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ABSTRACT 

A core based design paradigm has become popular in the semiconductor 

business market for the last few decades. The underlying reasons are the 

increasing time to market pressure, design complexity and cost of system-on-

chip (SoC) designs. However, the contrast impact of core based design 

paradigm is the susceptibility of the intellectual property (IP) cores towards 

the hardware threats of IP piracy and hardware Trojan insertion. An adversary 

in the untrusted SoC design house may infringe or misuse the IP core for 

personal benefits. Moreover, the reliance of chip manufacturing on a distinct 

offshore foundry also enhances the risks of IP piracy and potential Trojan 

insertion.  

The digital signal processing (DSP) and multimedia applications are thriving 

in the modern consumer electronics (CE) market. The stringent performance 

and low power demand have enforced the realization of DSP and multimedia 

applications through their hardware accelerator or application specific IPs. 

However, owing to the proliferating usage of DSP and multimedia IPs in the 

SoCs, their security concerns cannot be undervalued. Hence, an IP core 

designer needs to employ protection measures against the piracy and potential 

Trojan insertion attacks to ensure trust in hardware. For highly complex 

designs such as DSP and multimedia cores, a high level synthesis (HLS) 

framework is amenable to employing security mechanisms. Towards the 

security of IP cores, this thesis contributes the following novel methodologies: 

(a) IP core steganography approaches to secure DSP cores against piracy, (b) a 

hologram based obfuscation approach to thwart the potential Trojan insertion 

attack, (c) double line of defense approaches based on structural obfuscation 

and IP vendor’s secret mark to counter both Trojan insertion and IP piracy 

attacks, (d) secured hardware accelerator design approach for various image 

processing filter applications and a DFT processor. 
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Chapter 1 

Introduction 

We are fortunate enough for living in an era where internet speed is touching 

5G, 8D audio effects are mesmerizing us, high definitional (HD) videos and 

graphics are fascinating our generation; thanks to electronics. The ubiquitous 

applications of electronics have led it in becoming an integral part of 

consumer’s life [1]. At the heart of the consumer electronics (CE) systems 

such as laptops, tablets, and smart phones etc., there functions a system-on-

chip (SoC). A SoC is designed using various modules such as functional 

blocks, memory units and memory controller and different peripherals for 

wireless and wired communication etc. Instead of designing a SoC from 

scratch, its various modules are purchased from third party vendors or 

designers. The pre-designed and pre-verified modules of a SoC, procured from 

distinct design houses (fabless), also referred to as third party intellectual 

property (3PIP) cores. And, this kind of system design paradigm is called as 

core based design paradigm. The core based design paradigm results in 

benefits in terms of reduced cost, alleviated design complexity and lower time 

to market pressure. This is because, designing a SoC from scratch is not only 

cumbersome due to higher design complexity, but also involves higher 

investment in terms of time and resources or cost. Further, in the design 

supply chain, the SoC design file is sent to a distinct offshore manufacturing 

house (also referred to as a foundry) for the chip fabrication. Relying on 

distinct foundry for the chip fabrication is economic, because building and 

maintaining a foundry require billions of dollar investment. Thereby, different 

entities (third party IP vendors, system integrator, and foundry) get 

involvement in the IC design chain. This helps in sustaining the IC design 

process at lesser cost, lower design complexity and lower time requirement 

[2]-[5].  

In the SoC designs of consumer electronic systems, digital signal processing 

(DSP) and multimedia cores play a pivotal role owing to their utility in various 

applications such as de-noising, image compression-decompression and video 

encoding-decoding etc. Because of the vital role of DSP and multimedia 
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applications in modern electronic systems, their usage has been proliferating 

for the past few decades [6]. Since the DSP and multimedia applications are 

intended to be executed in the systems where stringent performance and power 

requirement are imperative, therefore these applications are designed as 

application specific processors or hardware accelerators to be integrated in the 

SoCs [1], [2], [7]. 

Besides consumer applications, the DSP and multimedia processors also claim 

their utility in some critical applications such as military and healthcare. For 

example, in military and defense applications, DSP cores integrated in the 

SoCs facilitate live video streaming from unmanned aerial vehicles (UAVs). 

Further, in the healthcare and medical systems, joint photographic experts 

group (JPEG) processors are used for compression-decompression of medical 

images to enable low storage requirement and low-bandwidth transmission.  

However, the involvement of distinct entities (or houses) in the design chain 

raises the issue of untrustworthiness. This is because an adversary or attacker 

in an untrustworthy house may realize his/her malicious intents of IP 

infringement or misuse [3], [4]. This invites different hardware security threats 

which can be broadly of two types: (i) IP piracy [1], [2] (ii) hardware Trojan 

insertion [1], [2]. As the DSP and multimedia based IP cores possess 

significant role in consumer, military and healthcare applications, therefore 

their security perspective cannot be overlooked. A fake or infringed IP used in 

military systems or medical devices can even endanger the human’s life. 

Hence, security of IP cores is of paramount importance to ensure secure, safe 

and reliable functioning of electronic systems. Additionally, securing IP cores 

is also indispensable from the vendor’s perspective in order to save him/her 

from huge revenue and reputation loss due to IP piracy [8].  

This chapter briefly discusses the background on the various key aspects that 

the proposed IP core (or hardware) security techniques are developed around. 

The first section puts the background on IP cores. Further, the second section 

provides an overview of DSP and multimedia applications and corresponding 

algorithmic representations. The third section discusses the various threats to 

IP cores. The fourth section provides a background on high level synthesis 
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(HLS) process and discusses its role in hardware (IP) security. Finally, the 

fifth section presents the thesis organization. 

1.1. Semiconductor IP Core and its Various Forms 

In the electronics domain, a reusable logic block which is an intellectual 

property of the designer or owner is termed as intellectual property (IP) core. 

An IP core is designed and sold into the market in its various forms such as (i) 

soft IP core (ii) firm IP core (iii) hard IP core [9],[10]. A synthesizable register 

transfer level (RTL) code in a hardware description language (such as VHDL 

or Verilog) or schematic design is referred to as a soft IP core. With the soft IP 

cores, a chip designer has the flexibility to modify the design parameters as 

per the requirement. The performance of a soft IP core can vary considerably 

as it gets transformed into lower levels of design abstractions. Further, a firm 

IP core is another type which is a technology dependent gate level netlist of 

the design. It is lesser modifiable than a soft IP core. Further, a hard IP core is 

a GDS-II design database or layout file of the design. It cannot be substantially 

modified by the designers as it has lower-level physical description that is 

specific to a particular process node. The core based design paradigm is based 

on the reusable IP cores, hence playing a pivotal role in alleviating the design 

complexity and helping in satisfying time-to-market requirement [10], [11]. A 

typical SoC is composed of various kinds of IP cores such as a general 

purpose processor core for addressing general purpose functionality, DSP 

cores to perform application specific functionality, memory controller IP cores 

to manage the data exchanged between the memories and other modules and 

interface IP core such as UART, SPI, I2C to facilitate serial communication 

and so on. 

1.2. DSP and Multimedia Applications and Corresponding Algorithmic 

Representation 

The digital signal processing (DSP) algorithms such as finite impulse response 

(FIR) filter, infinite impulse response (IIR) filter, discrete cosine transform 

(DCT), inverse discrete cosine transform (IDCT), fast Fourier transform (FFT) 

and discrete wavelet transform (DWT) etc. have wide applications in modern 

electronic systems. Additionally, processors used in multimedia applications 
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such as joint photographic experts group (JPEG) compression-decompression 

(codec), moving picture experts group (MPEV) etc. are also dominating in 

today’s consumer electronic systems. The DSP and multimedia cores are 

employed to perform various functionalities such as filtering, image 

compression-decompression, image enhancement, audio/ video encoding-

decoding etc. [1], [2], [8].  

In order to generate an application specific processor of a DSP or multimedia 

application, its high level or algorithmic or behavioral description is taken as 

input to the synthesis process. The algorithmic description can be of various 

forms such as a C/C++ code or a mathematical representation (an equation 

representing input-output relationship) etc. For example, an algorithmic 

description in the form of a mathematic representation of a 4-point DCT 

application is given as follows [2]: 

X[0]=c1*x[0]+ c2* x[1] + c3* x[2] + c4* x[3]                   (1.1) 

Where, x[0] to x[3] are input variables, c1 to c4 are input coefficients and X[0] 

is an output. 

1.3. Threats to IP Cores  

As discussed earlier, the various offshore entities such as a 3PIP vendor, a 

system integrator and a contract foundry participate in the current 

semiconductor business model, leading to the globalization of the design 

supply chain.  However, in this semiconductor business model, the design data 

transfer is asymmetric. More explicitly, an IP design is transferred or sold to a 

system integrator however there is no transfer of intellectual property the other 

way around. Similarly, the design file is sent to a contract foundry for chip 

fabrication where the design data is transparent to the foundry. In these cases, 

the design IP is transferred only in one direction [3]. Hence, this globalization 

of the design supply chain and asymmetric nature of this business model 

render the participating entities untrustworthy, resulting in the emergence of 

various hardware threats in the semiconductor market. Fig. 1.1 depicts the 

potential threat scenario in the untrustworthy houses (SoC design house and 

foundry) where the IP cores designs are vulnerable to hardware threats of IP 

piracy and hardware Trojan insertion [8], [11]. 
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In 2010, the first case against a counterfeit-chip broker was prosecuted by the 

United States. Thousands of counterfeit chips, many of which were intended 

to be used in military products, were sold by the company VisionTech [14]. 

Further, the data provided by IHS (Information Handling Services, 

Englewood, CO, USA) displays that reports of counterfeit parts have 

quadrupled since 2009. Legitimate electronics enterprises lose out on about 

$100 billion of global revenue per year because of counterfeiting. Around 1% 

of semiconductor sales are projected to be those of fake components [15]. 

Additionally, in 2007, Syrian radar botched to warn of an incoming air strike 

[16]. A backdoor (hardware Trojan) built into the system’s chips was rumored 

to be responsible. This raises questions as to just how much the global supply 

chain for ICs can be relied [16]. A brief discussion on the IP piracy and 

hardware Trojan insertion threats is as follows: 

1.3.1 IP Core Piracy 

IP piracy [3], [4], [12], 13] may take various forms such as IP counterfeiting, 

IP cloning and false claim of IP ownership which may cause adverse effects in 

the form of huge financial loss for the genuine IP vendor/designer and harm of 

IP vendor’s brand and reputation. Fig. 1.2 depicts the potential IP piracy threat 

scenario. 

IP counterfeiting: In this threat, a potential adversary sells a low quality or 

fake IP into the market under the brand name of an authentic or genuine IP 

vendor. The adversary can have various objectives of doing so, such as: (i) the 

adversary may have malicious intents of sabotaging authentic vendor’s 

reputation by enabling the integration of low quality counterfeit IPs as genuine 
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ones into the SoCs (ii) the adversary may be intending earning illegal income 

under the brand name of an authentic vendor (iii) the adversary may supply 

fake IPs to the offshore system integrators because of some national interests. 

The counterfeit IPs may not be rigorously tested in terms of their functionality, 

safety and reliability. Additionally, they may also contain some secret 

malicious logic (hardware Trojan) to adversely affect the system operation, 

performance and security. Therefore, detection of counterfeit IPs and ensuring 

integration of only authentic IPs in SoCs is vital for safe, reliable and secure 

functioning of electronic systems.  

IP cloning and false claim of IP ownership: In this threat, an adversary (rouge 

system integrator) instantiates the third party vendor’s IP more number of 

times in the SoC designs than specified in the agreement of IP use. Moreover, 

the adversary (rouge system integrator or foundry) may steal the vendor’s IP 

and sell it illegally into the market as his/her own. Thus an adversary may 

clone the true vendor’s IP to earn the illegal income. Moreover, he/she may 

claim the ownership of stolen/cloned IP fraudulently. The IP cloning and false 

claim of IP ownership threat harms the genuine IP designer in terms of both 

revenue loss and ownership loss. The potential adversaries could be an 

untrustworthy SoC designer and an untrustworthy foundry. Therefore a true IP 

designer needs to secure his IPs against the cloning to save from the illegal 

revenue loss and the fraudulent claim of IP ownership.     

1.3.2. Hardware Trojan Insertion 

Original 

IP/IC 

Brand ‘A’ 

Counterfeited ICs/IPs 

 IP/IC 

Brand ‘A’ 

 IP/IC 

Brand ‘A’ 

 IP/IC 

Brand ‘A’ 

Cloned ICs/IPs 

 IP/IC 

Brand ‘B’ 

 IP/IC 

Brand ‘B’ 

 IP/IC 

Brand ‘B’ 

Counterfeiting  

(Imitating original design/brand) 

Cloning  

(Pirating and cloning original 

design) 

Fig. 1.2.  Counterfeiting and cloning attacks, where brand ‘A’ indicates the brand name of 

a genuine IP vendor and brand ‘B’ indicates the brand name used by an adversary 
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Hardware Trojan [17], [18] is a malicious/intended modification in the design 

to cause different kinds of adverse effects such as compromising secret 

information from the system, wrong functional output, excessive power 

consumption and degraded performance etc. The hardware Trojan insertion is 

a back door entry of malicious logics/components into the design by an 

adversary in an untrustworthy design house or foundry. The hardware Trojan 

is intentionally designed to be stealthy in nature so that it cannot be readily 

detected during the validation process. Further, it is designed to be triggered 

only upon certain rare events at particular nodes in the design. The 

globalization of IC design chain has given the opportunity of inserting 

hardware Trojans to rouge elements. Hence, in this globalized design chain, 

the IP core designer needs to employ some preventive control against the 

possible Trojan insertion in an untrustworthy house by an adversary, to ensure 

the trust in hardware [2], [8].   

1.4.  Background on High Level Synthesis and its Importance in IP Core 

Security 

The synthesis is a design process whose objective is to find a structure that 

implements the behavior required, for a given input specification with a set of 

constraints and goals to be fulfilled. Here, the mapping from inputs to outputs 

(i.e. the way components of the system interact) defines the behavior and the 

set of interconnected components that composes the system defines the 

structure. The synthesis can be performed at different levels of design 

abstraction as a design can be represented at different levels of detail. The high 

level synthesis (HLS) [19]-[22] also referred to as behavioral or architectural 

synthesis is a high level design process to convert an algorithmic description 

of a system into a structure implemented in the form of datapath and 

controller. Thus obtained structure is also called as register transfer level 

(RTL) design which is composed of high level components such as functional 

units (FUs), registers, interconnect units such as multiplexers (Muxes) and 

demultiplexers (Demuxes) etc.  

Let’s discuss the internal details of the HLS process in brief [8], [19]-[22]. The 

HLS process first takes the algorithmic representation such as C/C++ code or 

a mathematical function as an input and generates a corresponding 
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intermediate representation called data flow graph (DFG) or a control data 

flow graph (CDFG). For example, the algorithmic description of a 4-point 

DCT application has been given in eq. (1) and its corresponding DFG 

representation is shown in Fig. 1.3(a). Further, the DFG can be subjected to 

various kinds of high level transformations such as loop unrolling (LU), 

redundant operation elimination (ROE), tree height transformation (THT) and 

loop invariant code motion (LICM) etc., depending on the nature of the 

application or the applicability of the transformation. Thus obtained DFG is 

subjected to different phases of the HLS process viz. scheduling, allocation 

and binding. In the scheduling phase, different operations of the application 

(nodes of the DFG) are assigned to a particular time stamp or control step (CS) 

to be executed within. An algorithm chosen to perform the scheduling depends 

upon the given constraints on timing or resources. Post scheduling, hardware 

or resource allocation phase is performed where the resources are allocated to 

the operations to be executed and to the variables to stored, from the HLS 

library. A particular kind of resource (of certain specifications) to be allocated 

depend on the latency, power and area constraints of the design. For example, 

if the higher performance requirement is more important than the compact 

area for a given design then a faster resource (e.g. adder/multiplier) consuming 

higher area is preferred over a slower resource consuming lower area. Post 

allocating resources, binding phase is performed which decides which 

operation is to be assigned to which instance of the respective functional unit 

(FU) and which variable is to be assigned to which register. This determines 

the sharing of FU resources to execute a number of operations and that of 

registers to execute a number of storage variables, in the different control 

steps. Thus the binding phase provides the information of interconnect 

resources such as Muxes and Demuxes required for sharing of FUs and 

registers. Fig. 1.3(b) shows the scheduled, allocated and binded DFG of the 4-

point DCT core, where s0 to s10 are the storage variables, T0 to T4 are the 

control steps, R, I, G and O are the four different registers, M1 and M2 are two 

multiplier resources and A1 is an adder resource. Post scheduling, allocation 

and binding phases, datapath and controller synthesis phase of the HLS 

process is performed. This phase synthesizes the RTL datapath of the design 

using the allocated FU resources, registers, and latches and using the Muxes 
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and Demuxes (determined through the binding phase) and that the controller 

using the scheduling and dependency information of the operations. The 

controller provides the various control signals to enable the different units of 

the datapath in the respective control steps as per the scheduling. Post HLS, 

the design is subjected to the lower level design processes such as logic 

synthesis to obtain the corresponding gate level netlist and physical synthesis 

to obtain the respective layout design. Post obtaining the layout, it sent to a 

contract foundry for the chip fabrication.  

Importance of HLS in IP core security: The IP core security for DSP and 

multimedia applications during the HLS process has a paramount importance. 

This is because applying a security mechanism may results into excessive 

area, power or delay overhead, violating the given design constraints [23]. 

However, the HLS integrated with the design space exploration (DSE) process 

[24] offers the flexibility of exploring an optimal architecture that satisfies the 

given area, power and latency constraints. This helps achieve a low cost secure 

architecture post employing the security mechanism during the HLS. 

Moreover, employing the security mechanism at lower abstraction levels for 

the DSP and multimedia applications is arduous due to their higher design 

complexity and non-availability of the designs (such as gate level netlist) at 

the lower levels. On the contrary, the DSP applications are readily available in 

the form of their algorithmic descriptions and their high level synthesis can 

easily be automated using the commercial or non-commercial tools to generate 

Fig. 1.3(b) Scheduled and hardware allocated 4point 

DCT using resource constraints of 1 (+) and 2(×) 

× × 

× × + 

+ 

+ 

R I s0 s1 s3 G O 

R I s4 s5 

𝑀2 

R  
G O s6 s8 s7 

R s9 

s10 

1 2 

3 4 5 

6 

R 

T0 

T1 

T2 

T3 

T4 

𝑀1 

𝐴1 

7 

s2 

𝑀2 𝑀1 

𝐴1 

𝐴1 

Fig. 1.3(a) DFG of 4-point DCT 

× × 
× × 

+ 

+ 

+ 

s4 s5 
s6 

s8 

s7 

s9 

s10 

1 2 3 4 

5 

6 

7 

s0 s1 s2 s3 



10 

the corresponding RTL counterparts. Therefore, the security mechanisms can 

easily be integrated with the computer-aided-design (CAD) tools of HLS to 

generate the secured designs for the DSP and multimedia IP cores. 

Furthermore employing security during the HLS process also secures the 

various other forms of an IP at lower design levels such as firm IPs and hard 

IPs, along with the soft IPs. And we also have the security constraints more 

distributed throughout the design post synthesis, if we apply the security 

during the HLS [24], [25]. 

1.5.  Organization of Thesis 

The chapters of the thesis are organized as follows. Chapter 2 discusses the 

state-of-art with respect to proposed techniques.  Chapter 3 discusses the 

proposed hardware steganography techniques for securing IP cores against 

piracy. Chapter 4 discusses the proposed hologram based structural 

obfuscation to thwart reverse engineering based attacks. Chapter 5 discusses 

the proposed double line of defense approach using integrated structural 

obfuscation and crypto-steganography to secure IP cores. Chapter 6 discusses 

the proposed double line of defense approach using integrated multi-key based 

structural obfuscation and physical level watermarking to secure IP cores. 

Chapter 7 discusses the proposed secured hardware accelerator design 

approach for image processing filters. Chapter 8 discusses the proposed 

techniques for securing functionally obfuscated DSP cores against removal 

attack. Chapter 9 discusses the proposed robust logic locking technique for 

preventing IP piracy. Chapter 10 discusses the experimental results of the 

proposed techniques and compares with the state-of-the-arts. Chapter 11 

concludes the thesis and briefly discusses the future work.   
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Chapter 2 

State of the Art 

Some techniques have been proposed to counter the threats of IP piracy and 

hardware Trojan insertion for the past few years. This chapter discusses the 

state of the art techniques alongwith their limitations. This builds up the 

foundation for the proposed methodologies presented in this thesis. The first 

section presents state-of-the-art on handling IP piracy threat. The second 

section presents state-of-the-art on thwarting hardware Trojan insertion attack 

on DSP IP cores. The third section presents the objective of this thesis. The 

fourth section highlights the contributions of this thesis.  

2.1. State of the Art on Handling IP Piracy Threat 

The IP piracy threat results into huge impact on (i) the revenue and reputation 

of the IP creator/designer/owner and (ii) the system in which the IP core is 

deployed and its user. The IP piracy threat has been discussed in the section 

1.3.1 of the chapter 1. The threat of IP piracy has been combated using either 

preventive or detective control mechanisms in the literature [1], [2].  

2.1.1. Preventive control mechanism: To prevent the IP/IC piracy from 

happening, Roy et al. [35], proposed the EPIC (ending piracy of integrated 

circuits) technique which requires an external key generated by the IP owner 

to activate the chips. In this approach, the circuit is locked by inserting 

additional XOR gates on chosen non-critical paths. These XOR gates are 

controlled through an external key value. The normal functionality of the 

design is available only upon applying actual unlocking key value [35]. 

Further, the logic locking techniques were proposed by Yasin et al. [37], and 

Sengupta et al. [36]. In these logic locking based preventive controls over 

piracy, the IP core design functionality is locked by inserting an additional 

locking circuitry into the design. Logic locking, also referred to as functional 

obfuscation, techniques have been proposed for both combinational circuits 

and DSP circuits. The logic locking of combinational circuits is performed by 

inserting key gates (XOR and XNOR gates) [35], [37] or key driven 

multiplexers [38] at appropriate places into the design. And, the logic locking 
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of DSP circuits is performed by inserting IP core locking blocks (ILBs) at 

some chosen output bits of the functional units into the design [36]. 

Performing logic locking results in a locked gate level netlist of the design. An 

adversary in the SoC design house or in a foundry cannot misuse or pirate the 

IP core without unlocking the design using a correct key value, thus thwarting 

the IP piracy.  

Limitations: The logic locking technique is vulnerable to various kinds of 

popular attacks such as key sensitization attack [36], [37], removal attack [39], 

Boolean satisfiability (SAT) based attack [40], [41] and brute force attack. By 

launching the aforementioned attacks, the adversary or attacker aims at 

deriving the unlocked netlist. In the key sensitization, SAT and brute force 

attack, the attacker attempts to find the correct key value to unlock the design. 

However, the SAT attack is not applicable on complex DSP circuits because 

of multiplication operations involved [36]. Further in the removal attack, the 

attacker tries to remove the locking logic/circuitry from the locked netlist to 

obtain the unlocked version. If the attacker becomes successful in obtaining 

the unlocked design/netlist, the purpose of preventive control is defeated and 

the IP piracy becomes realizable.   

2.1.2. Detective control mechanism: To enable the detection of IP piracy, 

hardware or IP watermarking technique was proposed by Hong and Potkonjak 

[26]. In this technique, the vendor’s secret mark or signature is implanted into 

the IP core during the design process. During the verification or authentication 

process, the presence of vendor’s watermark is detected into the design to 

identify whether the IP is pirated or authentic. The process of embedding 

watermark into a design can be performed at various levels of VLSI design 

abstraction, depending on the nature of the target circuits. For example, the 

watermarking for combinational circuit is performed during logic synthesis 

process. Kirovski et al. [27] proposed a watermarking method for implanting 

user and tool specific information into a combinational circuit during a pre-

processing step of traditional logic synthesis. Design constraints for 

watermarking are generated using hashing such as SHA-256 and pseudo-

random number generation. Further, Cui et al. [28] proposed a constraint-

based adaptive watermarking method at logic synthesis level. In this method, 
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some closed cones in an originally optimized combinational circuit are 

modulated for technology mapping.  Furthermore, Cui and Chang [29] embeds 

watermark in combination circuits by substituting template. In order to embed 

watermark, this method replaces some specific cells with another template 

(that have the equivalent function) in the library without altering the topology 

and original functionality.  

However in case of watermarking of DSP circuits, it is more efficient to 

embed signature constraints during the high level synthesis (HLS) process. 

There are few techniques in the literature which perform watermarking of DSP 

circuits during the HLS. Koushanfar et al. [30] proposed an IP protection 

technique based on hardware watermarking to combat IP piracy. This 

technique embeds watermark in the pre-synthesis phase of HLS or behavioral 

synthesis, thus influencing the end design. The watermark is embedded in the 

form of additional design constraints. The added extra constraints encode the 

author’s signature into a binary number (combination of 0s and 1s) which is 

further represented in the 7-bit ASCII characters. To embed the author’s 

signature during behavioral synthesis, high level description of the design is 

first converted in the control data flow graph (CDFG) representation. Further, 

CDFG is scheduled in control steps (CS). Thereafter, an interval graph (IG) is 

created wherein each node indicates a storage variable, and an edge between 

two nodes indicates overlapping of life time of two storage variables. Register 

allocation to these variables is performed by coloring the graph. The author 

signature is embedded by imposing the extra constraints during the register 

allocation of storage variables in the form of extra edges in the interval graph. 

This technique is more effective for large DSP applications. This approach 

assesses the protection strength in terms of probabilities of coincidence and 

resilience against tampering. Sengupta and Bhadauria [25], [31] proposed 

multi-variable watermarking for protecting DSP hardware accelerators against 

counterfeiting, cloning and false claim of ownership threats. This approach 

exploits particle swarm optimization based design space exploration (PSO-

DSE) during HLS to obtain low cost optimal watermark. In this approach, 

authors signature is a combination of four distinct variables viz. ‘i’, ‘I’, ‘T’ 

and ‘!’.  Hardware security constraints corresponding to the designer’s chosen 
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signature are embedded during the register allocation phase of HLS. Since the 

watermarking constraints are imposed during the single phase i.e. register 

allocation of HLS, hence referred as single phase watermarking. To embed the 

constraints, colored interval graph (CIG) framework is exploited, where each 

distinct color represents a distinct register, nodes indicates storage variables 

and an edge between two nodes indicates overlapping of life time of two 

storage variables. Each digit of multivariable signature is embedded as an 

additional edge between a node-pair in the CIG. In order to do so, this 

approach mapped each signature digit to hardware security constraints based 

on following encoding of aforementioned four signature variables: ‘i’ is 

encoded as an edge between node-pair of two prime nodes in the CIG, ‘I’ is 

encoded as an edge between node-pair of two even nodes, ‘T’ is encoded as an 

edge between node-pair of odd and even node and ‘!’ is encoded as an edge 

between node-pair of node number 0 and any integer.  While forming node 

pairs to embed all signature digits, nodes are traversed in the increasing order 

of their number. Further, Le Gal and Bossuet [32] exploits in-synthesis phase 

of HLS for watermarking of DSP circuits. This approach targets the hardware 

that performs computationally intensive tasks in audio and video applications. 

This technique automatically inserts author’s watermark in order to reduce 

design overhead. In this concept of watermarking, empty time slots between 

successive high levels of data valid output are exploited to embed author’s 

signature. Therefore, this approach is viable for circuits having free output 

slots. The entire watermark is a set of sub-marks where each sub-mark is given 

by a mathematical relation. Input values, initial values and intermediate values 

of circuit compose the mathematical relation of a sub-mark. During the unused 

time slots of output, when data valid signal is dormant, the sub-marks are read 

as output values. The watermark remains invisible during static analysis 

because the sub-marks appear at output as dynamic transient values. 

Furthermore, Sengupta and Roy proposed a multi-phase watermarking 

technique [33], [34] based on seven variables author-signature. Signature 

combination comprising of seven variables is embedded during three different 

phases of HLS process viz. scheduling phase, hardware allocation phase and 

register allocation phase. Owing to large number of signature variables and 

embedding at three different phases, this watermarking technique is highly 
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tamper tolerant and offers extremely low Pc. This is because the complex 

signature combination embedded at three phases of HLS renders the 

identification process of watermarking constraints into the design highly 

complicated and it is very less probable that the same watermarking solution is 

identified in an unsecured version. 

Limitations: The detective control is a passive protection measure of IP cores. 

It does not actively prevent IP piracy by an adversary. Further, the signature 

used in the existing watermarking approaches is vulnerable to theft and misuse 

by the adversary [26]. If the chosen signature length, signature digit and their 

encodings into security constraints are compromised by the adversary then 

he/she can duplicate the true vendor’s signature to cause the following impacts 

[2]: (i) misusing the compromised signature to fraudulently claim the 

ownership, thereby hindering the true IP vendor from proving his/her 

ownership (ii) evading IP counterfeiting detection by embedding the vendor’s 

authentic signature (or secret mark) in counterfeit designs. Hence, this entails 

developing robust authentication marks (or secret marks) to enable strong 

detection of IP piracy.  

2.2. State of the Art on Thwarting Hardware Trojan Insertion Attack 

If an attacker becomes able to successfully reverse engineer the design to 

know its exact structure and internal details, he/she can insert the Trojan 

secretly into the design. Therefore, the designer’s effort should be to hinder 

the attacker from knowing the correct structure of the design through reverse 

engineering (RE) [42] to secure against the hardware Trojan insertion attack 

[43]. By making the design structure un-obvious or un-interpretable to an 

adversary, the RE based attack of potential Trojan insertion can be thwarted 

[2], [8]. Structural obfuscation mechanism was proposed to obfuscate (make 

un-obvious) the design structure of an IP core to prevent against the possible 

Trojan insertion in an untrustworthy house [44], [45]. The potential sites for 

Trojan insertion could be a SoC design house or a foundry. 

