuscated
design of proposed approach and [36]

No. of encrypted key-bits for No. of encrypted key-bits % increase in
DSP Core Benchmarks ILBs using proposed approach for ILBs using [36] security
IIR 512 256 50 %
Mesa Horner 512 256 50 %
DWT 512 256 50 %
ARF 512 256 50 %
FIR 512 256 50 %
JPEG IDCT 512 384 25%
Mesa Interpolate 512 384 25 %

Table 10.28 Gate count comparison of baseline design with [36] and proposed methodology

Gate Gate count of [36] Gate count of proposed methodology % reduction in gate
DSP Benchmark | count of (Obfuscated design (Obfuscated design with SHA-512 count of proposed
baseline with AES) based key encryption hardware) work wrt [36]

IR 7360 90144 62336 30.84
Mesa Horner 12544 93792 65984 29.65
DWT 13088 95360 67552 29.16
ARF 19328 102688 74880 27.08
FIR 19360 104320 76512 26.66
JPEG IDCT 70880 218192 150816 30.88
Mesa Interpolate 74656 206256 138880 32.67

Table 10.29 Power comparison of baseline design, [36] and proposed work

DSP Benchmark Power' of baseline Power of [36] Power of Proposed % reduction in power of
(in puW) (in pW) methodology (in pW) proposed work wrt [36]
IR 58.906 721.465 498.904 30.85
Mesa Horner 100.396 750.662 528.101 29.62
DWT 104.750 763.211 540.651 29.16
ARF 154.691 821.861 599.300 27.08
FIR 154.947 834.922 612.362 26.66
JPEG IDCT 567.286 1746.294 1207.052 30.88
Mesa Interpolate 597.507 1650.764 1111.522 32.67

key bits when implemented for IIR, Mesa Horner, DWT, ARF, FIR as shown
in Table 10.27. This is still 50% lesser secured than proposed SHA-512 based
key generation logic. For larger DSP circuits such as JPEG IDCT, Mesa
Interpolate etc., three AES instances can concurrently provide 384 key bits.
However, the proposed one SHA-512 based logic can provide 512 key bits for
ILBs reconfiguration. Average 43.75% enhancement in security is offered by

the proposed approach than [36].
10.6.1.2 Area and power overhead analysis

The gate count of the proposed technique and [36] is compared w.r.t. baseline
(non-obfuscated DSP designs) as shown in Table 10.28. As shown, the gate
count overhead of proposed technique is significantly lower than [36]. This is
because of using more than one instance of AES to enable concurrent
reconfiguration of several ILBs in [36]. This results in gate count overhead

using [36] than the proposed technique and baseline. Further, the power

135

Table 10.30 Comparison of design cost of proposed work with [36]

DSP Benchmark Design cost of proposed work Design cost of [36] | % reduction in cost
IR 0.827 0.987 16.2
MESA HORNER 0.719 0.880 18.3
DWT 0.819 0.981 9.2
ARF 0.619 0.775 20.1
FIR 0.604 0.754 19.9
JPEG IDCT 0.419 0.619 324
MESA INTERPOLATE 0.319 0.519 38.5

comparison of baseline design with [36] and proposed technique is presented
in Table 10.29. The power overhead of proposed technique in contrast to
baseline design is lower than [36]. This is because, the design overhead due to
AES block [36] becomes high for improving the security. This results in larger
gate count and thus higher power requirement than proposed technique. This
indicates that the proposed technique is a low power and high secure solution

than [36] against removal attack.
10.6.1.3 Design cost analysis

In computation of the design cost, we included area and power as the design
parameters, where both were given same weightage. Table 10.30 presents the
design cost of obfuscated DSP cores. As evident from the table, the proposed
technique offers significant reduction in the design cost than [36]. This
reduction is achieved owing to integration of relatively lightweight SHA-512
based key encryption hardware compared to AES hardware used in [36] to

achieve enough security.