Lao and Parhi [44] utilized hierarchical contiguous folding (HCF) to 

performing the structural obfuscation. In this folding, all operations of one 

stage are performed before starting to perform next stage operations. More 
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explicitly, Lao and Parhi [44] applied the obfuscation by varying the number 

of stages in the cascaded structure, resulting into several variation modes. For 

obfuscating DSP circuits, different variation modes can be implemented. 

Some modes produce functionally invalid outputs, however, the output can be 

meaningful from a signal processing point of view. Other modes can produce 

non-meaningful outputs. Manifold meaningful and non-meaningful modes 

(resulting from folding) have been utilized for obfuscation in this technique. 

Various modes of operations are regulated through configure data. The 

functional mode of a DSP design is configured by a reconfigurator which is 

enabled by a finite state machine (FSM). Further, this FSM is controlled by a 

key. If an invalid key/wrong configure data is applied, it results into either a 

meaningful but non-functional or non-meaningful mode. Thus folding based 

obfuscation results in many equivalent circuits to incur obscurity in the 

structure of a DSP design. The probability that a correct mode is activated is 

considerably reduced for achieving higher security through obfuscation. This 

approach mainly targets loop based DSP applications such as finite impulse 

response (FIR) filters etc.  Further, Sengupta et al. [45] leveraged compiler 

based high level transformations (HLTs) to structurally obfuscate DSP 

hardware accelerators. Following compiler based high-level transformations 

have been exploited [45], [46]: redundant operation elimination (ROE), logic 

transformation, tree height transformation (THT), loop unrolling and loop 

invariant code motion. ROE technique eliminates those operations (or nodes in 

CDFG) whose inputs and operation type match with another operations/nodes 

in the CDFG. Logic transformation alters some operation types in the CDFG, 

maintaining the design functionality intact. THT technique causes some 

operations to be executed as parallel sub-computation rather than sequential 

execution. Thus it leads to either increase or decrease in the tree height.  Loop 

unrolling technique unrolls the loop body based on unrolling factor. This 

changes the number of times reuse of FUs and also reduces design latency 

because of allowing parallelism. Loop invariant code motion technique moves 

those operations out of the loop which are not dependent on the loop 

iterations. Applying aforementioned complier based techniques significantly 

transform the CDFG of DSP application without affecting original 

functionality. These high level transformations considerably alter the RTL 
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datapath of the DSP application post HLS. This alteration includes changes in 

size and number of Muxes and Demuxes, changes in interconnectivity of 

functional units (FUs) with Muxes, Demuxes and change in number of storage 

elements (registers) etc. In addition, Sengupta et al. [45] explored low-cost 

solution by integrating PSO-DSE framework with the HLS process. This PSO-

DSE provides optimal resource constraints to schedule transformed/obfuscated 

graph which in turn leads to minimal design cost of structurally obfuscated 

design.  Furthermore, Sengupta et al. [47] proposed THT based structural 

obfuscation for protecting JPEG codec hardware accelerators. And, Sengupta 

et al. [48] proposed hybrid transformations based structural obfuscation to 

protect fault secured DSP designs. A structurally obfuscated design is arduous 

to be successfully reverse engineered, hence thwarting hardware Trojan 

insertion attack. 

Limitations: The applicability of existing structural obfuscation approaches 

rely on the nature of the intended application to be secured. The high level 

transformations employed in existing approaches may not be universally 

applied to all target applications. This demands alternative techniques which 

can be applied to wide variety of applications. Furthermore, the strength of 

obfuscation value needs to be enhanced /improved in order to achieve higher 

security against the potential Trojan insertion attack. 

2.3. Objective of the Thesis 

This thesis aims at developing novel techniques/methodologies for securing 

DSP and multimedia based IP cores against the foregoing hardware threats. 

This is achieved by setting out the following objectives: 

1. To develop robust detective control mechanisms using IP core 

steganography for securing DSP and multimedia IP cores against the threat 

of IP piracy. 

2. To develop a robust preventive control mechanism against the potential 

hardware Trojan insertion attack using hologram based structural 

obfuscation. 

3. To develop double line of defense mechanisms to secure the DSP and 

multimedia IP cores to handle both the IP piracy and Trojan insertion 
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threats simultaneously by integrating structural obfuscation techniques 

with the hardware watermarking/steganography. 

4. To develop a methodology for designing secured (obfuscated) and 

reconfigurable image processing filters hardware accelerators and a 

secured DFT processor. 

5. To develop robust countermeasures against the potential removal attack to 

secure functionally obfuscated DSP cores. 

6. To develop a robust preventing control mechanism against the threat of IP 

piracy using logic locking of DSP and multimedia IP cores. 

2.4. Summary of the Contributions 

 A novel detective control approach for securing against IP piracy using 

proposed entropy based IP core steganography. (publications: #2) 

- Proposes a novel ‘IP core steganography’ for enabling detection of piracy 

of DSP kernels.  

- The extent to which secret stego-information could be implanted is 

designer controlled through an ‘entropy threshold’ value. 

- Achieves reduced typical register overhead while improving the 

robustness of the IP core protection. 

 A novel detective control approach for securing against IP piracy using 

proposed key-driven hash chaining based IP core steganography. 

(publications: #3, #19) 

- Proposes a novel key-driven hash-chaining based IP steganography to 

secure against ‘counterfeit ICs/IPs with copied stego-mark’. This 

impedes an adversary from copying and misusing the authentic stego-

mark to escape counterfeit detection process.  

- The proposed approach exploits manifold encoding schemes, switch 

based hash blocks (driven through stego-keys) alongwith regular hash 

blocks in the hash-chaining process. 

- Yields stronger security in terms of robust digital evidence (stego-mark) 

and larger key size at trivial area overhead.  

 A novel methodology of hologram based structural obfuscation to secure 

DSP cores against reverse engineering based attacks. (publications: #1, 

#16) 
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- Proposed work leverages a security image hologram feature to 

introduce a novel hologram based structural obfuscation technique for 

securing DSP cores at register transfer level. 

- Presents multiple algorithms for generating hologram based obfuscated 

design by integrating two DSP cores. 

 A novel double line of defense methodology using proposed integrated 

tree height transformation based structural obfuscation and Crypto-

steganography approach for securing JPEG processor and DFT processor. 

(publications: #8, #10, #11, #13) 

- Proposes first work towards securing JPEG codec hardware using 

double line of defense based on structural obfuscation and crypto-

steganography to provide enhanced security.  

- Presents a design flow of generating a secured N-point DFT application 

specific processor using the proposed double line of defense. 

- The structural obfuscation is employed as 1
st
 line of defense against 

Trojan insertion and the 2
nd

 line of defense is deployed by embedding 

proposed crypto-based dual phase hardware steganography. 

- The hardware steganography as a second line of defense uses following 

security modules/properties to generate a robust stego-mark: 

substitution using S-box (confusion property), diffusion property, 

alphabetic encryption, alphabet substitution, byte concatenation and bit-

encoding.   

 A novel double line of defense methodology using proposed integrated 

multi-key based structural obfuscation and physical level watermarking 

approach (publications: #4, #12) 

- Proposes a design methodology for generating secured DSP circuits 

using double line of defense via key based structural obfuscation as 

preventive control and physical level watermarking as detective control 

- The obfuscation is performed using key-driven partition and key-driven 

folding knob based transformations combined with key-driven loop 

unrolling, key-driven ROE and key-driven THT. 

- The proposed physical-level watermarking is performed through early 

floorplanning of obfuscated DSP circuits. 
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 A novel HLS driven secured hardware accelerator design methodology for 

image processing filters (publication: #5) 

- Proposes a methodology of designing a hardware accelerator 

architecture using HLS process for 3×3 and 5×5 kernel filters of image 

processing applications.  

- Designs structurally obfuscated hardware accelerator architecture using 

high level transformations for both 3×3 and 5×5 filters.  

- Designs structurally obfuscated architectures of five types of 3×3 filters 

such as blurring, sharpening, vertical embossment, horizontal 

embossment and Laplace edge detection.  

- Proposes an obfuscated 3×3 filter hardware accelerator design in 

reconfigurable functionality mode. 

 Novel SHA-512 based key generation hardware and anti-removal logic 

(ARL) hardware based techniques for securing functionally obfuscated 

DSP cores (publications: #5, #9, #15).   

- Proposes for the first time key-generation logic for ILBs 

reconfiguration using a custom SHA-512, to be used for larger size 

designs secured using functional obfuscation. 

- Also proposes key-generation logic using a lightweight ARL unit, to be 

used for smaller size designs secured using functional obfuscation. 

- Proposed logics are capable to reconfigure larger number of ILBs at 

lower design overhead than AES128 logic. 

 A novel methodology for generating secured DSP cores using proposed 

robust logic locking (functional obfuscation) approach to thwart IP piracy 

(publications: #7, #21) 

- Proposes a robust DSP locking cell (DLC) structure to lock the DSP 

circuits against IP piracy. 

- Proposes re-configurability of DLCs based on AES128 output to 

enhance the resilience against removal attack. 

- Proposed DLCs render the brute force attack of extracting the actual 

key ineffective by enabling the true operation of DLCs only upon 

applying correct key in the first trial. 
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Chapter 3 

Hardware Steganography Techniques for Securing IP 

Cores against Piracy 

For the past few decades, the intellectual property (IP) piracy has posed a 

serious threat to the security of IP cores. The illegitimate use of IPs not only 

causes a revenue loss to a true IP vendor but also raises a grave concern about 

the reputation of the genuine IP vendor. This is because, an adversary may sell 

the counterfeit/fake components into the market as authentic ones under the 

brand name of the genuine vendor. Since a counterfeit IP may contain a 

hidden malicious logic inside and not be fully tested for reliable and safe 

operations, hence results in sabotaging the true vendor’s reputation [1]-[3]. 

This entails developing a robust mechanism for enabling the detection of IP 

piracy. The detective control based security of IP cores can be employed 

during the design process at various levels of design abstraction. However in 

case of DSP and multimedia applications, the high level synthesis (HLS) 

process offers an effective and efficient way of integrating the security 

mechanism. The HLS process has various design phases viz. scheduling, 

allocation, binding and datapath synthesis, which can be exploited for 

applying the security. Moreover, the HLS process possesses the flexibility of 

controlling the design cost overhead and parametric constraints such as area, 

power and delay that may be affected due to integrating the security 

mechanism. IP watermarking is a very popular mechanism of detective control 

over IP piracy, which embeds the IP vendor’s signature into the design in the 

form of hardware security constraints [8]-[11]. The details on IP piracy threat 

and the state of the art security mechanisms have been discussed in the 

chapters 1 and 2.  

Novel techniques for detecting the piracy using IP core steganography are 

presented in this chapter. Following two proposed IP core steganography 

techniques are discussed in this chapter: (i) entropy based hardware 

steganography (ii) key-driven hash-chaining based hardware steganography. 

The first section of the chapter formulates the problem. The second section 

discusses the proposed entropy based IP core steganography technique under 
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the following sub-sections: overview, the proposed steganography 

methodology with a motivational example, entropy based steganography 

detection process, demonstration of the entropy based steganography using a 

DSP application, the measure used for evaluating the security and limitations 

of entropy based steganography. The Third section discusses the proposed 

key-driven hash-chaining based IP core steganography methodology under the 

following sub-sections: overview, the proposed key-driven hash-chaining 

based steganography methodology with demonstration using a DSP 

application, steganography detection process, and the measure used for 

evaluating the security. Subsequently, the fourth section presents the metric 

for evaluating the impact of proposed steganography techniques on design 

cost. Finally, the fifth section concludes the chapter.  

3.1. Problem Formulation 

Given a data flow graph (DFG) representation of a target DSP application, 

module library, resource constraint Zi, along with the objective of securing IP 

cores against piracy and false claim of IP ownership, generate a secured stego-

embedded design. 

3.2. Entropy based Hardware Steganography 

The proposed entropy based steganography methodology is discussed under 

the following sub-sections.    

3.2.1. Overview  

Data Flow Graph 

(DFG) of DSP 

Resource 

Constraints 

  

Input Block 

Stego DSP IP Core 

Output Block 

  

High Level Synthesis Framework 

Module 

Library 

Storage 

assignment 

phase in 

Scheduling 

(Phase 1) 

Edge set 

determination 

phase in CIG  

(Phase 2) 

Swapping pair 

determination 

phase 

(Phase 3) 

Maximum 

Entropy 

determination 

phase 

(Phase 4) 

Shortlisted 

Edge Sets 

determination 

phase 

(Phase 5) 

Stego-constraints 

embedding phase 

in IP core at RTL 

(Phase 6) 

Fig. 3.1. Overview of the implanting hardware steganography in IP cores  
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The overview of the proposed steganography framework is shown in Fig. 3.1. 

As shown, the HLS framework is used to accomplish the process of IP 

steganography. Input to the HLS framework is a DFG of the intended DSP 

application and output is the steganography embedded IP core (Stego IP core). 

Further, the process of embedding steganography using the HLS framework is 

allocated to six different phases.  Phase 1 takes the DFG of the target 

application as input and accomplishes the storage assignment process post 

scheduling. Phase 2 first forms a colored interval graph (CIG) [25] where the 

storage variables are denoted using different nodes in the graph and then 

performs determination of edge set where all the edges between two nodes of 

same colors in the CIG are listed. Further, phase 3 takes this edge set as input 

and performs the determination of swapping pairs for each edge in the set. 

Fig. 3.2. Embedding process of hardware steganography for an IP Core 
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Next, phase 4 determines the maximum entropy for each edge in the set. Then 

a sub-set of edges is shortlisted in the phase 5 based on the designer’s chosen 

entropy threshold value. In the last, phase 6 embeds the shortlisted edges into 

the design in the form of constraints edges added to the CIG to generate a 

stego-IP core. 

3.2.2. Elaborating entropy based IP core steganography with a 

motivational example 

The proposed methodology is elaborated in this section using a motivational 

example. Fig. 3.2 highlights the details of the proposed methodology and its 

various phases are explained as follows:  

Phase 1: Storage variables assignment in the scheduled DFG 

The phase 1 takes the DFG of the DSP IP core to be secured as input and 

performs the scheduling step of HLS based on the resource constraints to 

generate the corresponding scheduled DFG (SDFG). Further, in this phase, 

storage variable assignment in the SDFG is performed wherein storage 

variables are assigned to the inputs and output of each operation. Successively, 

a colored interval graph (CIG) is created to show the binding of storage 

variables (nodes) to the minimum number of registers (colors). The storage 

variable assignment of a sample application is shown in Table 3.1, where V0 

to V7 indicate the storage variables and Red (R), Blue (B) and Green (G) 

indicate the three distinct registers. The corresponding graphical 

representation in the form of CIG is shown in Fig. 3.3. 

Phase 2: Edge set determination in the CIG 

 
Fig. 3.3.  CIG of the sample application 

Table 3.1 Storage variable assignment 

of a sample application  

Control step Red Blue Green 

CS 0 V0 V1 V2 

CS 1 V3 V4 V5 

CS 2 V6 --- V5 

CS 3 V7 --- -- 

 

https://www.draw.io/#G1cp6HakEI4x_U5_Tb3lanjPvSoaZsFAyf
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An edge between two nodes in the CIG shows that the life time of two storage 

variables are overlapping, hence the colors (register assignment) of both nodes 

in such pairs are distinct. This also indicates that the edges between same color 

nodes in the CIG can never be drawn. In this phase, all the possible edges 

(constituting the edge set) that could be added between the nodes of same 

colors are identified. For the sample application being explained, the set of all 

possible edges between the nodes of same colors is as follows:  D= {<V0, 

V3>, <V0, V6>, <V0, V7>, <V1, V4>, <V2, V5>, <V3, V6>, <V3, V7>, 

<V6, V7>}.  

Phase 3: Swapping pair determination  

The input for phase 3 becomes all the edges mentioned in the set ‘D’ obtained 

Table 3.2 (a): Swapping pairs and corresponding 

entropies (EVi,Vj
) for the edge (V0, V3) 

CS 
Swapping 

pair 

Swapping 
colors 

(Registers) 

(𝐸𝑉𝑖,𝑉𝑗
) 

CS0 (V0 ⇔ V1) (R ⇔ B) 2 

CS0 (V0 ⇔ V2) (R ⇔ G) 2 

CS1 (V3 ⇔ V4) (R ⇔ B) 2 

CS1 
(V3 ⇔ V5) 

(V6 ⇔ V5) 

(R ⇔ G) 

+ 

(R ⇔ G) 

3 
CS2 

 

Table 3.2 (b): Swapping pairs and 

corresponding entropies for the edge (V0, V6) 

CS 
Swapping 
pair 

Swapping 

colors 

(Registers) 

(𝐸𝑉𝑖,𝑉𝑗
) 

CS0 (V0 ⇔ V1) (R ⇔ B) 2 

CS0 (V0 ⇔ V2) (R ⇔ G) 2 

CS2 (V6 ⇒ --) (R ⇒ B) 1 

CS2 

(V6 ⇔ V5) 

+ 

(V3 ⇔ V5) 

(R ⇔ G) 

 
3 

 

Table 3.2 (c): Swapping pairs and 

corresponding entropies for the edge (V0, V7) 

CS 
Swapping 
pair 

Swapping 

colors 

(Registers) 

(𝐸𝑉𝑖,𝑉𝑗
) 

CS0 (V0 ⇔ V1) (R ⇔ B) 2 

CS0 (V0 ⇔ V2) (R ⇔ G) 2 

CS3 (V7 ⇒ --) (R ⇒ B) 1 

CS3 (V7 ⇒ --) (R ⇒ G) 1 

 

Table 3.2 (d): Swapping pairs and 

corresponding entropies for the edge (V1, V4) 

CS 
Swapping 

pair 

Swapping 

colors  
(𝐸𝑉𝑖,𝑉𝑗

) 

CS0 (V1 ⇔ V0) (B ⇔ R) 2 

CS0 (V1 ⇔ V2) (B ⇔ G) 2 

CS1 (V4 ⇔ V3) (B ⇔ R) 2 

CS1 

CS2 

(V4 ⇔ V5) 

+ 

(V5 ⇒ --) 

(R ⇔ G) 

+ 

(R ⇒ G) 

2 

 

Table 3.2 (e): Swapping pairs and 

corresponding entropies for the edge (V2, V5) 

CS 
Swapping 

pair 
Swapping 

colors 
𝐸𝑉𝑖,𝑉𝑗

 

CS0 (V2 ⇔ V0) (B ⇔ R) 2 

CS0 (V2 ⇔ V1) (G ⇔ B) 2 

CS1 (V5 ⇔ V4) (G ⇔ B) 2 

CS1 

CS2 

(V5 ⇔ V3) 

+ 

(V5 ⇔ V6) 

(G ⇔ R) 

+ 

(G ⇔ R) 

3 

 

Table 3.2 (f): Swapping pairs and 

corresponding entropies for the edge (V3, V6) 

CS 
Swapping 

pair 
Swapping 

colors 
𝐸𝑉𝑖,𝑉𝑗

 

CS1 
(V3 ⇔ 

V4) 
(R ⇔ B) 2 

CS2 (V6 ⇒ --) (R ⇒ B) 1 

 

Table 3.2 (g): Swapping pairs and 

corresponding entropies for the edge (V3, V7) 

CS 
Swapping 

pair 
Swapping 

colors 
𝐸𝑉𝑖,𝑉𝑗

 

CS1 (V3 ⇔ V4) (R ⇔ B) 2 

CS1 

(V3 ⇔ V5) 

+ 

(V5 ⇔ V6) 

(R ⇔ G) 3 

CS3 (V7 ⇒ --) (R ⇒ B) 1 

CS3 (V7 ⇒ --) (R ⇒ G) 1 

 

Table 3.2 (h): Swapping pairs and 

corresponding entropies for the edge (V6, V7) 

CS 
Swapping 

pair 
Swapping 

colors 
𝐸𝑉𝑖,𝑉𝑗

 

CS2 (V6 ⇒ --) (R⇒ B) 1 

CS2 

(V6 ⇔ V5) 

+ 

(V5 ⇔ V3) 

(R ⇔ G) 3 

CS3 (V7 ⇒ --) (R ⇒ B) 1 

CS3 (V7 ⇒ --) (R ⇒ G) 1 
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in the previous phase. This phase determines the possible swapping pairs in 

the CIG for enabling the addition of an edge <Vi, Vj> between the node pairs 

Vi and Vj in the set ‘D’. Essentially, the conflict in inserting an edge between 

node pair Vi and Vj can be resolved using multiple such possible swapping 

pairs. For the all edges determined in the previous phase, the possible 

swapping pairs are shown in Table 3.2.  

Phase 4: Maximum entropy determination  

This phase finds the entropy for each swapping pair of each edge mentioned in 

the edge set D. The entropy E(Vi,Vj) of a swapping pair of the edge <Vi, Vj> 

represents the number of color transformations needed to enable embedding of 

that particular edge in the CIG. Further, for all edges in the set ‘D’, the 

maximum value of entropy (ME(Vi,Vj)) among all the possible swapping pairs 

for an edge <Vi, Vj>  is determined. 

Phase 5: Eligible edges determination as stego-constraints 

The eligible edges are those edges in the edge set D which qualify for 

embedding into the CIG as steganography constraints. These edges become 

eligible based on a vendor specified threshold entropy value (T
E
) following the 

given eligibility criteria: 

Edge eligibility = {
yes, ME(Vi,Vj) ≤ TE

no, ME(Vi,Vj) > TE                                 (3.1) 

For the sample application being discussed in this section, the eligible edges 

for T
E
 = 2 are as follows: <V0, V7>, <V1, V4>, and <V3, V6>. 

Phase 6: Stego-constraints embedding  

Table 3.3 Storage assignment 

post implanting stego-constraints 

CS Red Blue Green 

CS 0 V0 V1 V2 

CS 1 V3 V5 V4 

CS 2 --- V5 V6 

CS 3 --- --- V7 

 

 
Fig. 3.4.  Final CIG after implanting all the edges 

https://www.draw.io/#G1cp6HakEI4x_U5_Tb3lanjPvSoaZsFAyf
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In this phase, all the eligible edges are embedded into the design in the form of 

adding constraint edges to the CIG of the target DSP application. Since an 

edge cannot be directly added between the nodes of same colors, therefore the 

proposed algorithm seeks for the corresponding possible swapping pairs to 

enable the addition of the edge. For example, eligible edges obtained in the 

previous phase are implanted in the CIG using the following solutions: 

(a) The embedding of edge <V0, V7> requires the color transformation of V7 

from R to G in the CS3 as shown in Table 3.2(c). 

(b)  The embedding of edge <V1, V4> requires the color transformations of 

V4 from R to G and V5 from G to R in the CS1 as shown in Table 3.2(d). 

(c) The embedding of edge <V3, V6> requires the color transformation of V6 

from R to B in the CS2 as shown in Table 3.2(f). 

Using the above solutions, the vendor’s entropy controlled stego-constraints 

are embedded into the design during the register binding step of the HLS 

process. Post embedding the constraints, the modified CIG of the sample 

application and the corresponding modified storage variable assignment are 

shown in Fig. 3.4 and Table 3.3 respectively. Thus generated a specific 

register binding of storage variables hides the vendor’s secret stego-

information which enables the detection of IP piracy and resolution of IP 

ownership conflict during the verification process.    

3.2.3. Steganography detection 
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Fig. 3.5.  Proposed entropy based steganography detection process 
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Detection of the stego-information in the DSP IP core is a vital and essential 

process for resolving IP ownership conflict and detecting piracy. The detail of 

the proposed steganography detection process is highlighted in Fig. 3.5. As 

shown, the detection is performed by extracting the hidden information from 

the design and verifying it with the stego-constraints obtained using the 

claimant’s steganography process based on the entropy threshold value ‘T
E
.  

3.2.4. Demonstration of the entropy based steganography using 8-point 

DCT core 

An 8-point DCT is a DSP algorithm which is used in the JPEG compression 

process to convert the pixel intensities from spatial domain to the frequency 

domain representation [54]. The scheduled DFG of 8-point DCT based on the 

resource constraints of 1 adder (A1) and 4 multipliers (M1, M2, M3 and M4) 

is shown in Fig. 3.6. As shown in the scheduled DFG, total eight control steps 

(CS) are required to schedule all the operations, and total eight registers viz. 

Violet, Indigo, Blue, Green, Yellow, Orange, Red, and Black are used to 

execute 23 storage variables (V0-V22) of the design. Further, a CIG is created 

from the scheduled DFG and the edge set ‘D’ is determined. The potential 

Fig. 3.6.  Scheduled and hardware allocated 8-point DCT using 1 (+) and 4 (×)  
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edges in the set ‘D’ are as follows: <V0, V8>,  <V0, V16>, <V0, V17>, <V0, V18>, 

<V0, V19>, <V0, V20>, <V0, V21>, <V0, V22>, <V1, V9>, <V2, V10>, <V3, V11>, <V4, 

V12>, <V5, V13>, <V6, V14>, <V7, V15>, <V8, V16>, <V8, V17>,  <V8, V18>, <V8, 

V19>, <V8, V20>, <V8, V21>, <V8, V22>, <V16, V17>, <V16, V18>, <V16, V19>, <V16, 

V20>, <V16, V21>, <V16, V22>, <V17, V18>, <V17, V19>, <V17, V20>, <V17, V21>, 

<V17, V22>, <V18, V19>, <V18, V20>, <V18, V21>, <V18, V22>, <V19, V20>, <V19, 

V21>, <V19, V22>, <V20, V21>,<V20, V22>, < V21, V22>. Further, as per the 

proposed approach, maximum entropy for each edge in the set is determined. 

The corresponding maximum entropy values for all edges in the set ‘D’ are 4, 

7, 7, 7, 7, 7, 7, 3, 2, 3, 4, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7, 4, 3, 4, 4, 5, 6, 7, 4, 4, 5, 6, 

7, 4, 5, 6, 7, 5, 6, 7, 6, 7, 7 respectively.  Further, the aforementioned edge 

eligibility criteria is applied to shortlist the eligible edges based on the entropy 

threshold value T
E
=5. This provides the eligible edges to be embedded into the 

CIG in the form of stego-constraints. The embedding of stego-constraints 

leads to a modified register binding of storage variables, indicating the 

vendor’s secret information hidden into the design. Post embedding stego-

constraints, the scheduled DFG of 8-point DCT is shown in Fig. 3.7. Further a 

stego-embedded RTL datapath is generated after the HLS process, thus 

Fig. 3.7.  The stego-embedded scheduled and hardware allocated 8-point DCT  
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enabling the detection of IP piracy.  

3.2.5. Metrics for evaluating security of entropy based steganography 

The effectiveness of the proposed approach is measured using the security 

achieved and its impact on design cost. The security is measured in terms of a 

probability of coincidence (Pc) metric which indicates the probability of 

coincidently detecting the same stego-information into a design of the same 

application which is not secured using the proposed steganography approach. 

Hence, it is expected to be as low as possible. The following formula is used 

to compute the Pc metric [25], [30]: 

𝑃𝑐 = (1 −
1

𝐺
)

𝑓

                                                  (3.2) 

Where, G denotes the number of registers before embedding steganography, 

and f denotes the number of stego constraints added to the CIG. The Pc can be 

minimized by adding larger number of security constraints into the design, 

indicating higher strength of the stego-mark.  

3.2.6. Limitations of entropy based steganography 

The entropy based steganography approach generates the stego-constraints 

using the secret design data (the initial edge set) and a key-parameter 

(entropy). If this information is compromised to an adversary, then s/he can 

regenerate or duplicate the stego-constraints to misuse them for IP piracy or 

fraudulently claiming the IP ownership. The compromised/copied stego-mark 

can be misused in a counterfeit design by the adversary to evade the 

counterfeiting detection process. This entails developing a robust 

steganography approach which should be arduous to be compromised/ 

attacked by the adversary.  

3.3. Key-driven Hash Chaining based IP Core Steganography  

The proposed key-driven hash-chaining based steganography is a robust 

approach for securing the IP cores against piracy. In this approach, the stego-

constraints generation process involves a robust hash-chaining process and a 

larger size key in order to counter the attacker’s malicious intent of copying 

and misusing the vendor’s authentic stego-mark. This gets rid of the limitations 

of entropy based steganography approach. Further, the stego-constraints are 
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embedded into the design during two distinct phases of HLS, rendering the 

stego-mark highly strong. The proposed key-driven hash-chaining based 

steganography methodology is discussed under the following sub-sections.    

3.3.1. Overview  

This steganography approach generates the stego-constraints using a robust 

hash-chaining process which is regulated using a larger size vendor’s key 

(stego-key). Once the stego-constraints are obtained, they are imposed onto 

the target DSP design during register binding phase and functional unit (FU) 

vendor allocation phases of HLS. Embedding stego-constraints during dual 

phases of HLS enhances the quality of vendor’s stego-mark hidden into the 

design. Fig. 3.8 shows the overview of the proposed dual-phase key-driven 

hash chaining based steganography approach. The inputs and output of the 

proposed approach are highlighted in the figure itself. The generic flow of the 

proposed approach is as follows: (i) performing the scheduling, allocation and 

binding steps on DFG of the target DSP application using the module library 

and resource constraints, (ii) generating various encoded bitstreams of the 

DSP application using proposed encoding rules (ii) performing key-driven 
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hash-chaining process taking the encoded bitstreams as inputs (ii) mapping the 

output bitstream of hash-chaining process to stego-constraints using the 

mapping rules (iii) embedding the secret stego-constraints into the design 

during dual phases (register binding phase and FU vendor allocation phase) of 

HLS. The embedded stego-constraints into the design act as a vendor’s secret 

digital evidence to proving the authenticity of the genuine IP and identifying 

the fake ones.    

3.3.2. Details of key-driven hash chaining based IP core steganography 

with demonstration using 8-point DCT core 

Figure 3.9 shows the details of the proposed methodology and it is elaborated 

with a demonstration on 8-point DCT core under the following steps. 

 

DSP application (DFGsab) 

Fig. 3. 9. Details of proposed key-driven hash-chaining based steganography 
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(a) Scheduling, allocation and binding of input DFG 

This step performs scheduling, allocation and binding of DFG of the input 

DSP application using the resource constraints of one adder and four 

multipliers and the given module library. For example, Fig. 3.10 shows the 

DFG post performing scheduling, allocation and binding phases of HLS. Here, 

the vendor allocation to FUs has been performed using the two-vendor 

allocation scheme in which an FU instance 𝐹𝑏
𝑎 (e.g. 𝑀𝑏

𝑎  𝑜𝑟 𝐴𝑏
𝑎) bears the 

vendor type ‘a’ and instance number ‘b’. In the two vendor allocation scheme, 

the variable ‘a’ can take up only two possible values either 1 or 2. Further, in 

the scheduled, allocated and binded DFG (abbreviated as DFGsab), V0 to V22 

are the storage variables, P, I, V, G, Y, O, R and B are the eight distinct 

registers as shown in Fig. 3.10. Thus obtained DFGsab is used for generating 

various encoded bitstreams.  

(b) Generating encoded bitstreams 

The DFGsab is encoded into various bitstream representations using the 

vendor’s encoding rules. The encoding rules encode each operation of DFGsab 

into either bit ‘0’ or ‘1’, hence the length of the encoded bitstream is same as 

the number of operations (nodes) in the application (DFG). Some proposed 
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encoding rules are as follows: 

1. Encoding rule E1: If operation number (opn#) and respective CS# are both 

even then the opn is encoded as bit ‘0’ otherwise bit ‘1’. 

2. Encoding rule E2: If operation number and respective CS number both 

bear the same parity (both either even or odd) then the opn is encoded as 

bit ‘0’. However, if both bear the different parity then the opn is encoded 

as bit ‘1’.  

3. Encoding rule E3: If operation number and respective CS# are both odd 

then the opn is encoded as bit ‘0’ otherwise bit ‘1’. 

4. Encoding rule E4: If operation number and respective CS number both 

bear the different parity then the opn is encoded as bit ‘0’. However, if 

both bear the same parity then the opn is encoded as bit ‘1’. 

5. Encoding rule E5: If operation number and respective CS# are both prime 

then the opn is encoded as bit ‘0’ otherwise bit ‘1’. 

6. Encoding rule E6: If operation number and respective CS# are both prime 

then the opn is encoded as bit ‘1’ otherwise bit ‘0’. 

7. Encoding rule E7: If the greatest common divisor of operation number and 

the respective CS number is one then the opn is encoded as bit ‘0’. 

However, if the greatest common divisor of operation number and the 

respective CS number is not one then the opn is encoded as bit ‘1’ 

8. Encoding rule E8: If the operation number modulo respective CS number 

is zero then the opn is encoded as bit ‘0’. However, if the operation 

number modulo respective CS number is not zero then the opn is encoded 

as bit ‘1’.  

9. Encoding rule E9: If the CS number is equal to second odd sequence of 

operation number then the opn is encoded as bit ‘0’ otherwise bit ‘1’. 

For demonstration, the encoded bitstream representations of DFGsab of 8-point 

DCT (shown in Fig 3.10) for the aforementioned nine encoding rules are 

respectively as follows:  

“E1: 111110101111111”, “E2: 010110101111111”, “E3: 010111111111111”, 

“E4: 101001010000000”, “E5: 111101011111111”, “E6: 000010100000000”, 

“E7: 000001010000010”, “E8: 000010101111101”, “E9: 111111111111111” 

However, an application having x operations can have 2
x
 possible encoded 

bitstream presentations using the same number of encoding rules. 
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(c) Generating a hashed bitstream using key-driven hash-chaining 

process 

The encoded bitstreams of the DSP application are fed to the key-driven hash 

chaining process to generate a hashed bitstream. If there are n number of 

encoded bitstreams then 2×n hash blocks are used in the hash chain. Each hash 

block performs a SHA-512 algorithm on 1024-bit input data where the 1024-

bit data is formed using the following procedure: 
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For the 1
st
 hash block in the hash chain: the encoded bitstream of length x-bit 

is first appended with ‘1’ followed by sequence of ‘0’ bits to form a 896-bit 

chunk. Further, the 128-bit representation of the length ‘x’ of encoded 

bitstream is appended to the 896-bit chunk to form 1024-bit input to the 1
st
 

hash block. 

For the remaining hash blocks in the chain: the 512-bit output of previous 

hash-block is concatenated with a 4-bit chunk “1000” followed by 380-bit 

output of bits-padding block and 128-bit representation of the length ‘512 bits’ 

of previous hash, to form 1024-bit input to the remaining hash blocks. The 

380-bit output of bits-padding block is generated by padding designer’s 

chosen (380-x) bits before the x-bit long encoded bitstream.  

Further, in the hash-chaining process, the i
th

 hash block uses the i
th

 bitstream 

where ‘i’ varies from 1 to n (the number of encoded bitstreams). However, the 

remaining n- hash blocks are key driven where the encoded bitstreams used by 

a key-driven hash block is determined by the stego-key value of size ⌈log2n⌉ 

bits. The total stego-key size is computed to be is n×⌈log2n⌉ bits as there are n 

number of key-driven hash blocks in the hash-chain. The output of final hash-

block is 512-bit hashed bitstream. 

For the 8-point DCT application being demonstrated, nine (n=9) encoding 

rules are used to generate the 9 encoded bitstreams which are processed by 

2n=18 hash blocks through the hash-chain process. The hash block number 10 

to 18 are the key driven hash blocks which use the following keys 

respectively: “1000, 0111, 0110, 0101, 0100, 0011, 0010, 0001, 0000”.  

(d) Mapping the hashed bitstream into stego-constraints  

The 512-bit long hashed bitstream is first truncated to the designer selected 

size of stego-constraints. For the demonstration on DCT core, let’s say the 

chosen constraints size is 24 bits and the truncated bitstream is as follows: 

“111100010011101000011000” which contains 13 zeros and 11 ones. The bits 

of the truncated hashed bitstream are mapped to the stego-constraints using the 

following mapping rules:  

‘0’: An edge added between node pair (even, even) of the CIG 

‘1’: Odd operations are assigned to FU of vendor type 1 and even 

operations are assigned to FU of vendor type 2.   
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Where, the CIG corresponding to the DFGsab of a DSP application graphically 

represents the register binding of storage variables. 

For the 8-point DCT application, the corresponding CIG is shown in Fig. 

3.11(a) which is exploited to embed secret stego-constraints into the design.   

(e) Embedding stego-constraints into the design 

The obtained stego-constraints are embedded into the design in the form of 

extra edges added to the CIG and a specific FU vendor allocation to the 

respective operation. The stego-constraints corresponding to bit ‘0’ and bit ‘1’ 

are implanted in the design during register binding and FU vendor allocation 

phase respectively of HLS. The constraint edges added to the CIG 

corresponding to the 13 zeros  (obtained in the previous step) are as follows: 

<V0,V2>, <V0,V4>, <V0,V6>, <V0,V8>, <V0,V10>, <V0,V12>, <V0,V14>, <V0,V16>, 

<V0,V18>, <V0,V20>, <V0,V22>, <V2,V4>, <V2,V6>. These edges are deliberately 

added to the CIG one by one, indicating the vendor’s stego-information 

embedded into the design during register binding phase of HLS. Sometimes, 

adding extra edges may result into conflict as no edge can exist between two 

nodes of similar color. This conflict is resolved through local valid alterations 
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in the colors of the nodes. However, in some cases, additional colors 

(registers) may be needed to accommodate the constraints. The CIG post 

embedding stego-constraints corresponding to bit 0 are shown in Fig. 311(b).  

Further, the constraints corresponding to bit ‘1’ specify the constraint-based 

allocation of FU vendor type to the respective operations in the DFGsab. Post 

embedding all the constraints, the DFGsab is shown in Fig. 3.12. Thus obtained 

stego-DFGsab is transformed into the stego-RTL by performing datapath and 

controller synthesis phases of HLS. The stego-RTL is a secured soft IP core of 

the respective DSP application, enabling the detection of IP piracy.  

In the proposed steganography approach, the amount of digital evidence 

hidden into the design is higher because of inserting constraints during two 

distinct phases of HLS process. This results in a stronger stego-mark leading 

to the robust detection of IP piracy.  

3.3.3. Steganography detection 

The detail of the key-driven hash chaining based steganography detection 

process is highlighted in Fig. 3.13. As shown, the detection is performed by 
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extracting the hidden information from the design and verifying it with the 

stego-constraints obtained using the key-driven hash chaining process. 

3.3.4. Metrics for evaluating security of key-driven hash-chaining based 

steganography 

Security of key-driven hash chaining based steganography is evaluated using 

the following metrics: (i) probability of coincidence (Pc) metric (ii) maximum 

possible size of stego-key (iii) the attacker’s maximum effort of decoding the 

valid stego-key (iv) attacker’s effort in terms of finding encoded bits (v) 

attacker’s total effort in determining the stego-constraints.  

(i) Probability of coincidence of key-driven hash-chaining based 

steganography: This metric is measured using the following formula: 

Pc = (1 −
1

G
)

f1

× (1 −
1

π
i=1
y

N(Zi)
)

f2

                                  (3.3) 

Where, the first term in the equation corresponds to the Pc due to embedding 

constraints in the register binding phase and the second term corresponds to 

the Pc due to embedding constraints in the FU vendor allocation phase. Here, 

in the first term, G denotes the number of registers before embedding 

steganography, and f1 denotes the number of stego constraints added to the 

CIG. Further, in the second term, ‘y’ denotes the types of resources in the DSP 

application, N(Zi) denotes the number of instances of each FU type and f2 

denotes the number of stego constraints added during the FU vendor allocation 

phase.  

(ii) Maximum possible size of stego-key: The maximum possible size of the 

stego-key (𝑘𝑒𝑦𝑚
𝑠 ) is computed as follows: 

keym
s = U × ⌈log2U⌉ bits                                          (3.4) 

Where, ‘U’ denotes the total possible encodings for a DSP application. The 

value of U is computed to be 2
x
, where ‘x’ is the number of operations in the 

DSP application. The U=2
x
 also represents the total number of key-driven 

hash blocks that can be chained in the hash-chaining process. Further, ⌈log2U⌉ 

is the size of the stego-key used to drive each key-driven hash block. 
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(iii) Attacker’s maximum effort of decoding the valid stego-key: This metric is 

given by the following equation: 

Am
sk = 2U×⌈log2U⌉                                         (3.5) 

Where, Am
sk denotes attacker’s max effort in terms of deducing the stego-key. 

(iv) Attacker’s effort in terms of finding encoded bits: This metric is given by 

the following equation: 

Am
eb = 2380×2n                                          (3.6) 

Where, Am
eb denotes the attacker’s effort in terms of finding the encoded bits, 

380 bits is the output of a padding block and 2n is the total number of hash 

blocks in the hash-chaining process. 

(v) Attacker’s total effort in determining the stego-constraints: This metric is 

given as follows using eq. (3.5) and eq. (3.6): 

AT
s = Am

sk × Am
eb 

                                                  AT
s =  2U×⌈log2U⌉ × 2380×2n 

                                                       AT
s =  2(U×⌈log2U⌉+(380×2n))                            (3.7) 

Where, 𝐴𝑇
𝑆  denotes the attacker’s total effort in determining the stego-

constraints imposed onto the intended design. 

3.4. Metric for Evaluating Impact of Proposed Steganography 

Techniques on Design Cost  

Embedding stego-constraints to the designs may impact the design cost. This 

is because, adding the constraints may require additional hardware or control 

steps to accommodate them. Therefore, to evaluate the feasibility of the 

proposed steganography approach, the design cost post embedding stego-

constraints is required to be computed. The following function is used to 

compute the design cost: 

𝐶𝑓(𝑍𝑖) = 𝛽1
𝐿𝑇

𝐿𝑚𝑎𝑥
+ 𝛽2

𝐴𝑇

𝐴𝑚𝑎𝑥
                                            (3.8) 

Where, Cf(Zi) is the cost of the design scheduled using the resource 

constraints Zi, further, LT and AT denote the design delay and area at the given 

resource constraints, Amax and Lmax denote the maximum design area and 
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delay within the possible design space, β1 and β2 denote the weights which are 

kept to be 0.5 to assign equal preference to both delay and area. 

3.5. Summary 

The IP core piracy threat was handled using the proposed IP core 

steganography methodologies. The proposed entropy based steganography 

approach offers the flexibility of controlling the amount of stego-information 

to be inserted into the design using an entropy threshold value. The IP 

designer/vendor can vary the entropy threshold from low to high value to 

achieve the higher strength of the stego-mark. Additionally, the proposed 

approach is measured in terms of its security and design cost to evaluate its 

effectiveness. Further, the key-driven hash-chaining based hardware 

steganography approach was discussed in this chapter. This approach involves 

vendor’s large size stego-key and a robust hash-chaining process to generate 

the stego-constraints. This approach overcomes the potential threat of evading 

IP counterfeiting due to a copied stego-mark in the fake designs. Achieving a 

robust security against IP piracy, while incurring negligible cost overhead, is 

the strength of the proposed steganography approaches. The experimental 

results of the entropy based steganography and key-driven hash chaining 

based steganography have deeply been analyzed in the chapter 10 of this 

thesis.  
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Chapter 4 

Hologram based Structural Obfuscation to Thwart 

Reverse Engineering based Attacks 

Reverse engineering (RE) is a process of extracting a desired higher level of 

abstraction from a given lower level of abstraction of an intended design by 

analyzing its internal details. It can be performed at following various levels: 

(i) to extract the layout of the design from the IC through de-packaging, 

delayering, imaging and pattern recognition technique (ii) to extract the gate 

level netlist from the layout of the design through analyzing transistors 

interconnectivity and matching it against the standard cells (logic gates) in the 

library (iii) to extract high level functionality (e.g. datapath and controller) 

from a given gate level netlist by partitioning it into sub-circuits and then 

matching them against the RTL components in the module library. RE can be 

legally performed for the aim of teaching, analyzing, or evaluating the ideas or 

methods applied in the intended circuitry. This is supported by the 

Semiconductor Chip Protection Act, USA. However, reverse engineering has a 

darker side as well. An adversary in an untrustworthy design house or foundry 

may perform the RE to realize his/her ill intentions of stealing the design 

intents or inserting a malicious logic (hardware Trojan) inside the design. 

More explicitly, the RE can result into IP piracy and Trojan attack which may 

not only harm the vendor’s or designer’s revenue but also ruin his/her 

credibility. The RE based attack can be thwarted by making RE as hard and 

time consuming as possible. Considering the today’s attacker competence, the 

absolute security against RE cannot be deployed. However, rendering the 

illegal actions by the attacker/adversary highly expensive through RE is 

considered as enough security. Towards the protection against RE by a 

potential adversary, structural obfuscation is a technique of internal 

architecture concealment which makes the design structure unobvious to be 

interpreted by the adversary hence hindering the RE process [1]-[4].    

This chapter presents a novel structural obfuscation technique based on the 

security image hologram feature to secure the DSP circuits against the RE 

based attack of IP piracy and potential hardware Trojan insertion. The first 

section formulates the problem. The second section discusses the hologram 
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based structural obfuscation approach under the following sub-sections: 

overview, elaborating hologram based obfuscation technique and metric for 

evaluating the security achieved. Next, the third section demonstrates the 

generation of hologram obfuscated design. Further, the fourth section 

highlights the similarity between the hologram obfuscated design and a 

security image hologram. Finally, the fifth section summarizes the chapter.  

4.1. Problem Formulation 

Given the data flow graph (DFG) representations of two target DSP 

applications, module library, resource constraint, along with the objective of 

securing IP cores against RE based attacks, generate a secured (structurally 

obfuscated) integrated RTL design of DSP cores. 

4.2. Hologram based Structural Obfuscation Approach 

This section discusses the proposed hologram based structural obfuscation 

approach under the following sub-sections:  

4.2.1. Overview  

The overview of the hologram based structural obfuscation technique is 

depicted in Fig. 4.1. This obfuscation technique takes inputs in the form of 

  

Perform hologram based obfuscation during high level synthesis (HLS) 

Hologram obfuscated RTL 

design 

Scheduled Data Flow Graph (DFG) of two DSP applications 

Rule #2: Multiplexing of all inputs of both applications 

Rule #1: Multiplexing of inputs of only similar portions of both applications 

Rule #3: Multiplexing of inputs of only similar components of both applications 

Input 

Fig. 4.1. Overview of Hologram based obfuscation approach 

  

Output 
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data flow graph (DFG) of two DSP applications and generates a hologram 

obfuscated design at the output. Thus generated obfuscated design is a 

camouflaged integrated RTL datapath of the input DSP applications. To 

perform the hologram based obfuscation technique, following three rules 

(highlighted in Fig. 4.1) are applied:  

(i) The first rule: only a sub-set of inputs of two DSP applications are 

subjected to multiplexing to generate the obfuscated datapath.  

(ii) The second rule: all inputs of two DSP applications are subjected to 

multiplexing to generate the obfuscated datapath.  

(iii) The third rule: only inputs of similar operations of both DSP 

applications are subjected to multiplexing.  

To produce a hologram obfuscated design, the application of the above 

mentioned rules depends on the level of similarity of two intended DSP 

applications.  

4.2.2.  Elaborating hologram based obfuscation technique  

This section elaborates the proposed approach of generating a hologram based 

obfuscated design. Fig. 4.2 shows the details of the process of deploying 

hologram based structural obfuscation which employs three different rules 

during the datapath synthesis phase of the HLS process. As shown in the 

figure, the DFG forms of two DSP applications (DSP-1 and DSP-2) are first 

subjected to pre-synthesis phase of HLS where scheduling, allocation and 

binding are performed. The pre-synthesis phase produces scheduled, allocated 

and binded DFG (DFGsab) of two DSP applications. Further, DFGsab-1 and 

DFGsab-2 are subjected to datapath synthesis phase of HLS where proposed 

hologram based obfuscation is applied to generate a structurally obfuscated 

integrated RTL datapath of DSP-1 and DSP-2. The elaboration of proposed 

rules for hologram based obfuscation is as follows: 

(i) The first rule: multiplexing sub-set of inputs of two DSP 

applications: 

If a portion of DFGsab-1 of DSP-1 matches with the DFGsab-2 of DSP-2 (the 

matched portions of DSP-1 and DSP-2 contain similar operations with similar 
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input-output connectivity), then the datapath synthesis phase undergoes 

following actions: 

1. The inputs of only matched portions of DSP-1 and DSP-2 applications 

are multiplexed using multiplexers (Muxes) in the integrated datapath.  

2. The outputs of DSP-1 and DSP-2 applications are also multiplexed 

using a multiplexer in the integrated datapath.  

In the obfuscated integrated datapath, switching between two designs is 

executed using multiplexers of size 2×1. And, the switching is regulated using 

a designer control input ‘C’ which acts as a select line for the switching 
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DSP application -1 

DFG-2 representing 

DSP application -2 

Scheduling, Resource 

Allocation and Binding 

Scheduling, Resource 
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Fig. 4.2. Flow of generating a Hologram obfuscated DSP design  

Datapath 

Synthesis 

phase of 

HLS 

Pre- 

Synthesis 

phase of 

HLS 

Yes 

Yes 

No 

No 

Yes 

Hologram based obfuscated RTL design 

Datapath synthesis complying with three rules 

Rule #2 

Rule #3 



46 

Muxes. At control input ‘C’=0, one DSP core becomes functional by taking 

inputs through switching Muxes whereas at ‘C’=1, another DSP core becomes 

functional in the obfuscated integrated datapath. This rule of hologram based 

obfuscation is demonstrated in section 4.3 by selecting finite impulse response 

(FIR) filter application as DSP-1 and infinite impulse response (IIR) filter 

application as DSP-2. 

(ii) The second rule: multiplexing of all inputs of two DSP 

applications: 

If the DFGsab-1 of DSP-1 fully matches with the DFGsab-2 of DSP-2 (i.e. 

possessing identical number of inputs and outputs and same operations with 

the same input-output connectivity), then the datapath synthesis phase 

undergoes following action: 

1. All inputs of DSP-1 and DSP-2 are multiplexed using Muxes in the 

integrated datapath.  

At control input ‘C’=0, one DSP core becomes functionally active whereas at 

‘C’=1, another DSP core becomes functionally active. 

(iii) The third rule: multiplexing of the inputs of same operations in 

two DSP applications: 

The applicability of this rule depends on the presence of similar operations 

(nodes) in the DFGsab-1 of DSP-1 and DFGsab-2 of DSP-2 with different inputs 

and output. If some operations are similar in two DSP applications then the 

datapath synthesis phase undergoes following action: 

1. The inputs of the functional modules corresponding to the similar 

operations of two DSP applications are multiplexed using Muxes in the 

integrated datapath. The functional modules of DSP-1 get inputs when 

the control signal ‘C’ is =0 whereas the functional modules of DSP-2 

get inputs when the control signal ‘C’ is =1. In this fashion, 

functionality of one of the application is activated at a time using the 

control input ‘C’.  

Post applying these rules of hologram based obfuscation on DFGsab-1 of DSP-

1 and DFGsab-2 of DSP-2 during the datapath synthesis phase of HLS 
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framework, a structurally obfuscated integrated RTL design is produced. The 

structurally obfuscated RTL design acts as a common datapath for both DSP 

cores. The hologram based obfuscation approach enables the camouflaging of 

two DSP cores into a single RTL datapath to ensure the internal architecture 

concealment or structural obfuscation. Thus produced structurally obfuscated 

design is harder to be reverse engineered by an adversary, hence thwarting the 

theft of original design intents and also the potential insertion of hardware 

Trojan in an untrustworthy design house or foundry. 

4.2.3. Metric for evaluating security of hologram based obfuscation 

A strength of obfuscation (Sn) metric is used to analyze the security achieved 

using the proposed hologram based obfuscation technique. The Sn metric is 

given as follows: 

𝑆𝑛 =
𝐺𝑐

𝑓

𝐺𝑐
𝑇                                                     (4.1) 

Where, 𝐺𝑐
𝑓
 denote the number of gates affected due to applying obfuscation 

and 𝐺𝑐
𝑇 denote total number of gates in the respective un-obfuscated design. 

Further, the number of gates affected (𝐺𝑐
𝑓
) post structural obfuscation is 

computed using the following equation: 

𝐺𝑐
𝑓

=  ∆𝐺𝑐
𝑓𝑏 

+  𝐺𝑐
𝑖𝑝                                                   (4.2) 

Where, ∆𝐺𝑐
𝑓𝑏 

denotes the difference in gate count between obfuscated design 

and un-obfuscated version and 𝐺𝑐
𝑖𝑝

 denote the number of gates altered in terms 

of input connectivity post obfuscation. 

4.3. Demonstration on Generating Hologram Obfuscated 

FIR-IIR Filter Integrated Datapath 

This section elaborates the process of generating structurally obfuscated FIR-

IIR filter integrated datapath using the proposed hologram based obfuscation 

approach. The hologram based structural obfuscation mechanism is a 

promising solution to protect both the IIR and the FIR filter cores concurrently 

at low cost, against the RE based attacks. The first rule of the hologram based 
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obfuscation is applied to generate the structurally obfuscated integrated 

datapath of FIR-IIR filter. The generic equation of IIR and FIR filters are as 

follows: 

(i) IIR filter equation: 

Y[n]=b0*X[n]+ b1*X[n-1]+ b2*X[n-2]+b3*X[n-3]- a1*Y[n-1]- a2*Y[n-

2]-a3*Y[n-3]                                                                                           (4.3) 

Where, Y[n] is the output of IIR filter, a1 to a3 and b0 to b3 are the input 

coefficients of IIR filter, X[n] is the current input, X[n-1],  X[n-2] and X[n-3] 

are the previous inputs of IIR filter and Y[n-1],  Y[n-2] and Y[n-3] are the 

previous outputs of IIR filter.  

(ii) FIR filter equation:  

Y’[n]=h0*X’[n]+h1*X’[n-1]+h2*X’[n-2]+h3*X’[n-3]                      (4.4)                                                

Where, Y’[n] is the output FIR filter, h0 to h3 are the input coefficients of FIR 

filter, X’[n] is the current input and X’[n-1], X’[n-2] and X’[n-3] are the 

Fig. 4.3. Scheduling of IIR filter based on 1 adder and 1 multiplier  
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previous inputs of FIR filter. 

Firstly, the algorithmic representations of IIR and FIR filters in their given 

mathematical form are converted into the corresponding DFG representations. 

Thereafter DFGs are subjected to the pre-synthesis phase of HLS where 

scheduling, allocation and binding are performed using the resource 

constraints of one adder (A1) and one multiplier (M1), resulting into DFGsab-1 

and DFGsab-2. The Fig. 4.3 and Fig. 4.4 show the DFGsab-1 of IIR filter and 

DFGsab-2 of FIR filter respectively, where CS denotes the control step. 

Post obtaining the DFGsab-1 and DFGsab-2, they are subjected to the first rule 

of hologram based obfuscation approach during the datapath synthesis phase 

of HLS process. As per the rule, inputs of only matched portions of DFGsab-1 

and DFGsab-2 are subjected to multiplexing using 2:1 Muxes (switching 

elements of the hologram) and output of both DFGsab are also subjected to 

multiplexing using a single 2:1 Mux (another switching element of the 

hologram) during the datapath synthesis phase of HLS. Activation of either of 

the filter application in the integrated datapath depends on the value of control 

input ‘C’. In other words, the specific bit value of the control input ‘C’ 

manifests the respective datapath architecture in the hologram design. 

Specifically, the functionality of IIR and FIR filter in the hologram obfuscated 

Fig. 4.4. Scheduled DFG of FIR filter based on 1 adder and 1multiplier 
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datapath is enabled at IP designer controlled input ‘C’=0 and ‘C’=1 

respectively. Post applying the first rule of proposed hologram based 

obfuscation during the datapath synthesis phase of HLS, we obtain an 

obfuscated integrated RTL datapath of both IIR+FIR filter cores 

simultaneously as shown in Fig. 4.5. 

4.4. Similarity of Hologram Obfuscated Design with a Security 

Image Hologram 

The proposed structurally obfuscated hologram design is motivated from the 

security image hologram feature. In a security image hologram, switching or 

Fig. 4.5.  Hologram based structurally obfuscated integrated RTL design of IIR and FIR filter 

cores (note: switching Muxes are highlighted in red dotted ovals) 
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flipping elements are embedded during their creation. These flipping elements 

execute the switching between two (or more) images when the image is 

viewed from different viewing angles [55]. Similarly in a structurally 

obfuscated hologram design, a number of additional multiplexers (acting as 

flipping elements) are exploited to realize the hologram feature. These 

multiplexers execute the switching between two designs integrated in the 

single RTL datapath, when a specific bit (control input ‘C’) value is applied.  

4.5. Summary 

The hardware threats of potential Trojan insertion and stealing the original 

design intents can be realized by an adversary if the RE can be performed 

successfully. The potential RE based attacks can be handled by performing the 

concealment of internal architecture of the design using a structural 

obfuscation technique. We proposed a novel hologram based structural 

obfuscation technique which makes the RE arduous for an attacker, hence 

preventing against the potential Trojan insertion and IP theft attacks. We 

proposed multiple rules of generating hologram based obfuscated designs 

during the datapath synthesis phase of the HLS process. The security using the 

proposed structural obfuscation was evaluated using strength of obfuscation 

metric which measure the total affected gate count post obfuscation w.r.t. the 

un-obfuscated counterpart. 

  



52 

Chapter 5 

Double Line of Defense Approach using Integrated 

Structural Obfuscation and Crypto-steganography to 

Secure IP Cores 

This chapter presents a double line of defense approach to secure IP cores 

against IP piracy and potential hardware Trojan insertion (resulting from 

reverse engineering) by an adversary in an untrustworthy design house or 

foundry. A structural obfuscation mechanism is performed during high level 

transformation to deploy the first line of defense to counter the threat of 

potential hardware Trojan insertion. Further, crypto based steganography is 

performed during high level synthesis (HLS) to deploy the second line of 

defense to counter the threat of IP piracy. The chapter also demonstrates the 

structural obfuscation and crypto-steganography based double of defense 

approach on joint photographic expert group (JPEG) compression processor 

and a discrete Fourier transform (DFT) processor.  

Outline of the chapter is as follows. The first section formulates the problem. 

The second section discusses the double line of defense approach under the 

following sub-sections: overview, elaborating structural obfuscation acting as 

a first line of defense and crypto-steganography acting as a second line of 

defense, detection of steganography and metric for evaluating the security 

achieved using double line of defense. Further, the third section demonstrates 

the securing of application specific processors using double line of defense for 

the following two applications (i) JPEG compression (ii) DFT. Finally, the 

fourth section summarizes the chapter.  

5.1. Problem Formulation 

Given the data flow graph (DFG) representation of a target application, 

module library, resource constraint, along with the objective of securing IP 

cores against IP piracy and hardware Trojan insertion attacks, generate a 

secured (structurally obfuscated and stego-embedded) IP core. 