10.6.2 Results and analysis for ARL based ILB-keys generation

technique

The proposed ARL unit offers a lightweight, low power and more secure
solution against removal attack than [36]. The experimental results were

analyzed in terms of security and area (gate count) overhead.
10.6.2.1 Security analysis

The security is analyzed in terms of number of input (challenge) bits needed to
produce the same number of key bits for ILBs reconfiguration using the
proposed unit and [36]. The substantial improvement in security using

proposed ARL unit compared to [36] is graphically shown in Fig. 10.2. The

136

reason is as follows. In the results, upto 32 ILBs are reconfigured which
require 256 bits generated from 2 instances of AES128 in case of [36]. The
two instances of AES require 512 bits of input (2*(128+128)) to generate 256
bits for ILB keys. And for larger designs such as Mesa Interpolate and JPEG
IDCT, minimum 48 ILBs are reconfigured (which require three AES
instances). However to reconfigure the same number of ILBs using the
proposed ARL unit, more number of challenge/input bits are required to
generate the ILB keys. This provides more security against guessing correct
key bits used for ILBs reconfiguration. An average 66.67% more input bits
than [36] are required to be known by an attacker in order to deduce the

correct key bits.

H [36] MProposed approach

2500 2304 2304
£ 2000
> 1536 1536 1536 1536 1536
20 1500
=
= 1000 768
5
- 500
& e‘
N >
‘2\/0 Q Y’ G@ 0&0\
> < 8
& &
@ \Q @0&
DSP benchmarks

Fig. 10.2 Security comparison of proposed work with [36]

HGate count of [36] i Gate count of Proposed work
250000 218192 206756
= 200000 or
2 138240
S iggggg 00144 93792 95360 102688 104320
K 4800 [dlagaas [50016 | ds57344 58976
M "I P T
0 L L[K L
& <
¢ & & & & &
Q»& @6 S
ot A\ <§3
<& &S
W S
A
DSP benchmarks &

Fig. 10.3 Gate count comparison of proposed work with [36]

137

10.6.2.2 Area overhead analysis

The proposed ARL unit results in lesser area or gate count overhead than [36]
as shown in Fig. 10.3. The reason is as follows. For generating key bits for the
same number of ILBs, two or three instances of AES are required as discussed
earlier in section 10.6.2.1. This leads to substantial gate count overhead than
the proposed ARL unit. The proposed technique offers an average 42.57%

reduction in gate count than [36].

10.7 Results and analysis: Robust logic locking technique for
preventing IP piracy

The experimental results of the proposed robust logic locking technique for
preventing IP piracy discussed in chapter 9 are presented in this section. The
proposed approach has been implemented on a processor with specifications
“2GB RAM and processor frequency of 2.4 GHz”. The results are calculated
for the DSP benchmarks of size 32-bit (i.e. size of input, output and FUs is 32-
bit). The security of the proposed technique and its impact on design overhead

are assessed as follows:
10.7.1 Security analysis

The security of proposed logic locking technique is analyzed in terms of the

following:
10.7.1.1 Probability of finding valid key in exhaustive trials

This probability P, is measured using eq. (9.2) discussed in section 9.2.5 of
chapter 9. In case of the existing logic locking techniques [36], [37], the eq.
(9.2) converges into eq. (9.3) and in case of the proposed technique it
converges into eq. (9.4). The comparison of P, of proposed technique with the
existing technique [36], [37] is shown in Table 10.31. The table shows that we
obtained the P, very lesser than [36], [37] despite encoding lesser key bits.
The higher security using the proposed logic locking is achieved because of
very less probability of deducing the correct key in exhaustive trials. However,
in case of existing approaches [36], [37], it is likely to find the correct key in
exhaustive trials with probability 1 hence the attack time to find the key is

projected to be finite. Since using the proposed technique, the correct key

138

Table 10.31 Comparison of the strength of the proposed logic locking with [36] [37] in terms of
the probability of deducing correct key in exhaustive trials (P,) using eq. (9.3) and (9.4)

DSP Core # of key # of key # of key bits P, using Pcyusing # of times security

Benchmarks bits in bits in in locked exhaustive exhaustive enhancement in
locked locked design of (2Kv) (2%v) trials in proposed

design of design of proposed trials in proposed approach w.r.t.
[37] [36] work [36] [37] work [36] [37]
IR 384 768 192 1 1.6E-58 6.3E+57
Mesa 384 768 192 1 1.6E-58 6.3E+57