5.2. The Double Line of Defense during High Level Synthesis 

Process for Securing IP Cores 
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In an untrustworthy design house or foundry, the IP cores are susceptible to 

both piracy and hardware Trojan insertion threat. We employ a double line of 

defense mechanism to counter both threats simultaneously. The double of 

defense approach for securing the IP cores is discussed under the following 

sub-sections:  

5.2.1. Overview 

An overview of the proposed double line of defense approach is shown in Fig. 

5.1. As highlighted in the figure, the double line of defense technique is 

unified with the HLS process, leading to a security aware HLS framework. In 

the security aware HLS framework, the primary input is a high level 

description (e.g. C/C++ code or mathematical function) of input application. 

The major steps of securing the IP cores by performing double line of defense 

during the HLS process are as follows: (i) converting algorithmic description 

of the input application into corresponding data flow graph (DFG) (ii) 

subjecting the DFG to tree height transformation (THT) based structural 
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obfuscation that works as first line of defense (iii) performing scheduling, 

allocation and binding of structurally obfuscated DFG using resource 

constraints and module library (iv) performing crypto-based steganography (as 

a second line of defense) on the obfuscated scheduled, allocated and binded 

DFG (ODFGsab) using a large size stego-key. Post applying structural 

obfuscation and crypto-steganography as double line of defense during HLS 

process, a secured RTL design of intended application is produced at the 

output. The first and second line of defense is discussed in more detail as 

follows:  

5.2.2. Elaborating structural obfuscation and crypto-steganography 
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based double line of defense approach 

The double line of defense approach is elaborated in Fig. 5.2. The details are 

discussed as follows: 

(i) Structural obfuscation as a first line of defense 

Applying structural obfuscation in designs conceal their internal architectures 

to thwart reverse engineering (RE), thus hindering backdoor (Trojan) insertion 

and IP theft. We applied a high level transformation to realize the structural 

obfuscation where tree height of DFG is transformed to create an obfuscated 

DFG. In order to apply the tree height transformation (THT), the serial 

execution flow of addition operations in the DFG is broken and parallel sub-

computations are enabled. Thus applied THT based structural obfuscation 

incurs considerable alterations in the structure of the design in terms of the 

following: (a) alterations in the interconnectivity of high level components 

such as adders, and multipliers etc. (b) alterations in the total count of 

interconnect binding units such as Muxes and Demuxes (c) alterations in the 

total count of storage units such as registers. These alterations makes the 

design structure unobvious to be interpreted (through RE) by an attacker. This 

prevents an attacker from launching RE based attacks of backdoor insertion 

into hardware and the design theft.  
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Fig. 5.3. Steps of stego-constraints generation process of crypto-based steganography encoder 
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Fig. 5.2 shows the flow of applying first line of defense using structural 

obfuscation. As shown in the figure, the DFG of input application is first 

subjected to THT based transformation to create a corresponding obfuscated 

DFG. Further it is subjected to scheduling allocation and binding steps of HLS 

to produce an obfuscated scheduled, allocated and binded DFG (ODFGsab). 

Further, ODFGsab of input application is fed to the process of applying second 

line of defense based on crypto-steganography technique. 

(ii) Crypto-steganography as a second line of defense 

The crypto-steganography technique embeds secret stego-constraints into the 

design during two distinct steps of HLS process viz. register allocation step 

and functional unit (FU) vendor allocation step. The embedded stego-

constraints into a design enable the identification of authentic and pirated 

(counterfeited or cloned) designs during the detection process. In the proposed 

approach, the stego-constraints (or stego-information) are generated through 

various steps of crypto-steganography encoder system. As shown in Fig 5.2, 

the crypto-steganography encoder system requires following inputs to generate 

the stego-information: (a) secret design data and (b) stego-key. The secret 

design data is extracted from the colored interval graph (CIG) which in turn is 

created from the ODFGsab of input application as shown in Fig. 5.2. The secret 

design data is defined as follows. It is a set ‘S’ of indices pairs of nodes of 

same colors in the CIG. The details of stego-constraints generation and 

Fig. 5.4. Roles and various modes of stego-key1 to stego-key5   
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embedding process are discussed below. 

(1) Stego-constraints generation 

The crypto-steganography encoder system performs the steps shown in Fig. 

5.3 to generate the stego-information in the form of a bitstream. These steps 

are elaborated as follows: 

(i) State-matrix creation 

A state matrix is formed using selected elements of the set representing the 

secret design data. The elements are selected based on stego-key1 and the state 

matrix is created by arranging four selected elements in each row. There are 

various modes of choosing the elements depending on the value of 3-bit stego-

key1 as shown in Fig. 5.4.  

(ii) Byte substitution   

Each element of the state matrix is subjected to the byte substitution or 

nonlinear bit-manipulation performed using forward S-box. The relationship 

of final stego-constraints with the stego-key is obscured (Shannon’s property 

of confusion) using this process. 

(iii) Row diffusion 

The row diffusion process obscures the relationship of stego-constraints with 

the input secret design data in the matrix (Shannon’s property of diffusion). 

The row diffusion is driven through stego-key2. The value of stego-key2 

determines the amount of circular right shift to be performed in each row. 

Let’s say the number of rows in the matrix are ‘W’, then the stego-key2 size is 

2×W bits. The role of stego-key2 and its various modes are highlighted in Fig. 

5.4. As per the definition of different modes, the rows of the state matrix are 

subjected to diffusion. 

(iv) Trifid cipher based encryption 

The Trifid cipher provides certain amount of confusion and diffusion to 

obscure the relationship of the stego-constraints with the secret design data 

and stego-keys. The Trifid cipher based encryption is accomplished on each 

unique alphabet of the matrix. The encryption key for each unique alphabet is 

determined by the stego-key3. The chosen encryption key contains 27 unique 
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characters to encrypt each unique alphabet. Because of total 27! possible 

permutations of 27 characters, the number of bits needed to indicate the key 

for an alphabet is ┌(log2(27!)┐. If the number of unique alphabets in the 

matrix post diffusion is NA then the total size of stego-key3 to encrypt all 

unique alphabets is = NA×┌(log2(27!)┐. To perform the encryption of an 

alphabet, the 27 characters of the key are divided into three 3x3 matrices. An 

encrypted alphabet is represented in the form of a 3-digit value “xyz”, where 

x, y and z denote the row number, column number and the matrix number in 

which the input alphabet is located. 

(v) Alphabet substitution 

Post obtaining encrypted alphabets in the form of 3-digit value “xyz”, the 

equivalent single digit is calculated based on stego-key4. There are various 

modes of stego-key4 which decide the mathematical expression to be used to 

calculate the equivalent single digit for each encrypted alphabet, as shown in 

Fig. 5.4. Therefore, the size of the stego-key4 is computed to be 

NA×┌(log2(number of modes for calculating single digit equivalent)┐. Post 

obtaining the equivalent single digits, they are used to substitute the 

corresponding alphabets of state matrix.  

(vi) Matrix transposition 

In this step, the matrix is transposed. 

(vii) Mix column diffusion 

Each column of the transposed matrix is subjected to mix column diffusion to 

incur the Shannon’s property of diffusion. A circulant MDS (Maximum 

Distance Separable) matrix is used to perform the mix column diffusion. 

(viii) Byte concatenation 

To generate a sequence of bytes, the elements (bytes) of each column in the 

updated matrix are concatenated. However, the concatenation for each column 

is performed based on the value of stego-key5. There are different modes of 

concatenation based on the value of stego-key5 as shown in Fig. 5.4. The size 

of stego-key5 is computed to be (number of columns)×┌ (log2(number of 

modes for concatenation)┐. Post concatenating all bytes of the state matrix, 
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the obtained byte sequence is converted into a bitstream. Further, the bitstream 

can be truncated to the designer’s specified size. 

(ix) Bit mapping 

The bit ‘0’ and bit ‘1’ in the truncated bitstream are mapped into respective 

stego-constraints to enable the embedding into the design during the HLS 

process. The mapping of bit ‘0’ and bit ‘1’ is given below. 

‘0’ add an edge between node pair (even, even) of CIG  

‘1’ odd operations are allocated to FU of vendor type 1 and even operations 

are allocated to FU of vendor type 2   

(2) Stego-constraints Embedding during HLS 

The stego-constraints corresponding to bit ‘0’ and bit ‘1’ are embedded into 

the design during register allocation and FU vendor allocation phase 

respectively. As per the mapping of bit ‘0’ into stego-constraints, the obtained 

constraint edges are embedded into the CIG as additional edges. The 

embedding of constraint edges, in some cases, may require additional 

colors/registers, thus resulting into design overhead. Further as per the 

mapping of bit ‘1’ into stego-constraints, the operations of the ODFGsab are 

allocated to the particular FU vendor type specified through the mapping rule. 

Thereby, the stego-information is implanted into the design during two 

different phases of HLS process. The embedded stego-information enables the 

detection of IP theft/piracy.  

5.2.3. Detection of IP piracy using crypto-steganography 

The detection of steganography in the intended designs enables the 

identification of counterfeiting and cloning. The three major processes are 

involved in detecting steganography information: (i) secret stego-constraints 

generation process (ii) concealed stego-constraints extraction from stego-

embedded RTL datapath of the design (iii) matching of generated and 

extracted stego-information to confirm the existence of vendor’s stego-mark 

into the design. 

5.2.4. Metric used to evaluate the security of double line of defense 



60 

Following metric are used to evaluate the security achieved using structural 

obfuscation and crypto-steganography based double line of defense: 

1. Strength of structural obfuscation: 

The measure of strength of structural obfuscation is the amount of gates 

affected owing to change in overall gate count and the alterations in the 

interconnectivity of gates. It is important to note that the modification in the 

number and size of RTL components affects the gates of the design; therefore 

the change in amount of gates does not follow any fix pattern hence hindering 

the attacker in deducing the correct structure of the design.   

2. Probability of coincidence of crypto based dual phase steganography: 

This metric is measured using the following formula: 

Pc = (1 −
1

G
)

f1

× (1 −
1

π
i=1
y

N(Zi)
)

f2

                                  (5.1) 

Where, the first term in the equation corresponds to the Pc due to embedding 

constraints in the register binding phase and the second term corresponds to 

the Pc due to embedding constraints in the FU vendor allocation phase. Here, 

in the first term, G denotes the number of registers before embedding 

steganography, and f1 denotes the number of stego constraints added to the 

CIG. Further, in the second term, ‘y’ denotes the types of resources in the DSP 

application, N(Zi) denotes the number of instances of each FU type and f2 

denotes the number of stego constraints added during the FU vendor allocation 

phase.  

3. Total stego-key size: 

Total stego-key size (ST) (in bits) of the crypto-based steganography is given 

as follows: 

ST= 3 bits+ 2×W+ (NA)×┌(log2(27!)┐+ (NA) ×┌(log2(number  of modes for 

calculating single digit equivalent)┐+ (number of columns) ×┌(log2(number  

of modes for concatenation)┐                                                                      (5.2) 

5.3. Demonstration of Securing Application Specific 

Processors using Double Line of Defense 
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The proposed double line of defense approach is applied on following two 

application specific processors for demonstration: (i) JPEG compression 

processor (ii) DFT processor.  

5.3.1. Securing JPEG compression processor 

The application specific processor of the JPEG compression application can be 

designed in the RTL form using the HLS process. The HLS process first takes 

the algorithmic description of the computational intensive portion of the JPEG 

compression application as input and creates a DFG. The computational 

intensive portion of a JPEG application is the DCT transformation using the 

2D-DCT coefficient matrix followed by compression using the quantization 

matrix. The equations that compute the DCT transformation and quantization 

are presented in detail in [8], [47]. The corresponding DFG is shown in Fig. 

5.5(a).   

Fig. 5.5. (a) DFG of JPEG compression application (b) THT based obfuscated DFG  

(a) (b) 
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To secure the JPEG compression processor using structural obfuscation and 

crypto-steganography based double line of defense against the threats of 

potential backdoor insertion and IP piracy, following steps are performed: 

(1) Applying structural obfuscation based first line of defense 

The DFG of JPEG compression application is subjected to THT based 

structural transformation technique to produce obfuscated DFG as shown in 

Fig. 5.5(b). This obfuscated DFG is further subjected to scheduling, allocation 

and binding steps of HLS using the resource constraints of 3 multipliers and 3 

adders, resulting into ODFGsab. Further, this ODFGsab is fed to the crypto-

steganography process for deploying second line of defense. 

(2) Applying crypto steganography based second line of defense 

The ODFGsab of JPEG compression application is applied with crypto-based 

steganography in the following steps: 

(i) Obtain a register allocation information or CIG from the ODFGsab. 

(ii) Extract the secret design data from the register or color assignment of 

ODFGsab. 

(iii) Apply the various steps of crypto-steganography based on the 

following values of stego-keys: 

Stego-key1: “001”  (mode-2: select 4 elements and skip 4 elements) 

Stego-key2: “11-10-00-01-00-10-10-10-11-10-00-00-10-01-11-11-11-

11-10-00-00-10-10-11-01-11-11-01-11-01-00-11-11-11-00-11-01-11”  

Stego-key3: 

To encrypt the alphabet ‘a’ = v$qawsedrftgyhujikolpzmxncb 

To encrypt the alphabet ‘b’ = qawsedrftgyhujik$olpzmxncbv 

To encrypt the alphabet ‘c’ = olpzmxncbv$qawsedrftgyhujik 

To encrypt the alphabet ‘d’= gyhujik$olpzmxncbvqawsedrft 

To encrypt the alphabet ‘e’= ftgyhujikolpzmxncbv$qawsedr 

To encrypt the alphabet ‘f’=  lpzmxncbvqawsedrftgyhujik$o 

Stego-key4: “010-001-100-101-011-001” 

Stego-key5: “000-001-010-011-100-101-001-011-010-100-100-000-

100-100-011-010-001-000-100-101-011-010-001-000-101-011-001-

000-100-101-011-010-001-011-101-011-011-100” 
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The total size of stego-key is computed to be 775 bits using eq. (5.2). 

(iv) Post applying the crypto-steganography, the generated bitstream is 

truncated to the size of 400. 

(v) Post mapping the bits of truncated bitstream into stego-constraints 

(using the mapping rules discussed in section 5.2.2), the constraints are 

added during the register allocation and FU vendor allocation phase of 

HLS. 

Post adding the stego-constraints to the design, datapath is synthesized to 

generate the stego-embedded and obfuscated RTL design of application 

specific processor of JPEG compression application. Because of applying the 

proposed double line of defense, the processor becomes secured against the 

hardware threats of potential backdoor insertion and piracy. 

5.3.2. Securing DFT processor 

Discrete Fourier Transform (DFT) is a conversion of a signal from its discrete-

time representation to a discrete-frequency representation. In order to design a 

secured application specific processor for a DFT application, the proposed 

double line of defense mechanism is integrated with the HLS design process. 

In the security aware HLS design flow, the mathematical form of a DFT 

application is first subjected to conversion into corresponding DFG 
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representation. In the proposed approach, the DFG of 4-point DFT application 

is constructed to enable the computing of two output values (W[0] and W[1]) 

concurrently to accelerate the execution. Further the DFG is subjected to 

following double line of defense mechanism during HLS process. 

(1) Applying structural obfuscation based first line of defense 

The DFG of 4-point DFT application is subjected to THT based structural 

transformation technique to produce obfuscated DFG. This obfuscated DFG is 

further subjected to scheduling, allocation and binding steps of HLS using the 

resource constraints of 3 multipliers and 2 adders, resulting into ODFGsab of 

DFT application as shown in Fig. 5.6. Further, this ODFGsab is fed to the 

crypto-steganography process.  

(2) Applying crypto steganography based second line of defense 

The ODFGsab of DFT application is applied with crypto-based steganography 

in the following steps: 

(i) Obtain a register allocation information or CIG from the ODFGsab of 

DFT application. 

(ii) Extract the secret design data from the register or color assignment. 

(iii) Apply the various steps of crypto-steganography based on the 
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following values of stego-keys: 

Stego-key1: “001” (mode-2: select 4 elements and skip 4 elements) 

Stego-key2: “01 00”  

Stego-key3: 

To encrypt the alphabet ‘a’ = v#qawsedrftgyhujikolpzmxncb 

To encrypt the alphabet ‘b’ = qawsedrftgyhujik#olpzmxncbv 

To encrypt the alphabet ‘d’= gyhujik#olpzmxncbvqawsedrft 

To encrypt the alphabet ‘f’=  lpzmxncbvqawsedrftgyhujik#o 

Stego-key4: “001 001 100 100” 

Stego-key5: “001 000” 

(iv) Post applying the crypto-steganography, the generated bitstream is 

truncated to the size of 27. 

Fig. 5.8. Secured 4-point DFT processor at RTL (note: red ovals highlight the change in 

input of Muxes due to embedded stego-information) 
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(v) Post mapping the bits into stego-constraints (using the mapping rules 

discussed in section 5.2.2), the constraints are added during the register 

allocation and FU vendor allocation phase of HLS. Post adding the 

stego-constraints, the ODFGsab is shown in Fig. 5.7. Due to adding the 

stego-constraints, the storage variables are subjected to constraint 

based register allocation and the operations are subjected to constraints 

based FU vendor allocation as shown in Fig. 5.7. 

Further, datapath is synthesized to generate the stego-embedded and 

obfuscated RTL design of application specific processor of DFT 

application. Fig. 5.8 shows the RTL design of secured (structurally 

obfuscated and stego-embedded) DFT processor.  

5.4. Summary 

Backdoor insertion and piracy both pose serious threats to hardware security. 

This chapter discussed a double line of defense mechanism where structural 

obfuscation is applied to combat the potential backdoor insertion threat and 

crypto-steganography is applied to combat the IP piracy threat. The metrics 

employed to measure the security using the double line of defense approach 

were also discussed in the chapter. Further, we demonstrated the process of 

generating secured application specific processor IPs for JPEG compression 

and DFT applications. 
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Chapter 6 

Double Line of Defense Approach using Integrated 

Multi-key based Structural Obfuscation and Physical 

Level Watermarking to Secure IP Cores 

This chapter presents a double line of defense approach employing multi-key 

based structural obfuscation as preventive control against potential backdoor 

insertion and physical level watermarking as detective control against IP 

piracy. The chapter also demonstrates the structural obfuscation and physical 

level watermarking based double of defense approach on a finite impulse 

response (FIR) filter core. Outline of the chapter is as follows. The first 

section formulates the problem. The second section discusses the double line 

of defense approach under the following sub-sections: overview, elaborating 

multi-key based structural obfuscation acting as a first line of defense and 

physical level watermarking acting as a second line of defense, detection of 

watermark and metric for evaluating the security achieved using double line of 

defense. Further, the third section demonstrates the securing of FIR filter core 

using the double line of defense. Finally, the fourth section summarizes the 

chapter. 

6.1. Problem Formulation 

Given the data flow graph (DFG) representation of a target application, 

module library, resource constraint, along with the objective of securing IP 

cores against IP piracy and hardware Trojan insertion attacks, generate a 

secured (structurally obfuscated and watermark embedded) IP core. 

6.2. The Double Line of Defense during High Level and 

Physical Synthesis Processes for Securing IP Cores 

The proposed double line of defense mechanism is employed to counter both 

backdoor (Trojan) insertion (resulting from reverse engineering attack) and IP 

piracy threats simultaneously. We exploited two different design synthesis 

processes to employ the double line of defense viz. high level synthesis and 

physical synthesis. The double of defense approach for securing the IP cores is 

discussed under the following sub-sections:  
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6.2.1. Overview 

The overview of the proposed double line of defense approach is shown in 

Fig. 6.1. As highlighted in the figure, the structural obfuscation based first line 

of defense technique is unified with the HLS process, rendering the HLS 

framework security aware. In the security aware HLS framework, the primary 

input is a DFG form of input application. The major steps of applying first line 

of defense during the HLS process are as follows: (i) subjecting the DFG to 

the key driven five different structural obfuscation technique viz. key driven 

loop unrolling, key driven partitioning, key driven redundant operation 

elimination, key driven tree height transformation, and key driven folding 

transformation alongwith performing scheduling, allocation and binding using 

resource constraints and module library to obtain obfuscated scheduled, 

allocated and binded DFG (ODFGsab) (ii) synthesizing the obfuscated RTL 

datapath secured against the potential backdoor insertion. Thereafter, we 

perform the extraction of the list of RTL components from the structurally 

obfuscated datapath. Further, the major steps of applying second line of 

defense during the physical synthesis process are as follows: (i) creating an 
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early floorplan using the RTL components (ii) applying IP vendor’s signature 

(composed of multiple variables viz. α, β and γ) to the early floorplan to obtain 

a watermarked floorplan. Post applying the watermarking, subsequent phases 

of physical synthesis such as creating final floorplan, placement and routing 

are performed to obtain the structurally obfuscated and watermarked IP.  

6.2.2. Elaborating multi-key driven structural obfuscation and physical 

level watermarking based double line of defense approach 

The double line of defense approach is elaborated as follows: 

(i) Multi-key based structural obfuscation as a first line of defense 

The DFG of input DSP application is subjected to structural obfuscation by 

applying five different key-driven techniques. Table 6.1 shows the role of each 

structural obfuscation key (SOK) and the corresponding size in bits. The 

applied key-driven techniques for structural obfuscation are elaborated as 

follows:  

(a) Key-driven loop-unrolling technique 

The loop body of a DSP application is unrolled in this technique, as per 

designers’ chosen SOK-1 indicating the loop unrolling [49] factor (UF) value. 

Table 6.1 highlights the role and size of SOK-1. This structural obfuscation 

technique results into alterations in the architecture in terms of change in size 

of Mux/Demux, number of functional units (FUs) in case of unconstrained 

resources, and number of storage elements in the RTL design, thus rendering 

the reverse engineering harder to an attacker.  

(b) Key-driven DFG partitioning technique 

This technique applies m cuts to the unrolled DFG of DSP application in order 

to partition it into total ‘m+1’ partitions. The number of cuts applied is driven 

Table 6.1 Roles and key-size of different keys used for proposed structural obfuscation 

Keys Role Key size in  bits 

Key-1 To regulate the Unrolling Factor (UF) ┌log2(UFmax)┐ 

Key-2 To regulate the number of cuts applied 

to partition the DFG 

┌ (log2 (Max. cut) ┐ 

Key-3 To regulate ROE across the partitions ┌ (log2 (Max. RO) ┐ 

Key-4 To regulate THT across the partitions ┌ (log2 (Max. THT) ┐ 

Key-5 To regulate the folding of resources 

across the partitions 

┌ (log2 (Max. folding) ┐ 
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through the SOK-2. The DFG is portioned in such a way that each resulting 

partition holds atleast two connected nodes (operations). Table 6.1 highlights 

the role and size of SOK-2. The partitioning based structural obfuscation 

technique incurs massive changes in terms of interconnectivity of 

Muxes/Demuxes and FU resources, adding to significant obscurity in the RTL 

structure of the intended DSP circuit.  

(c) Key-driven redundant operation elimination technique  

An operation/node is considered to be redundant if its parent and operation 

type are same as an existing node in the DFG. This structural obfuscation 

technique is applied to the partitions of the DFG, where the redundant 

operations are removed based on the value of SOK-3. Table 6.1 highlights the 

role and size of SOK-3. This type of obfuscation affects the size and 

complexity of the Mux/Demux interconnections in the RTL. 

(d) Key-driven tree height transformation technique  

The key-driven tree height transformation technique alters the data dependency 

of addition operations by converting serial computations into parallel 

computations, based on the value of SOK-4. Table 6.1 highlights the role and 

size of SOK-4. This technique adds in the obfuscation by incurring the 

variations in the interconnectivity of FUs and Muxes/Demuxes inputs/outputs. 

(e) Key-driven folding transformation technique  

Post performing the scheduling of each individual obfuscated partition 

(generated after applying above four structural obfuscation techniques), the 

key-driven folding transformation technique is applied to enhance the 

obscurity. In an obfuscated scheduled partition, the folding with factor 2 is 

performed on two operations of same type executing in different control steps 

to enable their execution through the same respective FU resource. The 

number of instances where the folding transformation is applied is driven 

through the value of SOK-5. Table 6.1 highlights the role and size of SOK-5. 

This technique adds in the obfuscation by incurring the structural variation in 

terms of reduction in FUs and increase in size of several Mux/Demux and 

storage elements. 
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Once the key-driven structural obfuscation techniques are applied, the 

datapath of individual obfuscated partitions are synthesized. Further, the 

individual obfuscated datapaths are integrated together to generate the single 

obfuscated RTL datapath of the target DSP application. This process is 

followed by extraction of following RTL modules from the structurally 

obfuscated datapath: adders, multipliers, subtractors, comparator, Muxes and 

Demuxes. A sorted list ‘T’ of RTL modules is prepared based on their 

decreasing size [56]. This list ‘T’ of RTL modules is used in the physical 

synthesis process to construct an early floorplan.    

(ii) Physical level watermarking as a second line of defense 

The early floorplanning stage of physical synthesis process [57] is exploited to 

embed the vendor’s watermark that enables detection of IP piracy. The early 

floorplan is constructed using the RTL modules. To do so, the list ‘T’ of RTL 

modules is traversed from left to right to fetch the modules one by one and 

place them so as to grow the floorplan diagonally.  Once the early floorplan is 

constructed, following steps are performed to embed the watermark. 

(a) Choosing vendor’s signature composed of three variables viz. α, β and γ. 

The variables have following mapping into corresponding watermarking 

constraints: 

α  Odd FU module takes the position on the top of even FU module, by 

swapping two FU modules of same type. 

β Odd Mux takes the position on the top of even Mux, by swapping two 

Muxes of same size. 

γ Odd Demux takes the position to the right of even Demux, by 

swapping two Demuxes of same size. 

(b) Three different sorted lists T1, T2 and T3 of FU, Mux and Demux 

modules respectively are prepared.  

(c) For embedding, α, β and γ digits of the signature, the sorted lists T1, T2 

and T3 respectively are traversed. During embedding, if swapping of 

modules (FUs or Muxes or Demuxes) satisfies the watermarking 

constraints (or participates in implanting a signature digit (α or β or γ)) 

then the module pair is removed from the respective list (T1 or T2 or T3). 
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Further, the updated lists are exploited to embed remaining respective 

digits of the signature. 

Post embedding the signature digits, we obtain the watermarked floorplan of 

the obfuscated design of target DSP application.  

6.2.3. Detection of IP piracy using watermark 

The detection of watermark is accomplished in the final floorplanned design 

file generated through the physical design tool. The following inputs are 

required to generate the final floorplanned design file during the physical 

design phase: (i) Verilog file of the design netlist (ii) obfuscated watermarked 

early floorplan file (iii) configuration file (iv) library files (f) other applicable 

files. Further, the arrangement (positions) of modules in the floorplanned 

design file is checked according to the vendor’s signature digits. By examining 

the presence of secret watermark in the design, IP piracy can be detected.   

6.2.4. Metric used to evaluate the security of double line of defense 

Following metrics are used to evaluate the security achieved using multi-key 

based structural obfuscation and physical level watermarking based double 

line of defense: 

1. Strength of structural obfuscation: 

The strength of structural obfuscation is measured in terms of change in gate 

count.  The change in overall gate count due to obfuscation depends on the 

change in size and number of the Muxes and Demuxes and number of storage 

elements which in turn depends on the potential resource sharing and type of 

the application (i.e. number of operations and their dependency) as well as the 

applicability of each design transformation technique of obfuscation. More 

explicitly, the gate count changes due to applying various techniques of 

structural obfuscation. Moreover, alteration in the interconnectivity of various 

RTL resources also adds in considerable structure modification in the design. 

This makes the design structure unidentifiable for an adversary, thus hindering 

malicious effort of backdoor insertion and IP theft. 

2. Total structural obfuscation key size: 

Total size of structural obfuscation key (SSOK) (in bits) is given as follows: 
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SSOK= (┌log2(UFmax)┐)+(┌ (log2 (Max. cut)┐)+(┌(log2 (Max. RO) ┐)+(┌ 

(log2(Max. THT)┐)+(┌(log2(Max. folding)┐)                           (6.1)  

3. Probability of coincidence of physical level watermarking: 

This metric is measured using the following formula: 
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(∑
𝑢(𝑢−1)

2
)−𝑎++𝑢∈𝑈𝑟

α
𝑎=1 ) ∗ (∏

1

(∑
𝑥(𝑥−1)

2
)−𝑏++𝑥∈𝑋𝑣

β
𝑏=1 ) ∗ (∏

1

(∑
𝑑(𝑑−1)

2
)−𝑐++𝑑∈𝐷𝑒

γ
𝑐=1 )   (6.2)                                      

Where, ‘u’ indicates number of instances of FU type Ur, where r is the total 

types of FUs; ‘x’ indicates number of Muxes of size Xv, where v indicates 

various sizes of Mux in the design; ‘d’ indicates number of Demuxes of size 

De, where e indicates various sizes of Demux in the design. Further, the 

variables a, b and c vary in the following range: 0≤ a≤ α-1, 0≤ b≤ β-1, 0≤ c≤ γ-

1, where a, b and c represent the corresponding count of swapping pairs 

embedded for α, β and γ digits respectively. In the eq. (6.2), the first term 

indicates the Pc corresponds to embedding α digits, the second term indicates 

the Pc corresponds to embedding β digits and the third term indicates the Pc 

corresponds to embedding γ digits.  