Horner

DWT 384 512 128 1 2.9E-39 3. 4E+38
ARF 448 1024 256 1 8.6E-78 1.2E+77
FIR 576 1280 320 1 4.7E-97 2.1E+96
JPEG IDCT 1728 5376 1344 1 2.6E-405 3.8E+404

Table 10.32 Attack time comparison of the proposed logic locking with [36] [37] (note: In proposed
logic locking, correct key cannot be deduced in exhaustive trials except first)

DSP Estimated attack time Estimated attack time through Estimated attack time through
Benchmark through proposed work [37] (in years) [36] (in years)
IIR) 1.2E+99 4.9E+214
Mesa Horner o0 1.2E+99 4.9E+214
DWT) 1.2E+99 4.2E+137
ARF 0 2.3E+118 5.7E+291
FIR) 7.8E+156 6.6E+368
JPEG IDCT 0 4.8E+503 6.9E+1601

Table 10.33 Comparison of the encryption strength of the proposed logic locking with [36] [37]

0,
of key % of key bits # of key % of key bits # of key bits " gift]sey
DSP bits in the encrypted of | bitsinthe | encrypted of in the
. . . . encrypted of
Benchmarks design [37] design of [36] design using proposed
of [37] (using (9.5)) [36] (using (9.5)) proposed (using (9.5))
IIR 384 33.3% 768 16.7% 192 66.7%
Mesa Horner 384 33.3% 768 16.7% 192 66.7%
DWT 384 33.3% 512 25.0% 128 100%
ARF 448 28.6% 1024 12.5% 256 50.0%
FIR 576 22.2% 1280 10.0% 320 40.0%
JPEG IDCT 1728 7.4% 5376 2.4% 1344 9.5%

cannot be deduced in the exhaustive trials except first, hence the attack time to
find the valid key is projected to be infinite (indicating that the time taken will
be much higher than that of obtaining the key using brute-force). Table 10.32
shows the attack time comparison of proposed technique with [36], [37]

(supposing that 1 billion (10%) keys can be fed per second.

10.7.1.2 Encryption strength analysis

The encryption strength En® of the proposed logic locking is measured using
eq. (9.5) discussed in section 9.2.5 of chapter 9. Table 10.33 shows the
comparison of encryption strength of the proposed technique with the existing
approaches [36], [37]. As shown, the proposed technique encrypts higher
percentage of key-bits w.r.t. [36], [37] using one AES. The reason is that the

139

Table 10.34 Percent reduction in the resource count using proposed work w.r.t. [36] [37]

Proposed work
DSp % reduction % i Overall % % reduction % Overall %
Benchmarks in NAND ;nll]jjc_r;;ze reduction in in NAND increase reduction in
gates w.r.t. wort. [37] resource count gates w.r.t. in D-FFs resource count
[37] o w.r.t. [37] [36] w.r.t. [36] w.r.t. [36]
IR 40.7% 3.7% 37.0% 7.4% 3.7% 3.7%
Mesa Horner 32.7% 3.7% 29.0% 6.5% 3.7% 2.8%
DWT 27.3% 2.5% 24.8% 4.2% 2.5% 1.7%
ARF 24.0% 4.7% 19.3% 7.1% 4.7% 2.4%
FIR 33.4% 5.9% 27.5% 8.5% 5.9% 2.6%
JPEG IDCT 30.4% 19.1% 11.3% 13.9% 19.1% 0%

proposed technique requires lesser key bits than the existing techniques, while

deploying the same number of ILBs in the design.
10.7.2 Design area analysis

Design area of the proposed and existing techniques [36], [37] is assessed in
terms of resource count which is calculated as the count of total required
NAND gates and D-FFs. Table 10.34 presents the % reduction in NAND gates
and % increase in D-FFs using proposed technique compared to existing
techniques [36], [37]. Furthermore, the Table 10.34 presents the overall %
reduction in resource count achieved through proposed approach. The overall
% reduction in the resource count is computed in terms of an algebraic
summation of ‘% decrease in total NAND gates’ and ‘% increase in total D-
FFs’. Table 10.34 shows that the proposed technique achieves on average
25.8% reduction in the resource count with respect to [37] and on average
1.9% reduction with respect to [36]. This indicates that the proposed technique
incurs lesser resource count and hence lesser area than existing techniques

[36], [37].

140

Chapter 11

Conclusion and Future work

11.1 Conclusion

The DSP and multimedia applications are prevailing in the modern consumer
electronics. Therefore, the application specific IP cores or hardware
accelerator of DSP and multimedia applications are important part of modern
SoC designs. However, different parties or houses involved in the SoC design
process are situated offshore/globally. This renders the DSP and multimedia
IP cores vulnerable to various kinds of hardware security threats such as IP
piracy and hardware Trojan insertion. These threats may pose substantial
impact on system, services, and users and as well as on IP designer itself. This
thesis presented novel techniques for generating secure IP cores or hardware
accelerators to counter the aforementioned hardware threats. The following

objectives were accomplished:

e Proposed an IP core steganography based hardware security solution to
address the threat of IP piracy by implanting the vendor’s stego-mark
into the design during register allocation phase of HLS process. The
vendor’s stego-mark or steganography information to be implanted
into the design is monitored using a controlling parameter called
entropy threshold. The implanted stego-information incurred negligible
design overhead and produced lower design cost compared to
signature-based IP core protection techniques.

e Proposed an IP core steganography based hardware security solution
that generates a robust stego-mark using a large size stego-key and a
chain of SHA-512 hash blocks. Thus generated stego-constraints
cannot be easily regenerated or back tracked by an adversary to
compromise the stego-mark and misuse it to escape counterfeit
detection. Thus the proposed approach is capable to offer higher
security against the IP piracy threat and outperforms the related works.

e Proposed hologram based structural obfuscation technique that hinders

reverse engineering by camouflaging the functionality of one design

141

into another, hence preventing against Trojan insertion attack.
Likewise a security image hologram, where two distinct images are
camouflaged and displayed at different viewing angles, the proposed
work merges two distinct DSP cores such that each one functions at a
particular bit pattern. Therefore, proposed obfuscation has been called
as hologram based obfuscation which obfuscates two DSP kernels
simultaneously by camouflaging functionality of one DSP kernel into
another.

Proposed an integrated structural obfuscation and crypto-
steganography based double line of defense mechanism to address both
[P piracy and hardware Trojan insertion threats simultaneously. The
proposed approach has been applied on JPEG compression processor
and DFT processor.

Proposed an integrated multi-key based structural obfuscation and
physical level watermarking based double line of defense mechanism
to address both IP piracy and hardware Trojan insertion threats
simultaneously. The structural obfuscation is performed using key-
driven partition and key-driven folding knob based transformations
combined with key-driven loop unrolling, key-driven ROE and key-
driven THT, and the proposed physical-level watermarking is
performed through early floorplanning of obfuscated DSP circuit.
Proposed a HLS driven technique to generate secured hardware
accelerator designs for image processing filters. We addressed the
problem of stringent performance and low power requirement of image
processing applications by designing dedicated hardware for image
processing filters. We also handled the threat of Trojan insertion
through RE by designing structurally obfuscated versions of filters
hardware.

Proposed SHA-512 based key generation hardware and ARL based
key generation unit to secure the IP core locking blocks (ILBs) used in
functionally obfuscated DSP cores against the removal attack. The

security is achieved by offering re-configurability to ILBs structures

142

based on the output of proposed key generation hardware units.
Proposed logics provide higher security than related work.

e Proposed logic locking of DSP circuits using highly robust DSP
locking cells (DLCs) comprising of combinational gates and flip-flops.
Proposed DLCs are reconfigurable based on AES128 output. The
DLCs are inserted in register transfer level (RTL) datapath based on
designer selected value of ‘®’. Proposed DLCs are capable of
hindering the probability of obtaining correct key (<<I) even through
exhaustive trials, thus rendering the brute force attack ineffective. The
proposed approach achieved higher security at lower design overhead

than the existing logic locking techniques.