4. Tamper tolerance: 

The proposed watermark is tamper tolerant or resilient against the removal 

attack as it covertly inserts vendor’s signature consisting of three distinct 

variables (α, β and γ) in the early floorplan of the design. The following metric 

is used to measure the tamper tolerance (TS) ability of the watermark:  

      TS =Q
Z
                                                       (6.3) 

Where, Q denotes the number of distinct variables in the chosen signature and 

Z denotes the size of the signature. The value of TS also represents the total 

signature space. Larger the signature space, higher is resilience of watermark 

against the removal attack.  

6.3. Demonstration of Securing IP Cores using Double Line 

of Defense 

The demonstration of the proposed double line of defense is performed using 

FIR filter application. The following equation represents the 160-tap FIR 

filter: 
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𝑌[𝑛] = ∑ ℎ[𝑖] ∗ 𝑋[𝑛 − 𝑖]160
𝑖=1                                            (6.4) 

Here, Y[n], h[i] and X[n-i]  are the output, constant and input to FIR filter 

respectively, where variable ‘i’ is varied from 1 to 160. The corresponding 

DFG is shown in Fig. 6.2(a). The multi-key driven structural obfuscation and 

physical level watermarking based double line of defense is applied as 

follows: 

(1) Applying multi-key based structural obfuscation on DFG of FIR filter 

The multi-key based structural obfuscation is applied in following steps: (i) 

the DFG is unrolled based on UF=16 as shown in Fig. 6.2(b), to perform 

unrolling based structural transform. (ii) The unrolled DFG is partitioned into 

5 partitions by applying 4 cuts. The applied cuts are highlighted in Fig. 6.2(b) 

using red dotted lines. (iii) Further, THT based structural obfuscation 

technique is performed on all five partitions as shown in Fig. 6.3 (note: ROE is 

not applicable due to absence of redundant nodes). (iv) All partitions are 

scheduled followed by applying folding transformation at four different 

instances (highlighted in red dotted ovals) of the scheduled obfuscated DFG as 

shown in Fig. 6.4.  

Fig. 6.2(a) DFG representing 160-tap FIR filter (b) loop unrolled FIR filter with UF=16 

 (a)   (b)  

Fig. 6.3 Post applying THT based obfuscation in all partitions 
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Post performing various key driven techniques of structural obfuscation, the 

datapaths of individual partitions is synthesized followed by integrating into a 

single obfuscated RTL datapath of FIR filter core as shown in Fig. 6.5. 

Further, a following list ‘T’ of RTL modules (arranged in the decreasing order 

of their size) is extracted: T={M1, M2, M3, M4, d1, x1, x2, C, d2, d3, d4, d5, 

d6, d7, d8, d9, d10, x3, x4, x5, x6, x7, x8, x9, 10, x11, x12, x13, x14, x15, 

Fig. 6.4. Obfuscated scheduled FIR filter with applied folding at 4 instances 

Fig. 6.5. Key-driven structurally obfuscated RTL datapath of FIR filter 
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x16, x17, x18, 19, x20, A1}. Using this list of RTL modules, an early 

floorplan is created as shown in Fig. 6.6.  

(2) Applying physical level watermarking on structurally obfuscated FIR filter 

core 

The physical level watermarking is applied on the early floorplan of the 

structurally obfuscated FIR filter core. Let’s assume the designer’s signature 

to be “αβαβγγ”. As per the mapping of signature digits into watermarking 

constraints, the embedding of watermark is performed on early floorplan. Post 

Fig. 6.6. Early floorplan of obfuscated FIR filter 

 

Fig. 6.7. Watermarked floorplan of obfuscated FIR filter (note: the change in the position of 

modules due to embedding signature is highlighted using bold) 
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embedding the aforementioned signature, the watermarked floorplan of 

structurally obfuscated FIR filter is shown in Fig. 6.7. Post obtaining the 

watermarked floorplan, the different phases of physical synthesis are 

performed to obtain an obfuscated and watermark embedded layout of FIR 

filter application.   

6.4. Summary 

This chapter discussed a double line of defense mechanism where multi-key 

driven structural obfuscation is applied to combat the potential backdoor 

insertion threat and physical level watermarking is applied to combat the IP 

piracy threat. In the double line of defense approach, the structural obfuscation 

technique and watermarking are applied during HLS process and physical 

synthesis process respectively. The metrics employed to measure the security 

using the double line of defense approach were also discussed in the chapter. 

Further, we demonstrated the process of generating secured IP (structurally 

obfuscated and watermarked) for the FIR filter application. 
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Chapter 7 

Secured Hardware Accelerator Design Approach for 

Image Processing Filters 

Image processing has important applications in extracting desired information 

from images to facilitate detection of objects and individuals etc. Moreover, 

the image processing applications find utility in security systems such as 

detection of license plates of vehicles, biometric fingerprinting, character 

recognition systems, robotics vision and healthcare systems etc. The various 

types of filters such as blurring, edge detection, and embossment etc are 

exploited to acquire useful information from an input image. In case of real 

time image processing, a general purpose processor cannot provide the desired 

performance in dealing with larger size of images. With the rapid evolution of 

digital imaging technology, image processing applications are progressively 

becoming computational-intensive due to increasing complexity of algorithm 

and larger image sizes. Thus, real-time processing of images entails expediting 

the performance [50]-[52]. Further, low power is also a constraint of mobile 

devices. Therefore, low power and high performance requirement encourages 

execution of image processing functions through a dedicated hardware 

accelerator.  

Security of hardware accelerator filter design against reverse engineering 

(resulting into secret Trojan insertion) is highly relevant due to globalization 

of the chip design process involving offshore untrusted design houses and 

foundry. These offshore houses cannot be blindly trusted as an adversary may 

illegally reverse engineer the design netlist of the hardware accelerator filter 

design and insert Trojan secretly [8]. Thus Trojan infected filter designs could 

unknowingly be integrated in the products such as digital camera, cell phones, 

webcam etc., and therefore raising grave concern of consumers’ safety. The 

consumers’ safety and reliability due to Trojan can be compromised in one or 

more of the following forms: leakage of secret information, excessive heat 

dissipation, functional failure due to negative bias temperature instability 

(NBTI) stress, performance degradation, denial of service etc. [1], [2]. 

Employing structural obfuscation to the proposed hardware accelerator filter 

designs thwart reverse engineering (RE) and hence Trojan insertion by making 
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the design functionality and structure un-obvious to understand by an attacker. 

Further, employing structural obfuscation through high level transformation in 

high level synthesis (HLS) framework is aptly suitable for data intensive filter 

hardware accelerators designs as they rely on HLS framework. Fig. 7.1 

highlights the process of generating filtered images using structurally 

obfuscated hardware accelerator for image processing filters.  

This chapter discusses a novel approach of designing hardware accelerator 

architecture for image processing filters of 3×3 and 5×5 kernels using high 

level synthesis process. Further, structural obfuscation mechanism is added to 

the proposed approach for designing secured (structurally obfuscated) 

hardware accelerator architecture for both 3×3 and 5×5 filters. And, this 

chapter also discusses the designing of structurally obfuscated 3×3 filters for 

five specific image processing applications such as blurring, sharpening, 

vertical embossment, horizontal embossment and Laplace edge detection. 

Furthermore, a secured 3×3 filter design in reconfigurable functionality mode 

is presented where a specific image processing functionality can be configured 

using a control input. Outline of the chapter is as follows. The first section 

formulates the problem. The second section discusses the design approach of a 

secured 3x3 filter hardware accelerator under the following sub-sections: 

mathematical foundation of a 3x3 filter design, generating structurally 

obfuscated 3x3 filter hardware accelerator, designing re-configurable 

structurally obfuscated 3x3 filter architecture and generating secured five 

different application specific 3x3 filter designs. Further, the third section 

discusses the design approach of a secured 5x5 filter hardware accelerator 

under the following sub-sections: mathematical foundation of a 5x5 filter 

design and generating structurally obfuscated 5x5 filter hardware accelerator. 

Finally, the fourth section summarizes the chapter. 

7.1. Problem Formulation 

Input 

image 

Input 

pixels 

matrix 

Structurally obfuscated 

hardware accelerator  

 2D-Convolution 
Filter Kernel 

Output 

pixels 

matrix 

Filtered 

image 

Fig. 7. 1. Generating filtered image using secured hardware accelerator of image processing 

filters 
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Given the mathematic functions of 3x3 and 5x5 filter of image processing 

applications, along with module library, resource constraint and the objective 

of securing the designs against potential hardware Trojan insertion attacks, 

generate secured (structurally obfuscated) hardware accelerators architecture. 

7.2. Design Approach of a Secured 3x3 Filter Hardware 

Accelerator 

Some image processing applications that involve 3×3 filter to produce filtered 

image are as follows: (i) blurring, (ii) edge detection, (iii) sharpening, (iv) 

vertical embossment and (v) horizontal embossment etc. This section 

discusses the mathematic foundation of a 3x3 filter processing followed by 

generating structurally obfuscated filter hardware accelerator in reconfigurable 

functionality mode. Further, we also discuss 3x3 filter designs for 

aforementioned five application specific image processing applications.   

7.2.1. Mathematical foundation of a 3x3 filter design 

An image of size I×J pixels can be represented using an I×J matrix [A]( I×J) as 

follows. 

 

 

      

00 01 0 J 1

10 11 1 J 1

I 1 0 I 1 1 I 1 J 1
I J

X X X

X X X
A

X X X





   





 
 
 
  

                      (7.1) 

Xij is a pixel value of the input image where i and j vary from 0 to I-1 and 0 to 

J-1 respectively.  Further, a generic filter or kernel matrix of size n×m is 

represented by [F](n×m) . For the kernel of size 3×3, the matrix [F] is given 

below: 

F=

00 01 02

10 11 12

20 21 22 3 3

f f f
f f f
f f f



 
 
 

                                               (7.2) 

fpq denotes kernel values, where p and q both vary from 0 to 2.  

To compute the filter output, 2D-convolution is performed between input and 

kernel matrix. The ‘same convolution’ provides output image of same size as 

input image. To execute ‘same convolution’, the input matrix is padded with g 

number of zero-rows and zero-columns based on the following padding rule: 
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 1
g

2




f

                                                  (7.3)
 

Where, f denotes the size of filter i.e. f=3 for 3×3 kernels. The enhanced input 

matrix, post padding, is shown below: 

 

 

 

      

00 01 0 J 1

10 11 1 J 1

I 1 0 I 1 1 I 1 J 1

N M

0 0 0 0 0

0 X X X 0

0 X X X 0
A

0 X X X 0

0 0 0 0 0





   






 
 
 
 
 
    (7.4) 

Where, N×M is the dimension of enhanced input matrix which is given as 

(I+2)×(J+2) and a pixel value is represented by aij where i and j vary from 0 to 

N-1 and 0 to M-1 respectively.  

Suppose [O] is an output matrix which contains the output of the same 

convolution between the input and kernel matrix. The dimension of [O] is 

given as (N-n+1)×(M-m+1). The following ‘for loop’ is used to compute the 

output matrix [O]: 

for (w=0; w<(N-n+1) × (M-m+1); w++){ 

i,p upper value j,q upper value

pq

i,p lower value j,q lower val

w

u

ij

e

O ( a f ) 
 

 

         }                 (7.5) 

For 3×3 filters, p and q take the values from 0 to 2 (i.e. lower value is 0 and 

upper value is 2) during calculating each output value Ow. And values of i and 

j vary from 0 to N-1 and M-1 respectively across the entire output matrix 

computation. During computation of each output value, lower and upper 

values of i and j vary in the window of 3 (because kernel matrix of size 3×3 

slides over the modified input matrix). For example, for computing 1
st
 output 

value O0 using (7.5), lower and upper values of i and j are 0 and 2 

respectively. Hence, O0 is given as follows: 

i=2,p 2 j=2,q 2

0 ij pq

i=0,p 0 j=0,q 0

O ( a f ) 
 

 

  

                                           (7.6) 

Further, this equation is expanded as follows: 
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      
      
      

0 00 00 01 01 02 02

10 10 11 11 12 12

20 20 21 21 22 22

O a f a f a f

a f a f a f

  a f a f a f
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     

    

                    (7.7) 

7.2.2. Generating structurally obfuscated 3x3 filter hardware accelerator  

Using the eq. (7.7) as an algorithmic description of 3x3 filter application, the 

corresponding hardware accelerator can be designed in the form of RTL 

through the HLS process. Further in order to generate a secured 3x3 filter 

design, structural obfuscation mechanism is integrated with the HLS design 

process. Following two structural transformations are applied for obfuscation: 

(i) loop unrolling (ii) tree height transformation. In the loop unrolling based 

transformation, the ‘for loop’ represented in eq. (7.5) is unrolled twice.  The 

loop unrolled DFG computes O0 and O1 concurrently as shown in Fig. 7.2, 

where the O0 is computed using eq. (7.7) and O1 is computed using the 

following equation: 

Fig. 7.2. Loop unrolled DFG of 3×3 image filter application  

Fig. 7.3. THT obfuscated loop unrolled DFG of 3×3 image filter application  
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      
      
      

01 00 02 01 03 02

11 10 12 11 13 12

21 20 22 21 23 22

1O a f a f a f

a f a f a f

  a f a f a f

      

     

    

                    (7.8) 

Further, the unrolled DFG is applied with THT based obfuscation where some 

sequential addition operations are executed in parallel as shown in Fig. 7.3.  

These obfuscation techniques would impact the design structure by incurring 

the changes in the size and number of Muxes and Demuxes, interconnection 

path and storage resource count, thereby rendering the design structure non-

interpretable by an attacker. This thwarts the adversary from performing 

reverse engineering (RE) and potential backdoor insertion. Further, the 

obfuscated DFG is subjected to scheduling phase of HLS using FU constraints 

of 3 multipliers (M) and 1 adder (A). . Post perming HLS, we obtain a 

structurally obfuscated RTL design of 3x3 filter hardware accelerator. 

7.2.2.1. Designing re-configurable structurally obfuscated 3x3 filter 

hardware accelerator architecture 

The functionality of different 3×3 filter applications can be incorporated into a 

Fig. 7.4. Structurally obfuscated hardware accelerator architecture for 3×3 image filter 

applications with reconfigurable functionality (note: the reconfigurable functionality is 

highlighted within a red box. Red hyphens show the registers needed for storing primary and 

intermediate inputs-outputs) 
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single obfuscated hardware accelerator by designing a reconfigurable 

architecture. The proposed reconfigurable architecture can be configured to 

execute functionality of five different image-processing applications viz. 

image blurring, sharpening, vertical and horizontal embossment and Laplace 

edge detection. A specific image processing hardware accelerator design is 

enabled using a control bit pattern.  

In order to design the re-configurable structurally obfuscated 3x3 filter 

hardware accelerator architecture, the scheduled obfuscated DFG (obtained in 

previous sub-section 7.2.2) is subjected to allocation, binding and datapath 

synthesis phases of HLS. In this process, the reconfigurable functionality is 

enabled through the Muxes acting as switches for different kernel coefficient 

inputs. These Muxes are controlled through a bit pattern “c2c1c0” which has 

five different modes to execute five different applications. The re-configurable 

structurally obfuscated 3x3 filter hardware accelerator architecture along with 

five modes of “c2c1c0” is shown in Fig. 7.4.  

7.2.3. Generating secured five application specific 3x3 filter designs 

Using eq. (7.7) and eq. (7.8), the mathematical expression of different 3×3 

filters of specific applications can be deduced based on their kernel matrix. 

This sub-section presents the secured hardware accelerator designs of 

following 3x3 filter applications: 

7.2.3.1. 3x3 Blur filter design 

The kernel matrix of a 3×3 mean filter for blurring is given below: 

                                        F
B
 =1/9 [

1 1 1
1 1 1
1 1 1

]

3×3

                                      (7.9) 

Based on the kernel coefficients, the equation of concurrent output pair “O0 

and O1” for the 3×3 blur filter is derived as follows: 

O0 = [(a00 + a01 + a02 + a10 + a11 + a12 + a20 + a21 + a22) × (1/9)]       (7.10)                         

O1 = [(a01 + a02 + a03 + a11 + a12 + a13 + a21 + a22+a23) × (1/9)]         (7.11)                                 

In order to generate the structurally obfuscated 3x3 Blur filter design, the 

above equations are first converted into corresponding DFG representing the 
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unrolled version. Further it is subjected to THT based obfuscation followed by 

HLS process to generate the structurally obfuscated RTL design of Blur filter. 

The end to end image processing using a secured Blur filter design is shown in 

Fig. 7.5.  

7.2.3.2. 3x3 sharpening filter design 

The kernel matrix of a 3×3 sharpening filter is given below: 

                                        F
S
=[

−1 −1 −1
−1 9 −1
−1 −1 −1

]

3×3

                                    (7.12)                                 

Based on the kernel coefficients, the equation of concurrent output pair “O0 

3×3 Blur Filter Hardware Accelerator 

[
71.77 107.5 107.4
107.5 161.1 160.8
107.1 160.4 160.2

] 

Pre-processing 

Input_Image_11 (225x225) 

Post-processing 
A portion of Filter output 

Output Image (Blur) 

Fig. 7.5.  End to end demonstration of image blurring application using 3x3 blur filter  
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and O1” for the 3×3 sharpening filter is derived as follows: 

O0 = [(a00 + a01 + a02 + a10 + a12 + a20 + a21 + a22) × (−1)] + (a11 × 9) 

(7.13)  

O1 = [(a01 + a02 + a03 + a11 + a13 + a21 + a22+a23) × (−1)] + (a12 × 9)  

(7.14)   

 In order to generate the structurally obfuscated 3x3 sharpening filter design, 

[
974 652 643
642 160 162
646 166 158

] 

Fig. 7.6.  End to end demonstration of image sharpening application using a 3x3 filter  

3×3 Sharpening Filter Hardware Accelerator 

Pre-processing 

Input_Image_21 (225x225) 

Post-processing A portion of Filter output 

Output Image (Sharp) 
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the above equations are first converted into corresponding DFG representing 

the unrolled version. Further it is subjected to THT based obfuscation 

followed by HLS process to generate the structurally obfuscated RTL design 

of sharpening filter. The end to end image processing using secured 

sharpening filter design is shown in Fig. 7.6.                               

7.2.3.3. 3x3 vertical embossment filter design 

The kernel matrix of a 3×3 vertical embossment filter is given below: 

F
VE

=  [
0 0 0
1 0 −1
0 0 0

]

3×3

                                                  (7.15) 

Owing to non-symmetric nature of the kernel matrix of vertical embossment 

filter, a horizontal flip followed by a vertical flip are applied. This results into 

Fig. 7.7.  End to end demonstration of vertical embossment application using 3x3 filter  

3×3 VE Filter Hardware Accelerator 

[
48 2 −1
48 2 −1
48 2 −1

] 

Pre-

processing 

Input_Image_31 (717×956) 

Post-

processing 

A portion of 

Filter output 

Output Image (Vertical Embossment) 
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the following kernel matrix of vertical embossment filter:  

F
VE

=  [
0 0 0

−1 0 1
0 0 0

]

3×3

                                         (7.16) 

Based on the kernel coefficients, the equation of concurrent output pair “O0 

and O1” for the 3×3 vertical embossment filter is derived as follows: 

   O0 = [(a10 × (−1))] + [(a12)]                                (7.17) 

O1 = [(a11 × (−1))] + [(a13)]                                  (7.18)   

In order to generate the structurally obfuscated 3x3 vertical embossment filter 

design, the above equations are first converted into corresponding DFG. 

Further it is subjected to THT based obfuscation followed by HLS process to 

generate the structurally obfuscated RTL design of vertical embossment filter. 

The end to end image processing using secured vertical embossment filter 

design is shown in Fig. 7.7.    

7.2.3.4. 3x3 horizontal embossment filter design 

The kernel matrix of a 3×3 horizontal embossment filter is given below: 

F
HE

=  [
0 1 0
0 0 0
0 −1 0

]

3×3

                                                  (7.19) 

Owing to non-symmetric nature of the kernel matrix of horizontal embossment 

filter, a horizontal flip followed by a vertical flip are applied. This results into 

the following kernel matrix of horizontal embossment filter: 

F
HE

=  [
0 −1 0
0 0 0
0 1 0

]

3×3

                                         (7.20) 

Based on the kernel coefficients, the equation of concurrent output pair “O0 

and O1” for the 3×3 horizontal embossment filter is derived as follows: 

   O0 = [(a21)] + [(a01 × (−1))]                                 (7.21) 

O1 = [(a22)] + [(a02 × (−1))]                                  (7.22)   

In order to generate the structurally obfuscated 3x3 horizontal embossment 

filter design, the above equations are first converted into corresponding DFG. 

Further it is subjected to THT based obfuscation followed by HLS process to 
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generate the structurally obfuscated RTL design of horizontal embossment 

filter. The end to end image processing using secured horizontal embossment 

filter design is shown in Fig. 7.8.  

7.2.3.5. 3x3 Laplace edge detection filter design 

The kernel matrix of a 3×3 Laplace edge detection filter is given below: 

 F
ED

=  [
0 −1 0

−1 4 −1
0 −1 0

]

3×3

                                            (7.23) 

Based on the kernel coefficients, the equation of concurrent output pair “O0 

and O1” for the 3×3 Laplace edge detection filter is derived as follows: 

O0 = [(a01 + a10 + a12 + a21) × (−1)] + (a11 × 4)                  (7.24) 

O1 = [(a02 + a11 + a13 + a22) × (−1)] + [(a12 × 4)]                (7.25)   

3×3 HE Filter Hardware Accelerator 

[
46 48 48
0 0 0
0 0 0

] 

Pre-

processing 

Input _Image_41 (717×956) 

Post-

processing 

A portion of 

Filter output 

Output Image (Horizontal Embossment) 

Fig. 7.8. End to end demonstration of horizontal embossment application using 3×3 filter  
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In order to generate the structurally obfuscated 3x3 Laplace edge detection 

filter design, the above equations are first converted into corresponding DFG. 

Further it is subjected to THT based obfuscation followed by HLS process to 

generate the structurally obfuscated RTL design of Laplace edge detection 

filter. The end to end image processing using secured Laplace edge detection 

filter design is shown in Fig. 7.9.  

7.3. Design Approach of a Secured 5x5 Filter Hardware 

Accelerator 

Some image processing applications e.g. deep embossment uses 5×5 filter to 

produce filtered image. This section discusses the mathematic foundation of a 

5x5 filter processing followed by generating structurally obfuscated filter 

Fig. 7.9.  End to end demonstration of edge detection using 3×3 edge detection filter  

3×3 Laplace edge detection Filter Hardware Accelerator 

[
90 50 49
44 2 1
44 2 1

] 

Pre-processing 

Input _Image_52 (717×956) 

Post-processing A portion of Filter output 

Output Image (Edge Detection) 
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hardware accelerator. 

7.3.1. Mathematical foundation of a 5x5 filter design 

For the kernel of size 5×5, the filter coefficient matrix [F] is given below: 

F = 

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

40 41 42 43 44 5 5

f f f f f
f f f f f
f f f f f
f f f f f
f f f f f



 
 
 
  

                            (7.26) 

fpq denote the kernel values, where p and q both vary from 0 to 4.  

To execute ‘same convolution’ of 5×5 filter with the input image pixels, first 

the input matrix [A], given in (7.1), is padded with g number of zero-rows and 

zero-columns based on the padding rule given in eq. (7.3). Since f=5, therefor 

g is computed to be 2 using eq. (7.3). The enhanced input matrix, post 

padding, is shown below: 

 

 

      

00 01 0 J 1

10 11 1 J 1

I 1 0 I 1 1 I 1 J 1

N M

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 X X X 0 0

0 0 X X X 0 0
A

0 0 X X X 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0





   












 
 
 
 
 
 
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 

        (7.27) 

Where, N×M is the dimension of enhanced input matrix which is given as 

(I+4)×(J+4) for executing the ‘same convolution’ using 5x5 filter. And the 

pixel values are represented by aij where i and j vary from 0 to N-1 and 0 to 

M-1 respectively.  

The output pixels generated using convolution of updated input matrix [A] and 

5x5 filter kernel [F] can be calculated using the ‘for loop’ given in eq. (7.5), 

where p and q take the values from 0 to 4 (i.e. lower value is 0 and upper value 

is 4) during calculating each output value Ow. And values of i and j vary from 

0 to N-1 and M-1 respectively for computing the the entire output matrix [O]. 

For computing 1
st
 output value O0 using (7.5), lower and upper values of i and 

j are 0 and 4 respectively. Hence, O0 is given as follows: 

i=4,p 4 j=4,q 4

0 ij pq

i=0,p 0 j=0,q 0

O ( a f ) 
 

 

  

                                           (7.28) 
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Further, this equation is expanded as follows: 

          
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(7.29)
                  

 

7.3.2. Generating structurally obfuscated 5x5 filter hardware accelerator 

Using the eq. (7.29) as an algorithmic description of 5x5 filter application, the 

corresponding hardware accelerator can be designed in the form of RTL 

through the HLS process. Further in order to generate a secured 5x5 filter 

design, structural obfuscation mechanism is integrated with the HLS design 

Fig. 7.10. Partitioned DFG of 5×5 filter application post performing THT based structural obfuscation 

Fig. 7.11. Structurally obfuscated RTL datapath of 5×5 image filter hardware accelerator  



93 

process. Following two structural transformations are applied for obfuscation: 

(i) DFG partitioning (ii) tree height transformation. In the DFG partitioning 

based structural obfuscation technique, five cuts are made to create 6 

partitions. Further, each partition of the DFG is applied with THT obfuscation. 

Thus obtained obfuscated partitioned DFG of 5x5 filter application is shown 

in Fig. 7.10. Further, FU constraints of 5M and 2A are applied to perform 

scheduling of obfuscated DFG. Finally, structurally obfuscated RTL datapath 

of 5x5 filter application is synthesized to generate the secured hardware 

accelerator as shown in Fig. 7. 11.  

7.4. Summary 

This chapter discussed a novel appproach of designing 3x3 and 5x5 filter 

hardware accelrators for image processing applications using HLS design 

process, to address the low power and high performance requiremrnt. Further, 

the threat of RE based hardware Trojan insertion attack was handled by 

employing the structural obfuscation during the HLS design process of image 

processing filters. The proposed structurally obfuscated 3x3 and 5x5 filter 

designs are resilient against the RE by an attacker. Furthermore, we also 

demonstrated the image processing applications for five specific structurally 

obfuscated filters.  
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Chapter 8 

Techniques for Securing Functionally Obfuscated DSP 

Cores against Removal Attack 

The IP core steganography and watermarking techniques, discussed in the 

previous chapters, act as detective control against IP piracy. However, these 

approaches cannot prevent IP piracy from happening. A functional obfuscation 

mechanism [36] is a preventive control against IP piracy, where the 

functionality is obfuscated by locking the design using some key gates or 

locking blocks. Thus the functional obfuscation technique produces a locked 

netlist which can only be activated by applying a correct key [37]. The 

adversary, being unaware of the correct key, cannot illegally use the IP core. 

For securing digital signal processing (DSP) cores, functional obfuscation has 

been performed by adding IP core locking blocks (ILBs) at the output of 

functional units (FUs) [36]. However, a functionally obfuscated design is 

susceptible to removal attack [39] where the attacker attempts to remove the 

ILBs in order to de-obfuscate it and acquire an unlocked netlist. Thus removal 

attack can defeat the goal of functional obfuscation and facilitate IP piracy.  

This chapter discusses proposed SHA-512 based key generation hardware and 

anti-removal logic (ARL) based key generation unit to secure the ILBs used in 

functionally obfuscated DSP cores against the removal attack.  The security is 

achieved by offering re-configurability to ILBs structures based on the output 

of proposed key generation hardware units.  The outline of the chapter is as 

follows. The first section formulates the problem. The second section provides 

the overview of an ILB and its various features. The third section discusses the 

SHA-512 based ILB-keys generation hardware under the following sub-

sections: overview, design of custom SHA-512 based key generation 

hardware, key based reconfiguration of ILB structure and advantages of using 

SHA-512 based ILBs-key generation hardware over AES hardware [53] to 

secure against the removal attack. Further, the fourth section discusses the 

ARL unit under the following sub-sections: overview, design of ARL unit 

based key generation hardware, and advantage of using ARL unit over AES 

and SHA-512 based logic to secure against removal attack. Finally, the fifth 

section summarizes the chapter.  
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8.1. Problem Formulation 

Given the data flow graph (DFG) representation of a target application, 

module library, resource constraints, along with the objective of securing IP 

cores against IP piracy, generate a removal attack resilient functionally 

obfuscated DSP IP core. 

8.2. Overview of ILB and its Features 

An ILB is interweaved structure of various logic gates such as XOR, XNOR, 

AND, NAND, and NOT gates. A sample ILB structure is depicted in Fig. 8.1. 

An ILB requires 8-bit long key to be activated. The ILBs are placed into the 

design at output bit of each FU such as multiplier and adder to enable logic 

locking or functional obfuscation of DSP cores. The various ILB structures are 

placed into the gate level design through a repetition pattern of a particular 

ILB. A random variable µ is used to achieve this repetition pattern, where µ is 

given as follows:  1 ≤ μ ≤𝑇𝐼𝐿𝐵.  More explicitly, same ILBs is placed ‘µ’ times 

and post ‘µ’ repetitions, next ILB from total ILBs (TILB) is chosen and placed 

‘µ’ times. The total ILBs TILB are determined as follows: (total number of 

FUs) × (# of output bits of a FU).  

The ILBs exhibit following security properties: 

(i) Multi-pairwise security: The ILBs are multi-pair wise secured because 

one bit of key cannot be sensitized to output without monitoring 

remaining key bits. 