11.2 Future work

In the conventional hardware security techniques for IP cores authentication,
designer’s secret information is not uniquely associated with the designer’s
identity. Therefore in future, we target to offer unique/non-conflicting
authentication to IP cores. To do so, we aim at exploiting the vendor’s unique
information based on physiological or behavioral biometric traits to offer

robust detective control on IP piracy.

143

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

REFERENCES

Sengupta A. (2020). Secured hardware accelerators for DSP and image
processing applications. The Institute of Engineering and Technology
(IET) Book, e-ISBN: 9781839533075.

Sengupta A. (2020). Frontiers in securing IP cores - Forensic detective
control and obfuscation techniques. The Institute of Engineering and
Technology (IET) Book, ISBN-10: 1-83953-031-6, ISBN-13: 978-1-
83953-031-9.

Colombier B. (2017). Methods for protecting intellectual property of IP
cores designers. Micro and nanotechnologies/Microelectronics,
Université de Lyon, NNT : 2017LYSES038.

Colombier, B, & Bossuet, L. (2014). Survey of hardware protection of
design data for integrated circuits and intellectual properties. [ET
Computers &, Digital Techniques, 8, (6), p. 274-287.

Saha D. & Sur-Kolay S. (2011). SoC: A real platform for IP reuse, IP
infringement, and IP protection. CAD for Gigascale SoC Design and
Verification Solutions, vol. 2011, doi:10.1155/2011/731957.
Schneiderman R. (2010). DSPs evolving in consumer -electronics
applications. /EEE Signal Process. Mag., vol. 27(3), pp. 6—10.
Mahdiany H. R., Hormati A. and Fakhraie S. M. (2001). A hardware
accelerator for DSP system design. in Proc. ICM, pp. 141-144.

Sengupta A., Mohanty S. P (2019). IP core protection and hardware-
assisted security for consumer electronics. The Institute of Engineering
and Technology (IET) Book, ISBN: 978-1-78561-799-7, e-ISBN: 978-1-
78561-800-0.

Sengupta, A. (2016). Cognizance on Intellectual Property: A High-Level
Perspective. IEEE Consumer Electronics Magazine, 5(3), 126-128.
Chakraborty R. S., Bhunia S. (2009). HARPOON: An Obfuscation-
Based SoC Design Methodology for Hardware Protection. IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 28 (10), pp. 1493-
1502.

Sengupta, A. (2016). Intellectual property cores: Protection designs for
CE products. IEEE Consumer Electronics Magazine, 5(1), 83-88.

144

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Plaza S. M., Markov 1. L. (2015). Solving the third-shift problem in IC
Piracy with test-aware logic locking. IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 34(6), pp. 961-971.

Castillo E., Meyer-Baese U., Garcia A., Parilla L., Lloris A. (2007).
IPP@HDL: Efficient intellectual property protection scheme for IP
cores. [EEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 5,
pp- 578-590.

Gorman, C. (2012). Counterfeit Chips on the Rise. IEEE Spectrum. 49.
16-17. 10.1109/MSPEC.2012.6203952.

Guin U., Huang K., DiMase D., Carulli J. M., Tehranipoor M. and
Makris Y. (2014). Counterfeit Integrated Circuits: A Rising Threat in the
Global Semiconductor Supply Chain. Proceedings of the IEEE, vol. 102,
no. &, pp. 1207-1228.

Mitra S., Wong H.P. and Wong S. (2015). The Trojan-proof chip. /IEEE
Spectrum, vol. 52, no. 2, pp. 46-51.

Tehranipoor, M., & Koushanfar, F. (2010). A survey of hardware Trojan
taxonomy and detection. /EEE design & test of computers, 27(1).
Bhunia, S., Hsiao, M. S., Banga, M., & Narasimhan, S. (2014).
Hardware Trojan attacks: threat analysis and
countermeasures. Proceedings of the IEEE, 102(8), 1229-1247.
McFarland, M. C., Parker, A. C., & Camposano, R. (1990). The high-
level synthesis of digital systems. Proceedings of the IEEE, 78(2), 301-
318.