(ii) Protected against key gate isolation: Since the keys gates are associated 

in such a manner that one gate is linked with the key inputs of other 

gates; hence an individual key gate of ILBs cannot be isolated. Thus, 

k1_0 
k1_1 

k1_2 
k1_

3 

k1_

4 

k1_5 
k1_6 

k1_7 

Out 
In 

Fig. 8.1. A sample ILB structure requiring an 8-bit key ‘k1’ to activate 
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the key gate isolation is prohibited to thwart the key sensitization 

attack. 

(iii) Protected against run of key-gates: The keys gates have been 

intertwined in order to thwart the replacement of run of key gates with 

single key gate by an adversary, hence hindering key sensitization. 

(iv) Non-mutable key gates: The robust composition of keys gates prevents 

against muting them without monitoring all the key bits hence 

hindering key sensitization. 

(v) Thwarting IP piracy: The locked or functionally obfuscated netlist 

cannot be misused by an adversary to make illegal income, without 

knowing or deducing the correct key. Since the locking using ILBs 

involve a larger size key (making brute force almost infeasible) and it 

is also protected against key sensitization, therefore the correct key 

value cannot be recovered by the adversary. 

8.3. SHA-512 based ILB-keys Generation Hardware to 

Secure against Removal Attack 

8.3.1. Overview of SHA-512 based ILBs-key generation hardware 

The overview of employing security using SHA-512 based ILBs-key 

generation hardware against the removal attack on a functionally obfuscated 

Functionally Obfuscated 

DSP Core 

Custom Hardware for SHA-512 
based ILBs-key generation 

logic unit 

m-bit Input 

512 bits (64*8 bits) encrypted 

output used as keys for ‘B’ 

ILBs (B=64) 

Non-encrypted 

keys for ILBs 

Reconfigured  
‘B’ ILBS 

‘(T
ILB- 

B)’  ILBS Primary 

Input 

Primary Output 

Fig. 8.2. Overview of securing a functionally obfuscated DSP core against the removal attack 

using SHA-512 based ILBs-key generation hardware 
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design is shown in Fig. 8.2. As shown, the custom hardware of SHA-512 

based ILBs-key generation logic takes arbitrary length (m bits) input to 

produce output of B*8 bits, where ‘B’ denotes the count of ILBs to be 

reconfigured and ‘8’ denotes the size of key (in bits) per ILB. Since the overall 

length of the hash digest is 512-bit and one ILB requests an 8-bit key, 

therefore ‘B’ can have the maximum value of 64. More explicitly, upto 64 

ILBs of the functionally obfuscated design can be reconfigured using the 512-

bit hash digest generated from the SHA-512 based key generation hardware. 

And, the keys of remaining ILBs can be fed without encryption as shown in 

the Fig. 8.2. Obtaining ILB keys using SHA-512 based key generation logic 

offers strong structural reconfiguration of several ILBs simultaneously. This is 

because, an ILB structure is not fixed rather it is determined by the key 

generation logic and its arbitrary input of m-bit. Moreover, the architecture of 

custom SHA-512 based key generation hardware, its m-bit input and hash 

output are not known to the attacker. This thwarts the identification of any 

particular ILB in the obfuscated design by an attacker, thus securing against 

the removal attack.  

The custom SHA-512 based key generation logic is shown in Fig. 8.3. The 

following two units participate in the logic: (i) SHA-512 custom logic (ii) ILB 

keys-extraction logic. An m-bit string (can be chosen arbitrarily) and initial 

hash buffer values are given as input to the SHA-512 custom unit and 512-bit 

hash digest is produced at the output. The initial values (standard) of eight 

Custom Hardware for SHA-512 based 

 ILBs-Key Generation Logic 

m-bit 

Input 

Fig. 8.3.  Block diagram of custom hardware for SHA-512 based ILBs-key generation logic  
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hash buffers (a, b, c, d, e, f, g and h), each of size 64 bits, are given below: 

a  “6A09E667F3BCC908”, b  “BB67AE8584CAA73B”, 

c  “3C6EF372FE94F82B”, d “A54FF53A5F1D36F1” 

e  “510E527FADE682D1”, f  “9B05688C2B3E6C1F” 

g  “1F83D9ABFB41BD6B”, h  “5BE0CD19137E2179” 

The custom SHA-512 unit first translates the m-bit input into a chunk of size 

1024-bit, followed by processing of 1024-bit chunk and eight hash buffer 

values to produce updated values of the hash buffers in each round. Instead of 

choosing fixed 80 rounds of traditional SHA-512, the number of rounds of 

execution is customized based on designer’s choice. The final round produces 

the 512-bit digest contained in the eight hash buffers. Thereafter, the ILB 

keys-extraction unit divides the 512-bit hash digest into the 8-bits long 

bitstreams that function as encrypted keys for ILBs. Based on the count of 

ILBs to be reconfigured, the corresponding number of bitstreams can be 

obtained from the 512-bit digest. Hence by extracting B*8 bits using the key-

extraction unit, ‘B’ number of ILBs of a functionally obfuscated DSP core can 

be structurally reconfigured. 

8.3.2. Design of custom SHA-512 based key generation hardware 

Figure 8.4 shows the internal steps of the custom SHA-512 based key 

generation logic. The process of generating ILB-keys is elaborated below 

using the following steps: 

1. Appending padding bits: The input bitstream of random length (e.g. m 

bits) is padded with the following bit sequence “1000…0” to enhance the 

length upto 896-bit (considering the length of input bitstream is less than 

896 bits). 

2. Appending input bitstream length: The length of obtained 896-bit long 

chunk is further enhanced to a chunk of 1024-bit by padding the 128 bits 

of the length of initial input bitstream.  

3. Word extraction: The 64-bit words are extracted to be exploited by the 

round function computation (RFC) logic as shown in the Fig. 8.4. The 

word is either taken out from the 1024-bit chunk or derived using ‘word 
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computation logic’ (same as standard SHA algorithm). For the first 16 

rounds, 64-bit words (W0-W15) are taken out from the 1024-bit chunk.  

For the 17
th

 round onwards, a 64-bit word is derived from the ‘word 

computation logic’. 

4. Constant extraction: The custom SHA-512 logic also exploits sixteen 64-

bit constants (K0, k1,…, K15) which are all standard values. One constant 

is extracted from the set of constants for each round of RFC logic.  

5. Hash buffer processing: The first round of RFC uses the initial hash buffer. 
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Fig. 8.4. Block diagram of custom SHA-512 based key generation hardware  
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Further, the updated hash buffer values are generated in the subsequent 

rounds of RFC.  

6. Round Function Computation (RFC): the processing of round function 

exploits the output from the previous 3 steps viz. word extraction, constant 

extraction and hash buffer. The RFC logic executes the following six 

elementary functions: MAJORITY function, SUMMATION/ ROTATION 

‘a’, CHOOSE function, SUMMATION/ ROTATION ‘e’, MIX function-1, 

MIX function-2. The hardware of RFC alongwith the logic of each of six 

functions is shown in Fig. 8.5. The number of rounds (customized) of the 
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RFC logic is decided by the designer. The hash buffer values obtained post 

final round indicate the 512-bit hash-digest.  

7. ILBs keys extraction: The ILBs key extraction unit uses the 512-bit hash-

digest to extract the B*8 bits that act as keys for ‘B’ number of ILBs of a 

functionally obfuscated design. Using the 512-bit digest, upto 64 ILBs can 

be structurally reconfigured by reordering their internal gates such that the 

functionality of ILBs is not affected and the output of ILBs is correct only 

on applying actual key bits.  

The integration of the custom SHA-512 based ILBs-key generation hardware 

with a functionally obfuscated DSP core is performed by connecting its output 

to the key bits of ILBs. Thus generated the functionally obfuscated DSP 

design is resilient against the removal attack. 

8.3.3. Key based reconfiguration of ILB structure  

The structural reconfiguration of ILBs using the key bits generated from SHA-

512 based key generation hardware is shown in Fig 8.6. Since an ILB needs 8-

bit key to be activated, therefore an 8-bit block is extracted from the 512-bit 

output of the SHA-512 based key generation logic to reconfigure the ILB. To 

obtain the keys for ‘B’ ILBs, B*8 bits are extracted by the designer. For 

demonstration, a single ILB structure is configured based on the following 8-

bit key value obtained from the ILB key selection unit: “10110000”. Thereby, 

different ‘B’ number of ILBs can be structurally reconfigured based on the key 

bits by reordering the internal gates in an appropriate manner. 

8.3.4. Advantage of using SHA-512 based ILBs-key generation hardware 

over AES hardware to secure against removal attack  

Following cryptographic properties of SHA-512 based key generation 

hardware makes its suitable for producing keys for the ILBs: (a) collision 

resistance makes difficult to find two such inputs that produce same hash 

output (b) one-way random functionality ensures that the input message 

cannot be derived from the output hash (c) deterministic property means that 

the same hash value is always generated for a given input and (d) each bit of 

the digest is a function of every input bit. These security properties of hashing 

prevent an attacker to find actual input pattern from output bits. Further, SHA-
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512 based ILBs-key generation logic offers the following advantages over 

AES based logic: 

1. AES based key generation logic relies upon fixed secret key for generating 

the encrypted output bits that act as key bits for ILB reconfiguration. 

However the fixed secret key is vulnerable to standard side channel 

attacks, hence can be compromised by the attacker. On the contrary, the 

proposed ‘SHA-512 based key generation logic’ does not depend on fixed 

secret key to produce the key bits for ILBs reconfiguration, thereby 

rejecting the likelihood of side channel attack. 

2. AES based logic has capability to provide key-bits to maximum 16 ILBs 

using its 128-bit output (since 16*8=128, where each ILB requires 8-bit 

key). This prevents a designer from reconfiguring more than 16 ILBs using 

AES128 for larger designs (containing several ILBs). This would demand 

more than one instance of AES in the obfuscated design to enable 

reconfiguration of more ILBs concurrently, hence resulting in excessive 

design and power overhead. On the contrary, the proposed ‘SHA-512 

based key generation logic’ can generate keys for upto 64 ILBs using its 

512-bit hashed output. This leads to lower design and power overhead 

compared to AES based logic.  

3. Since the AES based logic offers reconfiguration of maximum16 ILBs 

only, hence provides less security against removal attack. On the contrary, 

the proposed SHA-512 based logic offers reconfiguration of maximum 64 

ILBs in its single execution, thus employs higher security compared to 

I/P 

O/P 

Ky_0 

Ky_1 Ky_2 
Ky_3 

Ky_4 

Ky_5 Ky_6 Ky_7 

Fig. 8.6. Example of a configured ILBy based on the output “10110000” produced from ILB 

key selection/extraction logic 
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AES for securing functionally obfuscated DSP designs against the removal 

attack. 

8.4. Anti-removal Logic (ARL) Unit to Secure against 

Removal Attack  

8.4.1. Overview of lightweight ARL based ILBs-key generation 

hardware  

As we discussed earlier, removal attack on ILBs can nullify the goal of 

functional obfuscation. The removal attack can be handled by making ILBs 

structure undetectable to an adversary. To make the ILBs undetectable, 

reconfigured ILBs can be used in place of standard ILB structures. The 

structural reconfiguration of ILBs can be performed by producing their keys 

from AES128 and SHA-512 based logic. However, SHA-512 and AES128 

based ILBs-key generation hardware result in substantial design overhead and 

provide lesser security against removal attack in terms of number of input bits 

to be decoded to find the ILB key. Here, we discuss a custom lightweight and 

highly secure solution against the removal attack using an anti-removal (ARL) 

Functionally Obfuscated DSP 

Core 

Custom Anti-removal Unit 

Fig. 8.7 Overview of using ARL unit to protect a functionally obfuscated 

DSP core against the removal attack  
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unit. The key-bits for ILBs of a functionally obfuscated design are produced 

using the ARL unit. Thus produced key-bits determine the structural 

configuration of ILBs to enable the security against removal attack.  

The security of a functionally obfuscated design using ARL unit is highlighted 

in Fig. 8.7. As shown, an ARL unit is a composition of several ARL blocks. 

The number of ILBs that the designer has to reconfigure decides the number 

of ARL blocks used in an ARL unit. For example, the designer targets to 

reconfigure ‘B’ ILBs where each requires an 8-bit key to be activated. Since 

each ARL block produces only one bit of ILB key, hence total B*8 ARL 

blocks are required to be employed in the ARL unit. Because an adversary is 

not known with the custom ARL unit design, he/she cannot recover the keys 

of reconfigured ILBs. Hence the adversary is not able to deduce the ILB 

structures based on 8-bit keys. This makes the ILBs un-identifiable for the 

adversary, thereby hindering the removal attack. Additionally, the ARL unit 

itself remains protected against the removal attack as its architecture is 

customizable and also not recognizable to the attacker. Moreover, further 

camouflaging of the internal gates of ILBs and ARL unit in the entire design 

takes place after synthesis. This renders the identification of ILBs by the 

adversary highly challenging, thus improving the security against the removal 

attack.  

8.4.2. Design of ARL based key generation hardware 

Multiple ARL blocks are used to constitute an ARL unit, where each ARL 

block generates only a single key-bit for ILBs. For generating ‘x’ number of 

key-bits, ‘x’ ARL blocks are employed in an ARL unit, where x=B*8. Here, B 

indicates the count of ILBs to be reconfigured. Fig. 8.8 depicts the internal 

architecture of an ARL block. As depicted in the figure, an ARL block is a 

combination of multiple AND-OR networks which produce a single bit of 

output. The size and number of AND-OR networks is decided by the 

following two sets of the challenge inputs: S = {S0, S1, …, Sn} and C = {C0, 

C1, …, Cm}, where the length of challenge inputs ‘S’ and ‘C’ is given as ‘n’ 

and  ‘m’ respectively. The parameter ‘n’ decides the size of AND-OR network 

and the parameter ‘m’ decides count of AND-OR networks in an ARL block. 

Total 2
m

 AND-OR networks are employed in an ARL block. Further, ‘m’ also 
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decides the size of multiplexer exploited in the ARL block. The value of a 

key-bit produced from a selected AND-OR network is decided by the bit-

pattern of challenge input set ‘S’. The challenge input set ‘C’ determines 

which AND-OR network will be selected. An AND-OR network architecture, 

which is flexible, is shown in Fig. 8.9.  

The factors such as the count of ARL blocks, the size of challenge inputs ‘S’ 

and ‘C’ determine the structure of ARL blocks and the configuration of AND-

OR networks, which in turn determines the architecture of an ARL unit. Since, 

these various factors of ARL architecture are tuned by the designer, therefore 

only s/he possesses the details of the custom ARL unit. Hence an adversary 

cannot know the exact architecture of ARL unit. This makes infeasible for an 

adversary to know the ILB keys, therefore the reconfigured ILBs using the 

keys generated from the ARL unit go undetected. Thereby, the removal attack 

on the ILBs is thwarted.  

Fig. 8.9 Overview of an AND-OR network used in ARL block  
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8.4.3. Advantage of using lightweight ARL based ILBs-key generation 

hardware over AES and SHA-512 based logic to secure against 

removal attack 

1. The ARL unit offers higher security in terms of number of challenge bits 

needed to decode the keys of reconfigured ILBs (from an attacker’s 

standpoint). Generating the one bit of an ILB key requires total n + m bits 

of the challenge inputs, as discussed earlier. In order to reconfigure 64 

ILBs, total 64*8=512 key-bits need to be generated. The 512 key-bits are 

generated from 512*(n+m) bits of challenge input of ARL unit. More 

explicitly, for n=3 and m=3, determining 512 key-bits require total 3072 

bits of challenge input. On the other hand, four instances of AES128 will 

be required to generate 512 key-bits to reconfigure 64 ILBs. To decipher 

512 bits, total 1024 bits (4×128 bits of fixed secret key + 4×128 bits of 

input) of challenge inputs will be required. And, in case of SHA-512 based 

logic, input of 1024-bit is required to know by the attacker to decipher the 

512-bit output (acting as key-bits for ILBs). Thereby, an ARL unit offers 

higher security due to more number of challenge-bits required for cracking 

the same number of ILB keys and determining the ILB structures.  

2. Producing key-bits for ‘Z’ more ILBs can be performed simply by adding 

Z*8 more ARL blocks in the ARL unit. However, producing key-bits for 

more ILBs using AES-128 or SHA-512 based logic demands one extra 

instance to be used with the functionally obfuscated design. This impacts 

area and power requirement. Hence, the ARL unit offers a lightweight 

solution to secure a functionally obfuscated design against removal attack. 

8.5. Summary 

The threat of removal attack is imperative to address to secure the functionally 

obfuscated IP cores or to preserve the goal of functional obfuscation. This 

chapter discussed SHA-512 and lightweight ARL unit based ILBs-key 

generation hardware to handle the removal attack on functionally obfuscated 

DSP cores. This chapter discussed the internal architecture of custom SHA-

512 based key generation hardware and ARL unit. Further, we also discussed 

the advantages of using SHA-512 and lightweight ARL unit based ILBs-key 

generation hardware compared to an AES based solution.  



107 

Chapter 9 

Robust Logic Locking Technique for Preventing IP 

Piracy  

The IP piracy can be prevented by locking the functionality of the design 

through some key gates which are activated using correct keys only. This kind 

of technique of obscuring the design functionality is referred to as logic 

locking [36]. This chapter discusses a proposed robust logic locking technique 

for securing IP cores for DSP applications, by placing DSP locking cells 

(DLCs) at selected locations in the design. The proposed novel structure of 

DLC uses sequential elements such as flip-flops (FFs) alongwith 

combinational elements such as logic gates. The robustness of the proposed 

DSP locking cell structure lies in the fact that the probability of recovering the 

correct key even in exhaustive trials is rendered considerably lesser than one. 

The outline of the chapter is as follows. The first section formulates the 

problem. The second section discusses the proposed logic locking technique 

for securing DSP cores against IP piracy under the following sub-sections: 

overview, proposed DSP locking cells (DLCs) structure, security assessment 

of DLCs, insertion of DLCs in the design, metrics used to evaluate security of 

the logic locking technique. The third section discusses the different attack 

scenarios addressed by the proposed technique. Finally, the fourth section 

summarizes the chapter.  

9.1. Problem Formulation 

Given the data flow graph (DFG) representation of a target application, 

module library, resource constraints, along with the objective of securing IP 

cores against IP piracy, generate a locked (functionally obfuscated) netlist of 

the IP core. 

9.2. Logic Locking Technique for Securing DSP Cores 

against IP Piracy  

This section discusses the proposed logic locking technique for securing DSP 

cores under the following subsections:   

9.2.1. Overview 
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The overview of logic locking technique for securing DSP IP cores is depicted 

in Fig. 9.1. The proposed technique takes following inputs: DFG representing 

the target DSP application, module library, resource constraints, designer 

specified tuning variable ‘ω’ and keys for the DLCs. The logic locking 

technique integrated with the design flow generates a locked netlist at the 

output. The following three steps are executed to accomplish the logic locking 

process as shown in Fig. 9.1: (i) design a RTL datapath of target DSP 

application using high level synthesis (HLS) process (ii) perform locking of 

RTL datapath through insertion of reconfigured DLCs based on encoded value 

of ‘ω’ which determines the place for DLCs insertion as per its encoding rules 

(iii) perform synthesis of locked gate-level netlist. The keys for DLCs to 

produce reconfigured DLC structures are obtained from AES-128 output.  

To perform the locking of the functionality of the DSP core, we proposed a 

Inputs for Proposed Logic Locking 

Proposed Locking for DSP cores 

Encoding 
Rules 

Designer 

selected 

tuning 

variable 
(ω)  

 

Generate locked RTL datapath by inserting reconfigured DLCs in the un-locked datapath 

based on encoded ‘ω’ (DLCs are reconfigured based on AES output to render them 
undetectable into the design) 

 

DSP 
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(DFG) 

Keys for DLCs 
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encrypted 
keys  

Generate a Register Transfer Level (RTL) datapath of DSP application using 

HLS framework 

Synthesize and generate functionally locked gate-level netlist 

Resource 
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Output 
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Fig. 9.1.  Overview of proposed logic locking methodology for DSP IP cores  
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robust and reconfigurable structure of DLC. This reconfiguration of DLCs is 

accomplished using AES128 output. From the security perspective, the 

proposed logic locking approach achieves the probability of deducing correct 

key in all possible trials (attempting exhaustive key combinations) extremely 

lesser compared to the probability of deducing the same in exhaustive trials 

using existing logic locking techniques [36], [37]. In other words, in the 

proposed technique, the correct key is only possible to be obtained by an 

attacker if he/she attempts it at first combination. If the attacker fails to apply 

correct key combination at first trial, during providing various key 

combinations, then he/she cannot deduce the correct key in the leftover trials. 

On the other hand, in the existing logic locking approaches, the probability of 

deducing the correct key using exhaustive trials is 1. Thus, the proposed 

structure of DLCs ensures higher security than the existing logic locking 

technique [36] for DSP cores. 

9.2.2. Proposed DSP locking cells (DLCs) structure and its security 

properties 

The proposed DSP locking cell structure is constituted using following two 

logic locking sub-cells (i) sequential logic locking cell (SLLC) (ii) 

combinational logic locking cell (CLLC) as shown in Fig. 9.2. A SLLC 

comprises of two D flip-flops. We refer these flip-flops as key-FFs in this 

chapter, as their functioning is driven by the key bits. Each key-FF acts in 

toggling mode. The initial state of each key-FF is required to set to ‘0’. This 

setting of key-FFs can be achieved using power on reset. Further, a CLLC 

comprises of various logic gates such as OR, NOR, EX-OR, EX-NOR, AND, 

NAND and NOT gate. Different arrangements of various logic gates in CLLC 

and variations of edge triggering (such as positive and negative) of the key-

FFs in SLLC can produce various reconfigured functional structures of DLCs. 

The proposed DLCs exhibit various security properties such as (i) pair-wise 

security, protection against key-gate isolation, protection against run of key-

gates, protection against muting of key gates to hinder the sensitization of key 

bits at output (ii) involving the outputs of key-FFs with key-gates makes the 

hybrid structure of proposed DLC more robust (iii) deducing the valid key 

using all possible combinations of key is infeasible, given that the valid key 
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combination is not provided at the first trial (iv) since both type of cells viz. D-

FFs and logic gates participate in the logic locking, therefore detection of only 

key-gates or only key-FFs is not enough for an attacker to perform the attacks. 

All the key-gates and key-FFs of a DLC are required to be identified by the 

attacker. This renders the attacker’s effort tremendously challenging due to 

camouflaging of key-FFs and key-gates in the many similar resources of the 

gate level netlist of the DSP core (v) the proposed DLC structure requires 

lesser number of key-bits (only two per DLC structure), therefore keys for 

more DLCs can be obtained from an AES instance.  

9.2.3. Security assessment of DLCs 

Using the proposed DLCs, obtaining the correct key is only possible if the 

attacker attempts it at first trial. The reason of not finding the correct key in 

Fig. 9.2. Proposed sample reconfigured DLC structures (where, “K1K2” is a two-bit key)  
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exhaustive combinations except applying it at the first trial is explained in this 

sub-section with the help of proposed DLC and timing diagram shown in Fig. 

9.2(a) and 9.3 respectively: 

The proposed DLC structure leverages the toggling nature of FF elements. A 

FF can work in toggling mode on applying a certain input alongwith a clock 

signal. In the proposed DLCs, organization of logic gates and key-FFs is such 

that the unique feature of toggling of FFs can be exploited for robust security 

of logic locking against the brute force attack. To generate a correct output 

through proposed DLCs, the output of each key-FF must stay at 0 while 

applying the correct key. As shown in Fig. 9.2, the key bits are connected with 

the clock input of the key-FFs. Therefore during exhaustive 

combinations/trials of key value, variation in key-bits would lead to flipping of 

the flip-flop output. This guarantees that the output of a FF does not stay at 0 

upon applying the correct key after a wrong key combination applied in the 

Fig. 9.3.  Waveforms showing that correct output is not obtained unless the correct key is 

applied only in the first trial (note- R: right key combination, W: wrong key combination. At 

W, output (O) is either complement of input (I’) or 0 and at R, O is always 0) 
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first trial. Hence, the attacker cannot obtain the correct output on exhaustive 

key combinations unless the valid key is provided only in the first trial. This 

idea is further explained below with the help of the proposed DLC structure, 

given Fig. 9.2(a), for different scenarios:  

Note: Since each DLC requires two-bit key to activate therefore exhaustive 

trials in deducing the correct key of a DLC are four. 

1. Scenario of applying valid key in the first trial: If the initial setting of each 

key-FF output is 0 and the correct key “01” is provided to the DLC (Fig. 

9.2(a)) in the first trial, then the DLC functions correctly. In this case, the 

path of DLC from input (I) to output (O) bit is unlocked and valid output is 

generated. Thus, the correct output can be produced using DLC on 

providing valid key in the first trial. This could be achieved because the 

flip-flops output “Q1Q2” are “00” during the application of correct key. 

Therefore, the probability of obtaining valid output on providing valid key 

in the first trial is 1. 

2. Scenario of applying valid key in the second trial: Let’s suppose an invalid 

key is applied in the first trial and the valid key “01” is applied in the 

second trial. This will make the transition in either of the key bits (K1 or 

K2) as depicted in the waveforms shown in Fig. 9.3(a), (b) and (c). This 

transition on a key-bit (which is the clock input of flip-flop) will result in 

flipping (toggling) on output of respective key-FF and thus “Q1Q2” will 

no longer remain at “00”. For example, if invalid key “00” is provided in 

the first trial then providing valid key “01” in the second trial results in 

transition on key-bit ‘K2’ (as shown in Fig. 9.3(a)) which toggles the 

output Q2. This toggling in the output of key-FF results in incorrect output 

of the DLC on feeding correct key in the second trial. Therefore, the 

probability of obtaining valid output on providing the valid key in the 

second trial is 0. 

3. Scenario of applying valid key in the third trial: If valid key is fed in the 

third trial post two wrong trials, then the valid output is not obtained from 

the DLC (Fig. 9.2(a)) as depicted in the waveforms shown in Fig. 9.3(d), 

(e), (f), (g), (h) and (i). The underlying reason is that the applying valid 

key after two wrong trials results in the transition on key-bits. This 
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transition toggles either Q1 or Q2 or both, hence “Q1Q2” is not 

maintained at “00”. Therefore, the probability of obtaining valid output on 

providing valid key in the third trial is 0. 

4. Scenario of applying valid key in the fourth trial: Similarly, applying valid 

key after three wrong trials makes the output of the DLC invalid as 

depicted in waveforms shown in Fig. 9.3 (j), (k), (l), (m), (n) and (o). 

Therefore, the probability of obtaining valid output on providing valid key 

in the fourth trial is also 0. 

Although it does not match with our intuition that the probability of obtaining 

valid output by feeding valid key is not always 1, however it has been 

achieved for the proposed DLC structure as shown in Fig. 9.3. Therefore, the 

valid key cannot be deduced through the proposed DLCs in exhaustive trials 

except first and this makes the proposed logic locking more robust. 

9.2.4. Insertion of DLCs in the design 

Figure 9.4 shows the insertion technique of proposed DLCs in the DSP core 

design. Before the DLCs insertion process, the structure of DLCs and 

locations for their insertion are determined. To determine the locations of the 

DLC insertion, the designer specified tuning variable ‘ω’ is used which varies 

from 0 to 3 and conform to the following encoding rules: 

 ω =0: select even output bits of functional units (FUs) for DLCs insertion 

 ω =1; select odd output bits of FUs for DLCs insertion 

 ω =2; select prime output bits of FUs for DLCs insertion 

 ω =3; select all output bits of FUs for DLCs insertion 

The total number of DLCs (TDLC) to be placed in a DSP design is determined 

using the following equation: 

TDLC =(total # of FUs)×(# of output bits per FU chosen based on ω)      (9.1) 

For example, if a design contains three FUs each of size 32-bit then total 

output bits of FUs are 3×32=96. Therefore, on choosing ω =3, total 96 DLCs 

are placed in the design. Post determining the number of DLCS and their 

location of insertion based on ω, the DLCs are inserted at selected locations in 

the RTL datapath of the DSP design. It is noteworthy that the proposed DLC 

structure is not predefined rather it is reconfigurable based on its key value. As 
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shown in Fig. 9.4, a subset of DLCs obtains the keys from AES128 output in 

order to generate the reconfigured structure of respective DLCs. Since a DLC 

is activated using a two-bit key, therefore 128-bit AES output can be used to 

reconfigure upto 64 DLCs. This structural reconfiguration of DLCs disables 

an attacker in identifying them in the design, hence hindering the removal 

attack.  

9.2.5. Metrics used to evaluate security of the logic locking technique 

Following metrics are used to evaluate the security achieved using the 

proposed logic locking technique:  

1. Probability of obtaining valid key in exhaustive trials (Pv) 

The Pv is the metric for assessing security of the proposed logic locking in 

compared to the existing logic locking techniques [36], [37]. The Pv metric 

indicates the probability of deducing the correct key by trying all the possible 

key combinations. The equation of Pv is formulated as follows: 

𝑃𝑣 = (𝑃𝑎𝑝𝑝𝑙

𝑣𝑘(1)
) . (𝑃𝑜𝑏𝑡

𝑣𝑜(1)
) + (𝑃𝑎𝑝𝑝𝑙

𝑣𝑘(2)
) . (𝑃𝑜𝑏𝑡

𝑣𝑜(2)
) + ⋯ + (𝑃𝑎𝑝𝑝𝑙

𝑣𝑘
(2𝑘𝑏)

) . (𝑃𝑜𝑏𝑡

𝑣𝑜
(2𝑘𝑏)

)          (9.2) 

Where, kb and 2kb  represent the total number of key-bits and the exhaustive 

key-combinations or trials respectively. 

(𝑃𝑎𝑝𝑝𝑙

𝑣𝑘(1))=probability of applying valid key at 1
st 

trial. 

(𝑃𝑎𝑝𝑝𝑙

𝑣𝑘(2))= probability of applying valid key at 2
nd 

trial. 
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(𝑃𝑎𝑝𝑝𝑙

𝑣𝑘
(2𝑘𝑏))=probability of applying valid key at (2𝑘𝑏)th trial. 

(𝑃𝑜𝑏𝑡

𝑣𝑜(1))= probability of obtaining valid output on applying valid key at 1
st 

trial. 

(𝑃𝑜𝑏𝑡

𝑣𝑜(2))= probability of obtaining valid output on applying valid key at 

2
nd

trial. 

(𝑃𝑜𝑏𝑡

𝑣𝑜
(2𝑘𝑏))=probability of obtaining valid output on applying valid key 

at (2𝑘𝑏)th trial. 

It seems to be likely that the valid output can be obtained by applying valid 

key at any trial (with probability=1). However, this fact is challenged using the 

proposed DLC based logic locking technique where an attacker cannot find 

valid output even on applying valid key unless it is fed only in the first trial. 

More explicitly, this fact is explained for the following two cases: 

(i) In case of existing techniques of logic locking [36], [37]:  Valid 

output can be obtained by applying valid key at any trial with 

probability 1. In this case, the trial number in which the correct key is 

applied does not matter. The probability of applying valid key at any 

trial can be formulated as 1/2𝐾𝑏 as the total possible trials are 2𝐾𝑏 and 

the favourable trial is only one in which valid key is fed. Thus, the 

probability of obtaining valid key in exhaustive trials (i.e. Pv) is 

derived as follows using (9.2):  

𝑃𝑣 =
1

2𝐾𝑏
. 1 +

1

2𝐾𝑏
. 1 +

1

2𝐾𝑏
. 1 + ⋯ 2𝐾𝑏𝑡𝑖𝑚𝑒𝑠 

      𝑃𝑣 = 2𝐾𝑏
1

2𝐾𝑏
  

𝑃𝑣 =  1                                                   

 (9.3) 

The above eq. (9.3) shows that the probability of obtaining valid key in 

exhaustive trials is 1 in case of existing logic locking techniques.  

(ii) In case of proposed DLC based logic locking: The probability that 

the valid output can be obtained on feeding valid key at any trial is not 

always 1. Only the probability of obtaining valid output on feeding the 

valid key in the first trial is 1. In case of other trials, this probability is 

0 due to the structural nature of the proposed DLC. Thus, the 
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probability of obtaining valid key in exhaustive trials is derived as 

follows using (9.2): 

          𝑃𝑣 =
1

2𝐾𝑏
. 1 +

1

2𝐾𝑏
. 0 + ⋯ +

1

2𝐾𝑏
. 0 

 𝑃𝑣 = 1/2𝐾𝑏                                                     (9.4) 

In other words, if the valid key is only fed at the first trial, only then 

DLC is activated and the attacker can deduce the correct key. 

Thereby, security (strength of logic locking) of the logic locking 

technique in terms of the probability of obtaining valid key in 

exhaustive trials is achieved to be 1/2𝐾𝑏  instead of 1.  

2. Encryption strength 

Encryption strength ( Ens) metric measure the percent of DLC key bits 

encrypted using an AES128 output. This metric is given as follows: 

 Ens =
Nop

AES

Nkbits
total                                       (9.5) 

Where, Nop
AES indicates the number of encypted output bits generated from 

AES128 and Nkbits
total   indicates the total number of DLC key bits in a design. 

9.3. Addressing different Attacks Scenarios  

To launch attacks, an attacker is assumed to have access of the following: (i) 

locked gate-level netlist or a layout/GDS-II file (ii) sophisticated tools for 

reverse engineering to obtain locked gate-level netlist (iii) functional IC of 

the locked design. Using the abovementioned facilities, the attacker can try to 

unlock the design through various attacks such as: key-sensitization based 

attacks [37], SAT attack [40], removal attack [39]. Post obtaining the unlocked 

netlist, the design becomes susceptible to IP piracy attack. Various attacks are 

addressed using the proposed logic locking technique as follows:  

1. Addressing key-sensitization based attacks: A key-bit can be sensitized 

at primary output by feeding a suitable input pattern to primary input. In 

the proposed DLC, one key bit obstructs the path of sensitization of the 
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other key bit and the complex organization of key-gates and key-FFs 

renders the logic locking resilient against the key-sensitization attack 

based on the following: (i) isolated key-bits (ii) run of key-gates (iii) 

mutable key-gates.  

2. Addressing brute force attack: Performing brute-force attack almost 

infeasible because of the proposed DLCs based logic locking. This is due 

to the fact that the probability of obtaining valid key even in exhaustive 

trials is 1/2𝐾𝑏  (highly lesser than one).  

3. Addressing SAT attack: The SAT attack works by rejecting wrong key 

combinations iteratively with the help of distinguishing input-output (DIO) 

pairs. Since the proposed logic locking is employed for DSP IP cores 

which contain several multiplication operations, hence the SAT attack is 

not feasible due to its non-scalability for multipliers. However, efficient 

SAT attack algorithms may be assumed to be developing for DSP cores in 

future. The proposed logic locking can be used as a proactive 

countermeasure against the potential SAT attack, which can work as 

follows. The keys for the proposed DLCs are extracted from the encrypted 

output of the custom- AES block which executes a one-way random 

function. This prevents an attacker from determining the AES inputs from 

its output. 

4. Addressing removal attack:  If the attacker is assumed to be aware of 

some templates of DLC structures and has access to the locked netlist, then 

s/he can attempt removal attack on DLCs. However, locked design netlist 

using DLCs cannot be subjected to removal attack due to the following 

reason. The inside structures of DLCs are reconfigured using the different 

combinational logic gates and positive/negative edge triggered D-FFs, 

according to the output of AES128 hardware. Thereby multiple DLC 

structures are possible, depending on AES output, which are all unknown 

to the attacker. Hence, the attacker cannot detect DLCs fully in the locked 

design because of his/her unawareness of the DLCs structure, encrypted 

output of AES and its corresponding secret key.  This prevents an attacker 

from matching the reconfigured DLC structures with the available 

templates and thus thwarts his/her attempts to remove DLCs. 
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5. Addressing IP piracy attack: The security against IP piracy using logic 

locking cannot be realized unless the logic locking is strong enough. The 

strength of logic locking is challenged by some key based attacks and 

removal attack etc. However, security against these attacks can be ensured 

as discussed earlier in this section. Further, the proposed logic locking 

prevents the IP piracy as the attacker cannot misuse the IP without 

unlocking it using the correct key. Since the probability of finding valid 

key in the exhaustive trials is very less due to the proposed logic locking, 

hence impeding an attacker from deducing the valid key value. 

9.4. Summary  

The logic locking technique has been proposed as a preventive measure 

against IP piracy. This chapter discussed the proposed DLC based logic 

locking technique which is resilient against various attacks such as key 

sensitization based attack, removal attack, SAT attack and brute force attack. 

Further, the robust structure of proposed DLC makes it nearly infeasible to 

obtain valid key even in the exhaustive trials. Various security properties 

discussed in the chapter makes the proposed approach highly robust to prevent 

the IP piracy attack.  
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Chapter 10 

Experimental Results and Analysis 

The experimental results and analyses of the proposed techniques of 

hardware/IP core security for DSP and multimedia applications are presented 

in this chapter. The results have been calculated for various DSP and multi-

media benchmarks [8], [58], [59].  

10.1 Results and analysis: Hardware steganography 

techniques for securing IP cores against piracy 

The experimental results of the proposed hardware steganography techniques 

discussed in chapter 3 are presented in this section. 15 nm open cell library 

[60] was used to calculate different design parameters such as area and delay. 

The following subsections present the results for entropy based steganography 

and key-driven hash chaining based steganography techniques respectively. 

10.1.1 Evaluating entropy based steganography 

The proposed entropy based steganography technique has been 

implementation in java and run on processor with specifications “4 GB, DDR3 

memory at 1.9 GHz”. The implementation run time ranges between 2.41 to 

7.01 seconds. Unlike signature-based IP core security techniques, the proposed 

technique is entirely signature free. The amount of vendor’s secret information 

embedded can be totally controlled by the vendor/designer using an entropy 

threshold value. The security of proposed steganography technique and its 

impact on design cost are assessed as follows: 

10.1.1.1 Security analysis  

For analyzing the security achieved in terms of strength of IP ownership proof, 

the probability of coincidence (Pc) metric presented in eq. 3.2 in the section 

3.2.5 of chapter 3 is used. Table 10.1 shows the Pc value for the increasing 

value of entropy threshold T
E
. As shown, increasing T

E
 leads to increase in the 

number of stego-constraints ‘f’ embedded into the design hence resulting into 

decreasing value of Pc. The lower Pc value is desirable which represents 
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stronger proof of authorship. Hence, a large entropy threshold value can be 

chosen to achieve a stronger proof of authorship. 

The comparison of proposed steganography approach with the related works 

[25], [31] in terms of the effective stego-constraints embedded in the design is 

shown in Fig. 10.1, for designer specified different entropy threshold values. 

As shown in Fig. 10.1, the proposed approach embeds more number of 

constraints effectively than related approaches [25], [31]. This is because, 

[25], [31] possess several constraints by default which is out of designer’s 

control. So, effectively lesser constraints are inserted. However the proposed 

technique does not contain the constraints by default, thus offering full control 

over the number constraints embedded than [25], [31].  

10.1.1.2 Design cost analysis 

The metric used to compute the design cost of the proposed steganography in 

terms of area and delay is discussed in eq. (3.8) of section 3.4 of chapter 3. 

Table 10.1. Impact on Pc using proposed IP steganography for different entropy threshold (varying 

number of stego-constraints ‘f’)  

Benchmark # of  

storage 
variables 

# of registers  

before 
steganography 

Value of threshold entropy 

TE = 4 TE = 6 TE = 8 

 

f Pc f Pc f Pc 

DCT 22 8 13 1.8E-01 24    4.1E-02 43 3.2E-03 

FIR 30 8 20 6.9E-02 57 4.9E-04 57 4.9E-04 

JPEG_IDCT 135 29 50 1.7E-01 203 8.1E-04 317 1.5E-05 

MPEG 41 14 21 2.1E-01 52 2.1E-02 59 1.3E-02 

JPEG_sample 44 12 18 2.1E-01 30 7.4E-02 72 1.9E-03 

IDCT 49 10 63 1.3E-03 125 1.9E-06 125 1.9E-06 

EWF 35 7 12 1.6E-01 34 5.3E-03 57 1.5E-04 
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Fig. 10.1. Estimation of the number of effective constraints added for both solutions (considering 

same number of constraints) at different entropy threshold 
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Table 10.2 presents the design cost of the proposed approach. Further, Table 

10.3 presents the impact on register overhead with varying entropy threshold 

value. The variable ‘q’ denotes the number of extra registers needed to implant 

the stego-information. As presented in Table 10.3, the register overhead either 

increases marginally or remains same with varying entropy threshold value. 

This indicates the low overhead attribute of the proposed technique.  

Further, the proposed approach is compared with [25], [31] in terms of 

registers count as shown in Table 10.4. As shown, the number of registers 

needed to embed the same number of constraint edges in case of proposed 

approach and [25], [31] is compared. Where # of C denotes the number of 

constraints edges to be inserted in both cases, P and R denote the number of 

Table 10.2. Design cost of the proposed approach in terms of area and latency 

Benchmark Proposed 

Solution 

LT(ps) AT(μm)  Cost  

DCT 1A 4M 928 327.15 0.47 

FIR 4A 4M 994 383.78 0.44 

JPEG_IDCT 12A 12M 1988 1155.27 0.33 

MPEG 3A 7M 795 596.11 0.36 

JPEG_sample 6A 1M 1325 198.18 0.58 

IDCT 4A 3M 1723 309.85 0.48 

EWF 2A 1M 2716 118.75 0.66 

 

Table 10.3. Impact on storage overhead on increasing threshold entropy 

Benchmark # of 
storage  

variables 

# of registers 
before  

steganography 

Value of threshold  
entropy resulting into  

‘q’ more registers 

   q=0 q=1 q=2 q=3 q=4 

DCT 22 8 2-6 7 NA NA NA 

FIR 30 8 2-5 NA NA NA NA 

JPEG_IDCT 135 29 2-9 NA NA NA NA 

MPEG 41 14 2-7 NA NA NA NA 

JPEG_sample 44 12 2-8 9 NA NA NA 

IDCT 49 10 2-5 NA NA NA NA 

EWF 35 7 2-7 8 NA 9,10 11 

 

Table 10.4. Comparison of proposed approach with [25], [31] in terms of the # of registers for 

the same # of constraints (Note: C - # of constraints added; P – proposed solution; R – related 

works; % RR – register reduction % obtained w.r.t. [25], [31]) 

Benchmark # of Registers required after embedding same number of constraints 

TE = 4 TE = 5 TE = 6 

#C P R % RR # C P R % RR # C P R % RR 

DCT 13 8 9 11 % 18 8 10 20% 24 8 10 20% 

FIR 20 8 9 11 % 57 8 10 20% 57 8 10 20% 

JPEG_IDCT 50 29 29 -- 124 29 30 3.3% 203 29 30 3.3% 

MPEG 21 14 15 6.6 % 46 14 15 6.6% 52 14 15 6.6% 

JPEG_sample 18 12 13 7.6 % 20 12 13 7.6% 30 12 13 7.6% 

IDCT 63 10 11 9.1 % 125 10 18 44.4% 125 10 18 44.4% 

EWF 12 7 8 12.5% 30 7 8 12.5% 34 7 8 12.5% 
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registers needed in the proposed approach and [25], [31] respectively. The 

results in the table show that the proposed steganography incurs lesser storage 

overhead than [25], [31]. The reason is that the storage overhead in the 

signature-based protection techniques [25], [31] depends on the signature 

combinations and its encoded meaning. Additionally, foreseeing the 

relationship of signature combination with the storage overhead is also not 

feasible. On the other hand, the proposed steganography technique is signature 

free and hence independent of signature combination.  

10.1.2 Evaluating key-driven hash chaining based steganography 

The proposed key-driven hash chaining based steganography was 

implemented in C++ and run on a processor with specifications “4 GB, DDR3 

memory”. The following subsection presents the analysis on security and 

design cost of the proposed technique: 

10.1.2.1 Security analysis 

For analyzing the security achieved in terms of strength of IP ownership proof, 

the probability of coincidence (Pc) metric presented in eq. 3.3 in the section 

3.3.4 of chapter 3 is used. Table 10.5 shows the Pc value for varying size of 

stego-constraints embedded in two different phases (register allocation and FU 

vendor allocation) of HLS design process. As shown, we achieved lesser Pc as 

the stego-constraints size is increased. Further, implanting stego-information 

into two distinct phases shows that the higher amount of digital evidence are 

hidden into the design. This strengthens the stego-mark.  

Additionally, we analyze the security offered by the proposed technique in 

terms of key strength and an attacker’s effort in determining the stego-

constraints embedded into the IP core. The key strength in terms of maximum 

Table 10.5. Variation in Pc for increasing size of stego-constraints using proposed key-driven 

hash-chaining approach (note: f1 indicates #0s and f2 indicates #1s embedded effectively) 

Benchmarks # of 

registers 
(G) 

#constraint Pc #constraint Pc #constraint Pc 

f1 f2 f1 f2 f1 f2 

DCT 8 13 10 9.9E-3 24 12 1.3E-3 43 12 1.0E-4 

FIR 8 20 6 4.7E-2 57 23 1.1E-4 57 23 1.1E-4 

JPEG_IDCT 29 203 109 3.8E-4 317 109 6.9E-6 355 109 1.8E-6 

MPEG 14 21 16 9.6E-2 52 23 6.9E-3 59 23 4.1E-3 

JPEG_sample 12 30 21 1.6E-3 72 31 6.7E-6 116 31 1.4E-7 

EWF 7 34 18 2.0E-8 57 28 5.7E-13 86 28 6.5E-15 
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stego-key size (in bits) and attacker’s effort in determining the key are given 

using eq. (3.4) and eq. (3.5) respectively discussed in section 3.3.4 of chapter 

3. This represents the stronger security of proposed technique against 

determining the valid stego-key value by an attacker. The maximum key size 

and attacker’s effort in terms of key security are reported in Table 10.6. 

Moreover, the attacker is also required to deduce the encoded bits used in each 

hash block for finding the stego-constraints embedded into the design. The 

attacker’s effort of finding encoded bits, calculated using eq. (3.6) discussed in 

section 3.3.4, is shown in Table 10.6. Further, the attacker’s total effort, 

calculated using eq. (3.7) discussed in section 3.3.4, is also reported in Table 

10.6.  

The security achieved in terms of maximum stego-key size is compared with 

the entropy based steganography technique. In contrast to the entropy based 

steganography technique, the proposed approach offers very large stego-key 

size (in bits). This is because the entropy-based steganography technique does 

not require stego-key; hence the key size remains zero.  

10.1.2.2 Design cost analysis 

The metric used to compute the design cost of the proposed hash-chaining 

based steganography has been discussed in eq. (3.8) of section 3.4 of chapter 

3. Table 10.7 presents the design cost of the proposed approach. As shown, the 

design cost either remains same or increases by a nominal value with the 

growing size of constraints (#0s and #1s). The reason is that the design may 

require extra register in some cases to satisfy larger number of constraints. 

Further, Table 10.8 analyzes the design cost overhead by comparing the 

baseline cost with the post embedding steganography cost. The table shows 

Table 10.6. Security of proposed approach in terms of maximum key size and attacker’s total 

effort 

Benchmark Maximum key 

size using (3.4) 

Maximum attacker 

effort in terms of key 
security (using (3.5)) 

Maximum attacker effort 

in terms of finding encoded 
bits (using (3.6)) 

Total attacker 

effort 
(using (3.7)) 

DCT 491520 >10147603 102059 >10149662 

FIR 192937984 >1057939334 102059 >1057941393 

JPEG_IDCT 5.8153×1035 >101.74×10^35 102059 >101.74×10^35 

MPEG 7516192768 >102277634172 102059 >102277636231 

JPEG_sample 283467841536 >1085899345920 102059 >1085899347979 

EWF 584115552256 >10177004712804 102059 >10177004714863 
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that the proposed steganography has nominal impact on the design cost due to 

incurring only a trivial cost overhead (≤ 0.3 %). 

10.2 Results and analysis: Hologram based structural 

obfuscation to thwart reverse engineering based attacks 

The experimental results of the proposed hologram based obfuscation 

technique discussed in chapter 4 are presented in this section. For experiments, 

we generated following five different hologram based obfuscated DSP 

designs, where each is an integration of two DSP cores. (i) IIR-FIR hologram 

based obfuscated design, (ii) 4 point DCT- 4 point IDCT, (iii) 8 point DCT- 8 

point IDCT (iv) 8 point DCT - 4 point DCT and (v) 8 point DIT-FFT - 4 point 

DIT-FFT. Further, for comparative analysis, same DSP applications were also 

subjected to HLT based obfuscation technique [45]. A 15nm technology scale 

open cell library [60] was used to calculate the gate count and delay overhead 

of the designs of proposed technique and [45]. 

The gate count affected due to proposed obfuscation and [45] is presented in 

eq. (4.2) of section 4.2.3 of chapter 4. The comparison of affected gate count 

of proposed technique and [45] w.r.t. the baseline counterpart is presented in 

Table 10.9 and 10.10 respectively. Further, the comparison of security (in 

terms of %gate count affected) due to proposed obfuscation and [45] is 

 

Table 10.7. Impact of increasing size of stego-constraints on the design cost of proposed key driven 

hash chaining based steganography approach 

Benchmarks effective # of 

constraints 

embedded 

#constraints Design cost 

post phase1 

& 2 

effective # of 

constraints 

embedded 

#constraints Design cost 

post phase1 & 

2 
0s 1s 0s 1s 

DCT 23 13 10 0.45357 26 24 12 0.45357 

FIR 26 20 6 0.44465 80 57 23 0.44467 

JPEG_IDCT 312 203 109 0.3258 426 317 109 0.3258 

MPEG 37 21 16 0.37445 75 52 23 0.37479 

JPEG_sample 51 30 21 0.47476 103 72 31 0.47783 

EWF 52 34 18 0.6632 85 57 28 0.6655 

 
 

Table 10.8. Comparison of design cost of proposed approach with respect to baseline 

Benchmarks Design Cost 

(Baseline) 

effective # of 

constraints embedded 

Design cost 

(proposed) 

Cost overhead in 

% 

DCT 0.453 23 0.453 0% 

FIR 0.445 26 0.447 0% 

JPEG_IDCT 0.325 312 0.326 0.3% 

MPEG 0.374 37 0.374 0.2% 

JPEG_sample 0.473 51 0.475 0.3% 

EWF 0.661 52 0.663 0.3% 
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presented in Table 10.11. Based on these results, following subsections 

present the analysis of obfuscated design area, delay and security. 

10.2.1 Security analysis of proposed hologram based obfuscation 

The security is analyzed using the strength of obfuscation metric which has 

been discussed using eq. (4.1) in section 4.2.3 of chapter 4. Table 10.11 

presents the comparison of obfuscation strength (security) in terms of affected 

gate count (using eq. (4.1)) due to proposed hologram based obfuscation and 

[45]. Results show that we achieve more security due to larger # of gates 

affected compared to [45]. Further, as shown in Table 10.11, affected gate 

count for 4-point and 8-point DIT-FFT is 0% using [45] because of non-

applicability of HLT based obfuscation. On the other hand, the proposed 

obfuscation offers considerable strength of obfuscation for 8 point DIT-FFT - 

4 point DIT-FFT wrt baseline. 

 

Table 10.10 Comparison of affected gate count between [45] and baseline 

DSP kernels Gate count of 

baseline 
(un-obfuscated) 

Gate count of 

obfuscated design 
[45] 

# of gates changed 

in terms of input 
connectivity 

# of gates affected [45]  

(based on eq. (4.2)] 

IIR 5968 5968 160 160 

FIR 3280 3280 64 64 

8-pt DCT 50816 50816 1792 1792 

8-pt IDCT 50816 50816 1792 1792 

4-pt DCT 13120 13120 256 256 

4-pt IDCT 13120 13120 256 256 

8-pt DIT-FFT 9344 9344 0 0 

4-pt DIT-FFT 4672 4672 0 0 

 

 

Table10.9 Comparison of affected gate count between proposed obfuscation and baseline 

DSP kernels Gate Count 

of baseline (un-

obfuscated)  

Gate Count of 

proposed 

obfuscation 

Gate count 

reduction   

 (through proposed 
obfuscation) 

Affected gate 

count through 

proposed 
obfuscation 

IIR+FIR 9248 6544 2704 29.2 % 

8-pt DCT+8-pt IDCT 101632 55424 46208 45.5% 

4-pt DCT+4-pt IDCT 26240 14400 11840 45.1% 

8-pt DCT +4-pt DCT 63936 52352 11584 18.1% 

8-pt DIT-FFT + 

4-pt DIT-FFT 

14016 9856 4160 29.7% 

 

 

Table 10.11 Comparison of security of proposed obfuscation and [45] 

DSP kernels # of gates affected 
(proposed obfuscation) 

#  of gates 
affected ([45]) 

Affected gate count 
(proposed obfuscation) 

Affected gate 
count ([45]) 

IIR+FIR 2704 224 29.2 % 2.4% 

8-pt DCT+8-pt IDCT 49792 3584 45.5 % 3.5% 

4-pt DCT+ 4-pt IDCT 9024 512 45.1% 2.0% 

8-pt DCT +4-pt DCT 12096 2048 18.1% 3.2% 

8-pt DIT-FFT + 

4-pt DIT-FFT 

4160 0 29.7% 0% 

 



126 

10.2.2 Design area analysis of proposed hologram based obfuscation 

The Table 10.10 shows that the gate count of DSP cores due to HLT based 

obfuscation [45] remains same as the baseline. Whereas, the gate count of 

proposed hologram based obfuscated DSP cores are decreased considerably 

compared to its baseline as shown in Table 10.9. Therefore, the proposed 

hologram based obfuscation technique offers on average 33.5% savings in 

gate count (design area) than [45]. 

10.2.3 Delay analysis of proposed hologram based obfuscation 

The tree height transformation (THT) [45] impacts the critical delay of design. 

Therefore, for the chosen DSP benchmarks, the THT technique increases the 

tree height by one control step where an operation is executed using the 

respective functional unit. Because of this additional control step, the overall 

delay using [45] is increased. However, in case of proposed hologram based 

obfuscation, the switching elements of hologram obfuscation (which are the 

2x1 Muxes) lead to the additional propagation delay. Since the propagation 

delay of a 2x1 Mux is considerably lower than a FU, hence lesser delay 

overhead is incurred than [45]. Thus, the proposed approach is capable to 

provide higher strength of obfuscation at lesser delay overhead than [45]. 

10.3  Results and analysis: Double line of defense approach 

using integrated structural obfuscation and crypto-

steganography to secure IP cores 

The experimental results of the proposed structural obfuscation and crypto-

steganography based double line of defense technique discussed in chapter 5 

are presented in this section. 15 nm open cell library [60] was used to calculate 

different design parameters such as area and delay. The proposed approach has 

been implementation in C++ and run on processor with specifications “4 GB, 

DDR3 memory at 1.9 GHz”. The experimental results have been analyzed on 

JPEG compression processor and DFT processor. The security of proposed 

technique and its impact on design cost are assessed as follows: 

10.3.1 Security analysis 
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The security achieved through structural obfuscation based first line of defense 

is analyzed in terms of strength of obfuscation and the security achieved 

through crypto-based steganography is analyzed in terms of probability of 

coincidence metric for both JPEG compression processor and DFT processor.  

10.3.1.1 Strength of structural obfuscation analysis  

The strength of obfuscation of proposed technique has been defined in section 

5.2.4 of chapter 5. The significant amount of structural obfuscation is achieved 

in terms of the following: (a) alterations in the interconnectivity of high level 

components such as adders, and multipliers etc. (b) alterations in the total 

count of interconnect binding units such as Muxes and Demuxes (c) 

alterations in the total count of storage units such as registers. Because of the 

internal architecture concealment using the proposed obfuscation, the attacker 

fails to realize his/her ill intentions of inserting malicious logic (backdoor) or 

steal the design. For the JPEG compression hardware, the impact of structural 

obfuscation on architectural resources and gate count is presented in Table 

10.12.  Further, the strength of obfuscation analysis for DFT processor is 

shown in Table 10.13.  

10.3.1.2 Probability of coincidence analysis of crypto-steganography 

For analyzing the security achieved using proposed crypto-steganography in 

terms of strength of IP ownership proof, the probability of coincidence (Pc) 

metric presented in eq. 5.1 in the section 5.2.4 of chapter 5 is used. Table 

10.14 shows the Pc value achieved for JPEG compression processor for 

varying size of stego-constraints embedded in two different phases (register 

allocation and FU vendor allocation) of HLS design process. As evident from 

 

Table 10.12 Comparison of JPEG compression hardware resources pre and post obfuscation 

 Resource configuration Structural changes due 

to proposed obfuscation 

Non-obfuscated JPEG 

hardware 

4+, 8*, 12(8:1) mux, 12(16:1) mux, 6 (1:8 

demux), 6 (1:16 demux) 

10064 gates 

Structurally obfuscated 

JPEG hardware 

3+, 3*, 10(32:1) mux, 2(16:1) mux, 5 (1:32 

demux), 1 (1:16 demux) 

 

Table 10.13 Security analysis in terms of strength of obfuscation for 4-point DFT processor 

Strength of obfuscation of proposed design w.r.t 

baseline (unsecured) 
Strength of obfuscation of proposed 

design w.r.t baseline (%) = Total gates 

affected due to obfuscation/ total gates in 
baseline 

Due to difference 

 in gate count 

# of gates 

modified 

Total gates  

affected 

336 4000 4336 (4336/5760)*100 = 75.28% 
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the table, the Pc value reduces with the increasing size of stego-constraints. 

The reason is that the effective # of 0s (f1) and the effective # of 1s (f2) 

embedded into the design increase with the increasing size of stego-

constraints. Thus, we can achieve lower value of Pc by choosing the large size 

of stego-constraints to enhance the strength of steganography. In addition, the 

resource constraints (design solutions) used also affect the Pc metric as shown 

in Table 10.14 as the number of 0s and 1s of the stego-constraints vary as per 

the chosen design solution.  

Further, the Pc value in case of DFT processor is presented and compared with 

the entropy based steganography approach in Table 10.15. The proposed 

crypto-based steganography results in lower Pc because of implanting stego-

information in two distinct phases of HLS compared to implanting only in 

single phase in the entropy based steganography. Hence, the proposed 

technique implants more digital evidence which leads to stronger proof of 

ownership. 