McFarland, M. C., Parker, A. C., & Camposano, R. (1988). Tutorial on
high-level synthesis. In Proceedings of the 25th ACM/IEEE Design
Automation Conference (pp. 330-336). IEEE Computer Society Press.
Coussy, P., & Morawiec, A. (Eds.). (2008). High-level synthesis: from
algorithm to digital circuit. Springer Science & Business Media.

Gajski, D. D., Dutt, N. D., Wu, A. C., & Lin, S. Y. (2012). High—Level
Synthesis: Introduction to Chip and System Design. Springer Science &
Business Media.

Rajendran, J., Zhang, H., Sinanoglu, O., & Karri, R. (2013). High-level
synthesis for security and trust. In On-Line Testing Symposium (IOLTS),
2013 IEEE 19th International, pp. 232-233.

145

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Mishra, V. K., & Sengupta, A. (2014). MO-PSE: Adaptive multi-
objective particle swarm optimization based design space exploration in
architectural synthesis for application specific processor
design. Advances in Engineering Software, 67, 111-124.

Sengupta A., Bhadauria S. (2016). Exploring low cost optimal
watermark for reusable IP cores during high level synthesis. /EEE
Access, vol. 4, pp. 2198-2215.

Hong 1. and Potkonjak M. (1999). Behavioral synthesis techniques for
intellectual property security. in Proc. DAC, pp. 849-854.

Kirovski D., Hwang Y., Potkonjak M. and Cong J. (2006). Protecting
combinational logic synthesis solutions. /EEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 25(12), pp. 2687-2696.

Cui A., Chang C. H. and Tahar S. (2008). IP watermarking using
incremental technology mapping at logic synthesis level. /[EEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 27(9), pp. 1565-1570.
Cui A. and Chang C. (2007). Watermarking for IP protection through
template substitution at logic synthesis level. in Proc. ISCAS, New
Orleans, LA, pp. 3687-3690.

Koushanfar, F., Hong, 1., & Potkonjak, M. (2005). Behavioral synthesis
techniques for intellectual property protection. ACM Transactions on
Design Automation of Electronic Systems (TODAES), 10(3), 523-545.
Sengupta A., Roy D. (2017). Antipiracy-Aware IP Chipset Design for
CE Devices: A Robust Watermarking Approach. [EEE Consumer
Electronics Mag, vol. 6(2), pp. 118-124.

Le Gal B., Bossuet L. (2012). Automatic low-cost IP watermarking
technique based on output mark insertions. Design Autom. Embedded
Syst., vol. 16(2), pp. 71-92.

Sengupta A., Roy D. (2018). Multi-Phase Watermark for IP Core
Protection. Proc. 36th IEEE International Conference on Consumer
Electronics (ICCE), pp. 1-3.

Sengupta A., Roy D., Mohanty S. P. (2018). Triple-Phase Watermarking
for Reusable IP Core Protection During Architecture Synthesis. /[EEE
Trans. Comput.-Aided Design Integr. Circuits Syst, vol. 37(4), pp. 742-
755.

146

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Roy J. A., Koushanfar F., and Markov I. L. (2008). EPIC: Ending piracy
of integrated circuits. in Proc. Design Autom. Test Europe, pp. 1069—
1074.

Sengupta A., Kachave D. and Roy D. (2019). Low cost functional
obfuscation of reusable IP cores used in CE hardware through robust
locking. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38(4), pp. 604-616.

Yasin, M., Rajendran, J. J., Sinanoglu, O., & Karri, R. (2016). On
improving the security of logic locking. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 35(9),
1411-1424.

Zhang, J. (2016). A Practical Logic Obfuscation Technique for
Hardware Security. IEEE Trans. VLSI Syst., 24(3), 1193-1197.

Yasin M., Mazumdar B., Sinanoglu O., and Rajendran J. (2017).
Removal attacks on logic locking and camouflaging techniques. /EEE
Transactions on Emerging Topics in Computing, doi:
10.1109/TETC.2017.2740364.

Subramanyan P., Ray S., and Malik S. (2015). Evaluating the security of
logic encryption algorithms. in IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), pp. 137-143.

Xie Y. and Srivastava A. (2019). Anti-SAT: Mitigating SAT Attack on
Logic Locking. IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 38(2), pp. 199-207.

Torrance, R., & James, D. (2009). The state-of-the-art in IC reverse
engineering. In Cryptographic Hardware and Embedded Systems-CHES
2009 (pp. 363-381). Springer, Berlin, Heidelberg.

Chakraborty R. S., Narasimhan S. and Bhunia S. (2009). Hardware
Trojan: Threats and emerging solutions. /EEE International High Level
Design Validation and Test Workshop, pp. 166-171.

Lao Y. and Parhi K. K. (2015). Obfuscating DSP Circuits via High-
Level Transformations. /[EEE Trans. on Very Large Scale Integr. (VLSI)
Syst., vol. 23(5), pp. 819-830.

Sengupta A., Roy D., Mohanty S.P., and Corcoran P. (2017). DSP

Design Protection in CE through Algorithmic Transformation based

147

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Structural Obfuscation. IEEE Transactions on Consumer Electronics,
vol. 63(4), pp. 467 — 476.

Sengupta A. and Roy D. (2017). Protecting an intellectual property core
during architectural synthesis using high-level transformation based
obfuscation. /ET Electronics Letters, vol: 53(13), pp. 849 — 851.
Sengupta A., Roy D., Mohanty S.P., and Corcoran P. (2018). Low-cost
obfuscated JPEG CODEC IP core for secure CE hardware. IEEE Trans.
Consum. Electron., vol. 64(3), pp. 365-374.

Sengupta A., Mohanty S. P., Pescador F., Corcoran P. (2018). Multi-
Phase Obfuscation of Fault Secured DSP Designs with Enhanced
Security Feature. [EEE Transactions on Consumer Electronics, vol.
64(3), pp: 356-364.

Sengupta, A. (2015). Exploration of kc-cycle transient fault-secured
datapath and loop unrolling factor for control data flow graphs during
high-level synthesis. Electronics Letters, 51(7), 562-564.

Benda L., Mudry P., Ijspeert A. (2008). Hardware acceleration for image
processing. Technical report ~ EPFL, [online] Available:
http://biorob2.epfl.ch/pages/studproj90/birg67936/rapport.pdf.

Dutta H., Hannig F., Teich J., Heigl B., and Hornegger H. (2006). A

design methodology for hardware acceleration of adaptive filter
algorithms in image processing. in Proc. ASAP, Steamboat Springs, CO,
USA, pp. 331-340,

Ortega-Cisneros S. et al. (2014). Real time hardware accelerator for
image filtering. Progress in Pattern Recognition, Image Analysis,
Computer Vision, and Applications, CIARP, pp. 80-87.

Sengupta A., Mohanty S. P. (2019). Advanced encryption standard
(AES) and its hardware watermarking for ownership protection. Book:
IP Core Protection and Hardware-Assisted Security for Consumer
Electronics. e-ISBN: 9781785618000, pp. 317-335.

Obukhov A., Kharlamov A. (2008). Discrete Cosine Transform for 8x8
Blocks with CUDA. Nvidia whitepaper document.

Matrix Technologies, Hologram Features (2016). [Online]. Available:
http://www.matrixtechnologies.in/hologram-features.html, last accessed

on May 2019.

148

http://biorob2.epfl.ch/pages/studproj90/birg67936/rapport.pdf

[56]

[57]

[58]

[59]

[60]

Kachave D., Sengupta A. (2016). Integrating physical level design and
high level synthesis for simultaneous multi-cycle transient and multiple
transient fault resiliency of application specific datapath processors.
Microelectronics Reliability, vol. 60, pp. 141-152.

Sait, S. M., & Youssef, H. (1999). VLSI physical design automation:
theory and practice (Vol. 6). World Scientific Publishing Company.
Express benchmark suite, University of California San Diego, 2016,
https://www.ece.ucsb.edu/EXPRESS/benchmark/.

Mohanty S. P., Ranganathan N., Kougianos E., Patra, P. (2008). Low-

power highlevel synthesis for nanoscale CMOS circuits. Springer
Science & Business Media.

15 nm open cell library. [Online]. Available: https://si2.org/open-cell-
library/, last accessed on Jan. 2020.

149

https://www.ece.ucsb.edu/EXPRESS/benchmark/