10.3.2 Design cost analysis  

We used eq. (3.8) as the metric to compute design cost of the proposed 

approach. Table 10.16 presents the design cost of the proposed approach for 

JPEG compression processor. As evident from the table, the design cost post 

crypto-steganography marginally increases for different size of stego-

constraints. The reason is that, post embedding stego-constraints, the design 

may undergo more FU allocation of vendor type-2 than that of type-1. As the 

 

Table 10.14 Security analysis (in terms of Pc) of proposed crypto-based steganography approach on 

varying size of stego-constraints for different design solutions of JPEG compression processor 

Design 

solution 

Pc 

# of constraint =100 # of constraint =200 # of constraint =300 # of constraint =400 

3+, 3* 1.6245e-3 4.4e-6 2.4e-7 9.89e-8 

3+, 5* 1.732e-2 3.39e-4 2.228e-5 9.497e-6 

5+, 5* 6.329e-2 4.913e-3 5.907e-4 2.518e-4 

7+, 9* 2.092e-1 4.61e-2 1.515e-2 6.87e-3 

9+, 9* 2.552e-1 6.496e-2 2.146e-2 1.051e-2 

11+, 11* 3.001e-1 8.816e-2 2.821e-2 1.166e-2 

 

Table 10.15 Comparison of security of 4-point DFT in terms of Pc with the entropy 

based steganography approach (Note: G=14, f1=14, f2=10, y=2) 

Pc (proposed crypto-based steganography) Pc (entropy based steganography) 

5.72E-2 3.54E-01 
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area and latency of FUs of vendor type-2 is marginally higher than the vendor 

type-1, therefore it results in marginal increase in the cost.    

Further, Table 10.17 shows the comparison of design cost of baseline N-point 

DFT processor with that of proposed secured design and entropy driven 

steganography based secured design. As shown, the design cost of proposed 

crypto-steganography is nominally affected due to changes in the size of 

Muxes. 

10.4 Results and analysis: Double line of defense approach 

using integrated multi-key based structural obfuscation and 

physical level watermarking to secure IP cores 

The experimental results of the proposed multi-key driven structural 

obfuscation and physical level watermarking based double line of defense 

technique discussed in chapter 6 are presented in this section. 15 nm open cell 

library [60] was used to calculate the design cost. The proposed approach has 

been implementation in java and run on processor with specifications “4 GB, 

DDR3 memory at 1.9 GHz”. The experimental results have been analyzed for 

various DSP benchmarks. The security of proposed technique and its impact 

on design cost are assessed as follows: 

10.4.1 Security analysis 

The security achieved through multi-key driven structural obfuscation based 

first line of defense is analyzed in terms of strength of obfuscation and total 

 

Table 10.16 Design cost analysis of proposed approach on varying size of stego-constraints for 

different design solutions of JPEG compression processor 

Design 

solution 

Pre- 

steganograp
hy cost  

Design cost of JPEG compression processor pre and post crypto-steganography 

# of constraint 
=100 

# of constraint 
=200 

# of constraint 
=300 

# of constraint 
=400 

3+, 3* 0.2167 0.2167 0.2169 0.2173 0.2173 

3+, 5* 0.1917 0.1920 0.1924 0.1929 0.1929 

5+, 5* 0.1713 0.1713 0.1713 0.1719 0.1719 

7+, 9* 0.1718 0.1720 0.1725 0.1729 0.1729 

9+, 9* 0.1752 0.1754 0.1757 0.1763 0.1763 

11+, 11* 0.1785 0.1785 0.1789 0.1794 0.1794 

 

Table 10.17 Comparison of design cost of DFT processor with baseline and entropy based 

steganography  

Metric 
Baseline 
design 

 

Proposed obfuscated and crypto-
steganography secured design 

Entropy based 
steganography 

Post obfuscation Post steganography 
Cost 0.4674 0.4674 0.4680 0.466 
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key size and the security achieved through physical level watermarking is 

analyzed in terms of probability of coincidence and tamper tolerance for 

various DSP benchmarks.  

10.4.1.1 Strength of multi-key structural obfuscation analysis 

The strength of obfuscation of proposed technique has been defined in section 

6.2.4 of chapter 6. Table 10.18 shows the comparative study between non-

obfuscated versus proposed key based structurally obfuscated design. The 

change in gate count shown in Table 10.18 happens due to applying various 

phases of proposed multi-key structural obfuscation. Moreover, alterations in 

the interconnectivity of various resources also incorporate huge variation in 

the structure of the design. This makes the structure unidentifiable for an 

attacker, thus hindering the malicious attempt of backdoor insertion. 

10.4.1.2 Total key size of multi-key structural obfuscation 

Incorporation of multiple keys in the proposed obfuscation makes the 

decoding of the structural obfuscation highly challenging from an attacker’s 

perspective. Hence, the security against the malicious intent of RE and 

backdoor insertion is enhanced. The total key size of proposed obfuscation 

technique has been defined in eq. (6.1) in section 6.2.4 of chapter 6. And, 

Table 10.19 reports the total key size for various DSP benchmarks.  

10.4.1.3 Probability of coincidence of physical level watermarking 

 

Table 10.18 Strength of multi-key structural obfuscation in terms of gate count modified 

DSP 

benchmarks 

Total gates in baseline 

(non-obfuscated) 

Total gates in proposed 

approach 

Difference in gate count due to 

proposed obfuscation 

FIR 688 8832 8144 

IIR 4464 4128 336 

ARF 7360 5888 1472 

DCT 3680 4208 528 

Differential 
Equation 

2560 8704 6144 

 

 

 
 

 

 

 

 
 

 

 
 

 

 

Table 10.19 Total key size for the proposed 

obfuscated watermarked design 

DSP 

benchmarks 

Key size (in bits) of 

structural obfuscation 

FIR 20 

IIR 7 

ARF 9 

DCT 7 

Differential 
Equation 

17 

 

 
 

 

 
 

 

 

Table 10.20 Security of proposed watermarking 

using probability of coincidence (Pc) 

DSP 

benchmarks 

Pc 

FIR 8.93E-26 

IIR 1.81E-11 

ARF 8.6E-16 

DCT 8.5E-10 

Differential 
Equation 

6.0E-37 
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For analyzing the security achieved in terms of strength of IP ownership proof 

using proposed physical level watermarking, the probability of coincidence 

(Pc) metric presented in eq. 6.2 in the section 6.2.4 of chapter 6 is used. Table 

10.20 presents the Pc of the proposed approach. As shown, considerably lower 

Pc has been obtained for the various DSP benchmarks. 

10.4.1.4 Tamper tolerance analysis 

For analyzing the security achieved against removal attack on watermark, the 

tamper tolerance metric (TS) presented in eq. 6.3 in the section 6.2.4 of chapter 

6 is used. Table 10.21 shows the higher tamper tolerance of the proposed 

technique for the designer chosen watermark strength. Higher value of TS 

represents stronger security against removal attack.   

10.4.2 Design cost analysis 

We used eq. (3.8) as the metric to compute design cost of the proposed 

approach. The design area is computed using the area of the enveloping 

rectangle of the floorplan, whereas the execution latency is determined from 

the scheduled design. Table 10.22 compares the design cost of proposed 

double line of defense technique wrt the baseline design. As shown in the 

table, the proposed technique does not incur overhead due to applying 

security. The overall design cost is reduced either due to substantial reduction 

in latency or floorplan area. 

 

 

Table 10.21 Tamper tolerance (TS) and brute-force attack analysis of proposed obfuscated 

watermarked design 

DSP 

benchmarks 

TS (total combinations representing 

signature space) 

Probability of finding WM signature using 

brute-force attack= (1/TS) 

FIR 4.9*106 2.0E-07 

IIR 7.3*102 1.4E-03 

ARF 5.9*104 1.7E-05 

DCT 7.3*102 1.4E-03 

Differential 

Equation 

3.9*108 2.6E-09 

  

Table 10.22 Design cost analysis of proposed approach 

DSP benchmarks Design cost of baseline design  Design cost of proposed approach 

FIR 1 0.326 

IIR 0.517 0.491 

ARF 0.431 0.412 

DCT 0.483 0.482 

Differential Equation 0.76 0.455 
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10.5 Results and analysis: Secured hardware accelerator 

design approach for image processing filters  

The experimental results of the proposed secured hardware accelerator design 

approach for image processing filters discussed in chapter 7 are presented in 

this section. 15 nm open cell library [60] was used to calculate the design cost. 

The experimental results have been analyzed for generic 3x3 and 5x5 filters 

and various application specific 3x3 filters. The security of proposed 

technique and its impact on design cost are assessed as follows: 

10.5.1 Security analysis 

Structural obfuscation technique is employed to achieve security of proposed 

filter hardware accelerators against the threat of RE and potential backdoor 

insertion. Applying obfuscation techniques such as loop unrolling, graph 

partitioning and THT incur considerable alteration in the RTL datapath, 

without affecting the functionality. A structurally obfuscated netlist obtained 

in the proposed technique is considerably altered than the original version in 

terms of alteration in the overall gate count and gates connectivity.  This 

prevents an attacker from reverse engineering the obfuscated netlist to identify 

the original structure.    

10.5.1.1 Security analysis of generic 3×3 and 5×5 filter hardware 

accelerators 

Table 10.23 shows the comparison of the RTL modules in the datapath of 3×3 

and 5×5 filter hardware accelerators pre and post employing structural 

obfuscation. Further, impact of structural obfuscation at gate level is measured 

in terms of number of gates affected due to employing obfuscation techniques. 

Table 10.24 compares the gate count of 3×3 and 5×5 filter hardware 

accelerators pre and post employing structural obfuscation. As shown in the 

table, substantial change in number of gates is achieved. This is due to the fact 

that the count of datapath modules such as Muxes, Demuxes, FUs and 

registers and the size of Muxes and Demuxes noticeably changes post 

obfuscation. This change in the datapath is also reflected at gate level post 

logic synthesis, resulting in an obfuscated netlist.  
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10.5.1.2 Security analysis of application specific 3×3 filters 

hardware accelerators  

Security of five image processing applications specific 3×3 filter hardware 

accelerators, achieved using structural obfuscation, is analyzed in terms of 

number of gates affected. Table 10.25 shows the comparison of the gate count 

of blur, sharpening, vertical embossment, horizontal embossment and Laplace 

edge detection filter before and after structural obfuscation. The structural 

obfuscation incurs huge change in gate count as shown in Table 10.25.  

10.5.2 Design cost analysis 

We used eq. (3.8) as the metric to compute the design cost of the proposed 

approach. Table 10.26 presents the design cost and power of the different 

application specific hardware accelerator. The result shows that the design 

 

Table 10.24 Gate count of proposed filter hardware accelerators 

Benchmarks # Gates 

Proposed processor Proposed obfuscated processor 

3×3 Filter 7408 19312 

5×5 Filter 23456 22560 

 

Table 10.25 Security analysis of proposed application specific image processing filters 

Benchmarks Gate count Gate 

difference Proposed processor Proposed obfuscated processor 

Blur Filter 3152 6544 3392 

Sharpening Filter 3488 7232 3744 

Vertical embossment Filter 1120 1792 672 

Horizontal embossment Filter 1120 1792 672 

Laplace edge detection Filter 2288 4368 2080 

 

Table 10.26 Power and design cost of proposed application specific 3x3 filter 

hardware accelerators 

Benchmarks Power (μW) Design cost 

Blur Filter 21.257 0.682 

Sharpening Filter 23.306 0.685 

EV Filter 10.012 0.758 

EH Filter 10.012 0.758 

Laplace edge detection Filter 17.159 0.728 

 

Table 10.23 RTL components of image processing filters of size 3x3 and 5x5 (note: ‘M’, ‘A’ 

and ‘Reg’ denote multipliers, adders and registers respectively) 

Benchmarks RTL components 

Baseline Proposed 

3×3 Filter M=1, A=1, 8x1 mux=2, 1x8 dmux=1, 

16x1 mux=2, 1x16 dmux=1, Reg=20, 
Latches=6 

M=3, A=1, 8x1 mux=15, 1x8 dmux=3, 16x1 

mux=2, 1x16 dmux=1, Reg=86, Latches=12 

5×5 Filter M=5, A=2, 8x1 mux=10, 1x8 dmux=5, 

16x1 mux=4, 1x16 dmux=2, Reg=76, 

Latches=21 

M=5, A=2, 2x1 mux=12, 1x2 dmux=6, 4x1 

mux=6, 1x4 dmux=3, 8x1 mux=14, 1x8 dmux=7, 

Reg=78, Latches=21 
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cost and power dissipation of the proposed designs are low.   

10.6 Results and analysis: Techniques for securing 

functionally obfuscated DSP cores against removal attack 

The experimental results of the proposed techniques for securing functionally 

obfuscated DSP cores against removal attack discussed in chapter 8 are 

presented in this section. 15 nm open cell library [60] was used to calculate the 

design cost. The experimental results for the following proposed techniques 

for securing functionally obfuscated DSP cores against the removal attack are 

presented in this section: (i) SHA-512 based ILBs-key generation technique (i) 

ARL based ILBs-key generation technique. Further, the experimental results 

are compared with [36] to analysis the impact of proposed techniques. The 

experimental results have been analyzed for various DSP benchmarks. The 

security of proposed techniques and its impact on design cost are assessed as 

follows: 

10.6.1 Results and analysis for SHA-512 based ILB-keys generation 

technique 

This proposed technique has been implementation on a processor with 

specifications “on MD A8- 4500M APU with 4 4 GB DDR3 memory at 1.9 

GHz”.  

10.6.1.1 Security analysis 

Security of the proposed SHA-512 based technique is assessed in terms of the 

number of encrypted keys (to reconfigure the ILBs) generated for securing a 

functionally obfuscated design. The security comparison of proposed 

technique with [36] is accomplished for the same number of locking key-bits 

for the ILBs of functionally obfuscated DSP cores. As presented in Table 

10.27, the proposed technique generates more number of encrypted key bits 

for the ILBs in a functionally obfuscated design than [36]. This results in 

larger number of ILBs structure reconfiguration using the proposed technique. 

The reason is that the output of proposed key generation logic using SHA-512 

is 512-bit long compared to 128 bit output of AES based key generation 

approach for ILBs [36]. Even, two AES blocks [36] are capable to provide 256 
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key bits when implemented for IIR, Mesa Horner, DWT, ARF, FIR as shown 

in Table 10.27. This is still 50% lesser secured than proposed SHA-512 based 

key generation logic. For larger DSP circuits such as JPEG IDCT, Mesa 

Interpolate etc., three AES instances can concurrently provide 384 key bits. 

However, the proposed one SHA-512 based logic can provide 512 key bits for 

ILBs reconfiguration. Average 43.75% enhancement in security is offered by 

the proposed approach than [36]. 

10.6.1.2 Area and power overhead analysis 

The gate count of the proposed technique and [36] is compared w.r.t. baseline 

(non-obfuscated DSP designs) as shown in Table 10.28. As shown, the gate 

count overhead of proposed technique is significantly lower than [36]. This is 

because of using more than one instance of AES to enable concurrent 

reconfiguration of several ILBs in [36]. This results in gate count overhead 

using [36] than the proposed technique and baseline. Further, the power 

Table 10.29 Power comparison of baseline design, [36] and proposed work 

DSP Benchmark 
Power of baseline 

(in µW) 

Power of [36] 

(in µW) 

Power of Proposed 

methodology (in µW) 

% reduction in power of 

proposed work wrt [36] 

IIR 58.906 721.465 498.904 30.85 

Mesa Horner 100.396 750.662 528.101 29.62 

DWT 104.750 763.211 540.651 29.16 

ARF 154.691 821.861 599.300 27.08 

FIR  154.947 834.922 612.362 26.66 

JPEG IDCT 567.286 1746.294 1207.052 30.88 

Mesa Interpolate 597.507 1650.764 1111.522 32.67 

 

 

Table 10.28 Gate count comparison of baseline design with [36] and proposed methodology 

DSP Benchmark 

Gate 

count of 

baseline 

Gate count of [36] 

 (Obfuscated design 

with AES) 

Gate count of proposed methodology 

(Obfuscated design with SHA-512 

based key encryption hardware) 

% reduction in gate 

count of proposed 

work wrt [36] 

IIR 7360 90144 62336 30.84 

Mesa Horner 12544 93792 65984 29.65 

DWT 13088 95360 67552 29.16 

ARF 19328 102688 74880 27.08 

FIR 19360 104320 76512 26.66 

JPEG IDCT 70880 218192 150816 30.88 

Mesa Interpolate 74656 206256 138880 32.67 

 

Table 10.27 Comparison of security in terms of key-bits encrypted for the ILBs of obfuscated 

design of proposed approach and [36]  

DSP Core Benchmarks  
No. of encrypted key-bits for 

ILBs using proposed approach 

No. of encrypted key-bits 

for ILBs using [36] 

% increase in 

security  

IIR 512 256 50 % 

Mesa Horner 512 256 50 % 

DWT 512 256 50 % 

ARF 512 256 50 % 

FIR 512 256 50 % 

JPEG IDCT 512 384 25 % 

Mesa Interpolate 512 384 25 % 
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comparison of baseline design with [36] and proposed technique is presented 

in Table 10.29. The power overhead of proposed technique in contrast to 

baseline design is lower than [36]. This is because, the design overhead due to 

AES block [36] becomes high for improving the security. This results in larger 

gate count and thus higher power requirement than proposed technique. This 

indicates that the proposed technique is a low power and high secure solution 

than [36] against removal attack. 

10.6.1.3 Design cost analysis 

In computation of the design cost, we included area and power as the design 

parameters, where both were given same weightage. Table 10.30 presents the 

design cost of obfuscated DSP cores. As evident from the table, the proposed 

technique offers significant reduction in the design cost than [36]. This 

reduction is achieved owing to integration of relatively lightweight SHA-512 

based key encryption hardware compared to AES hardware used in [36] to 

achieve enough security. 

10.6.2 Results and analysis for ARL based ILB-keys generation 

technique 

The proposed ARL unit offers a lightweight, low power and more secure 

solution against removal attack than [36]. The experimental results were 

analyzed in terms of security and area (gate count) overhead.  

10.6.2.1 Security analysis 

The security is analyzed in terms of number of input (challenge) bits needed to 

produce the same number of key bits for ILBs reconfiguration using the 

proposed unit and [36]. The substantial improvement in security using 

proposed ARL unit compared to [36] is graphically shown in Fig. 10.2. The 

Table 10.30 Comparison of design cost of proposed work with [36] 

DSP Benchmark Design cost of proposed work Design cost of [36] % reduction in cost 

IIR 0.827 0.987 16.2 

MESA HORNER 0.719 0.880 18.3 

DWT 0.819 0.981 9.2 

ARF 0.619 0.775 20.1 

FIR 0.604 0.754 19.9 

JPEG IDCT 0.419 0.619 32.4 

MESA INTERPOLATE 0.319 0.519 38.5 
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reason is as follows. In the results, upto 32 ILBs are reconfigured which 

require 256 bits generated from 2 instances of AES128 in case of [36]. The 

two instances of AES require 512 bits of input (2*(128+128)) to generate 256 

bits for ILB keys. And for larger designs such as Mesa Interpolate and JPEG 

IDCT, minimum 48 ILBs are reconfigured (which require three AES 

instances). However to reconfigure the same number of ILBs using the 

proposed ARL unit, more number of challenge/input bits are required to 

generate the ILB keys. This provides more security against guessing correct 

key bits used for ILBs reconfiguration. An average 66.67% more input bits 

than [36] are required to be known by an attacker in order to deduce the 

correct key bits.  
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10.6.2.2 Area overhead analysis 

The proposed ARL unit results in lesser area or gate count overhead than [36] 

as shown in Fig. 10.3. The reason is as follows. For generating key bits for the 

same number of ILBs, two or three instances of AES are required as discussed 

earlier in section 10.6.2.1. This leads to substantial gate count overhead than 

the proposed ARL unit. The proposed technique offers an average 42.57% 

reduction in gate count than [36]. 

10.7 Results and analysis: Robust logic locking technique for 

preventing IP piracy 

The experimental results of the proposed robust logic locking technique for 

preventing IP piracy discussed in chapter 9 are presented in this section. The 

proposed approach has been implemented on a processor with specifications 

“2GB RAM and processor frequency of 2.4 GHz”. The results are calculated 

for the DSP benchmarks of size 32-bit (i.e. size of input, output and FUs is 32-

bit). The security of the proposed technique and its impact on design overhead 

are assessed as follows: 

10.7.1 Security analysis 

The security of proposed logic locking technique is analyzed in terms of the 

following:  

10.7.1.1 Probability of finding valid key in exhaustive trials 

This probability Pv is measured using eq. (9.2) discussed in section 9.2.5 of 

chapter 9. In case of the existing logic locking techniques [36], [37], the eq. 

(9.2) converges into eq. (9.3) and in case of the proposed technique it 

converges into eq. (9.4). The comparison of Pv of proposed technique with the 

existing technique [36], [37] is shown in Table 10.31. The table shows that we 

obtained the Pv very lesser than [36], [37] despite encoding lesser key bits. 

The higher security using the proposed logic locking is achieved because of 

very less probability of deducing the correct key in exhaustive trials. However, 

in case of existing approaches [36], [37], it is likely to find the correct key in 

exhaustive trials with probability 1 hence the attack time to find the key is 

projected to be finite. Since using the proposed technique, the correct key 
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cannot be deduced in the exhaustive trials except first, hence the attack time to 

find the valid key is projected to be infinite (indicating that the time taken will 

be much higher than that of obtaining the key using brute-force). Table 10.32 

shows the attack time comparison of proposed technique with [36], [37] 

(supposing that 1 billion (10
9
) keys can be fed per second.  

10.7.1.2 Encryption strength analysis 

The encryption strength En
s
 of the proposed logic locking is measured using 

eq. (9.5) discussed in section 9.2.5 of chapter 9. Table 10.33 shows the 

comparison of encryption strength of the proposed technique with the existing 

approaches [36], [37]. As shown, the proposed technique encrypts higher 

percentage of key-bits w.r.t. [36], [37] using one AES. The reason is that the 

Table 10.31 Comparison of the strength of the proposed logic locking with [36] [37] in terms of 

the probability of deducing correct key in exhaustive trials (Pv) using eq. (9.3) and (9.4) 

DSP Core 

Benchmarks 

# of key 

bits in 

locked 
design of 

[37] 

# of key 

bits in 

locked 
design of 

[36] 

# of key bits 

in locked 

design of 
proposed 

work 

Pv using 

exhaustive 

(2Kb) 
trials in 

[36] [37] 

PCK using 

exhaustive 

(2Kb) trials in 
proposed 

work 

# of times security  

enhancement in 

proposed 
approach w.r.t. 

[36] [37] 

IIR 384 768 192 1 1.6E-58 6.3E+57 

Mesa  
Horner 

384 768 192 1 1.6E-58 6.3E+57 

DWT 384 512 128 1 2.9E-39 3.4E+38 

ARF 448 1024 256 1 8.6E-78 1.2E+77 

FIR 576 1280 320 1 4.7E-97 2.1E+96 

JPEG IDCT 1728 5376 1344 1 2.6E-405 3.8E+404 

 

Table 10.32 Attack time comparison of the proposed logic locking with [36] [37] (note: In proposed 

logic locking, correct key cannot be deduced in exhaustive trials except first) 

DSP 

Benchmark 

Estimated attack time 

through proposed work  

Estimated attack time through 

[37] (in years) 

Estimated attack time through 

 [36] (in years) 

IIR  ∞ 1.2E+99 4.9E+214 

Mesa Horner  ∞ 1.2E+99 4.9E+214 

DWT  ∞ 1.2E+99 4.2E+137 

ARF  ∞ 2.3E+118 5.7E+291 

FIR   ∞ 7.8E+156 6.6E+368 

JPEG IDCT  ∞ 4.8E+503 6.9E+1601 

 

Table 10.33 Comparison of the encryption strength of the proposed logic locking with [36] [37]  

DSP 

Benchmarks 

# of key 
bits in the 

design  

of [37] 

% of key bits 
encrypted of 

[37] 

(using (9.5)) 

# of key 
bits in the 

design of 

[36] 

% of key bits 
encrypted of 

[36] 

(using (9.5)) 

# of key bits 
in the  

design using 

proposed 

% of key 

bits    

encrypted of  
proposed 

(using (9.5)) 

IIR 384 33.3% 768 16.7% 192 66.7% 

Mesa Horner 384 33.3% 768 16.7% 192 66.7% 

DWT 384 33.3% 512 25.0% 128 100% 

ARF 448 28.6% 1024 12.5% 256 50.0% 

FIR 576 22.2% 1280 10.0% 320 40.0% 

JPEG IDCT 1728 7.4% 5376 2.4% 1344 9.5% 
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proposed technique requires lesser key bits than the existing techniques, while 

deploying the same number of ILBs in the design.  

10.7.2 Design area analysis 

Design area of the proposed and existing techniques [36], [37] is assessed in 

terms of resource count which is calculated as the count of total required 

NAND gates and D-FFs. Table 10.34 presents the % reduction in NAND gates 

and % increase in D-FFs using proposed technique compared to existing 

techniques [36], [37]. Furthermore, the Table 10.34  presents the overall % 

reduction in resource count achieved through proposed approach. The overall 

% reduction in the resource count is computed in terms of an algebraic 

summation of ‘% decrease in total NAND gates’ and ‘% increase in total D-

FFs’. Table 10.34 shows that the proposed technique achieves on average 

25.8% reduction in the resource count with respect to [37] and on average 

1.9% reduction with respect to [36]. This indicates that the proposed technique 

incurs lesser resource count and hence lesser area than existing techniques 

[36], [37].  

  

Table 10.34 Percent reduction in the resource count using proposed work w.r.t. [36] [37] 

DSP 

Benchmarks 

Proposed work 

% reduction 

in NAND 
gates w.r.t. 

[37] 

% increase 

in D-FFs 

w.r.t. [37] 

Overall % 

reduction in 
resource count 

w.r.t. [37] 

% reduction 

in NAND 
gates w.r.t. 

[36] 

% 

increase 
in D-FFs 

w.r.t. [36] 

Overall % 

reduction in 
resource count 

w.r.t. [36] 

IIR 40.7% 3.7% 37.0% 7.4% 3.7% 3.7% 

Mesa Horner 32.7% 3.7% 29.0% 6.5% 3.7% 2.8% 

DWT 27.3% 2.5% 24.8% 4.2% 2.5% 1.7% 

ARF 24.0% 4.7% 19.3% 7.1% 4.7% 2.4% 

FIR 33.4% 5.9% 27.5% 8.5% 5.9% 2.6% 

JPEG IDCT 30.4% 19.1% 11.3% 13.9% 19.1% 0% 
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Chapter 11 

Conclusion and Future work 

11.1 Conclusion  

The DSP and multimedia applications are prevailing in the modern consumer 

electronics. Therefore, the application specific IP cores or hardware 

accelerator of DSP and multimedia applications are important part of modern 

SoC designs. However, different parties or houses involved in the SoC design 

process are situated offshore/globally. This renders the DSP and multimedia 

IP cores vulnerable to various kinds of hardware security threats such as IP 

piracy and hardware Trojan insertion. These threats may pose substantial 

impact on system, services, and users and as well as on IP designer itself. This 

thesis presented novel techniques for generating secure IP cores or hardware 

accelerators to counter the aforementioned hardware threats. The following 

objectives were accomplished:  

 Proposed an IP core steganography based hardware security solution to 

address the threat of IP piracy by implanting the vendor’s stego-mark 

into the design during register allocation phase of HLS process. The 

vendor’s stego-mark or steganography information to be implanted 

into the design is monitored using a controlling parameter called 

entropy threshold. The implanted stego-information incurred negligible 

design overhead and produced lower design cost compared to 

signature-based IP core protection techniques. 

 Proposed an IP core steganography based hardware security solution 

that generates a robust stego-mark using a large size stego-key and a 

chain of SHA-512 hash blocks. Thus generated stego-constraints 

cannot be easily regenerated or back tracked by an adversary to 

compromise the stego-mark and misuse it to escape counterfeit 

detection. Thus the proposed approach is capable to offer higher 

security against the IP piracy threat and outperforms the related works. 

 Proposed hologram based structural obfuscation technique that hinders 

reverse engineering by camouflaging the functionality of one design 
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into another, hence preventing against Trojan insertion attack. 

Likewise a security image hologram, where two distinct images are 

camouflaged and displayed at different viewing angles, the proposed 

work merges two distinct DSP cores such that each one functions at a 

particular bit pattern. Therefore, proposed obfuscation has been called 

as hologram based obfuscation which obfuscates two DSP kernels 

simultaneously by camouflaging functionality of one DSP kernel into 

another. 

 Proposed an integrated structural obfuscation and crypto-

steganography based double line of defense mechanism to address both 

IP piracy and hardware Trojan insertion threats simultaneously. The 

proposed approach has been applied on JPEG compression processor 

and DFT processor. 

 Proposed an integrated multi-key based structural obfuscation and 

physical level watermarking based double line of defense mechanism 

to address both IP piracy and hardware Trojan insertion threats 

simultaneously. The structural obfuscation is performed using key-

driven partition and key-driven folding knob based transformations 

combined with key-driven loop unrolling, key-driven ROE and key-

driven THT, and the proposed physical-level watermarking is 

performed through early floorplanning of obfuscated DSP circuit. 

 Proposed a HLS driven technique to generate secured hardware 

accelerator designs for image processing filters. We addressed the 

problem of stringent performance and low power requirement of image 

processing applications by designing dedicated hardware for image 

processing filters. We also handled the threat of Trojan insertion 

through RE by designing structurally obfuscated versions of filters 

hardware. 

 Proposed SHA-512 based key generation hardware and ARL based 

key generation unit to secure the IP core locking blocks (ILBs) used in 

functionally obfuscated DSP cores against the removal attack. The 

security is achieved by offering re-configurability to ILBs structures 
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based on the output of proposed key generation hardware units. 

Proposed logics provide higher security than related work. 

 Proposed logic locking of DSP circuits using highly robust DSP 

locking cells (DLCs) comprising of combinational gates and flip-flops. 

Proposed DLCs are reconfigurable based on AES128 output. The 

DLCs are inserted in register transfer level (RTL) datapath based on 

designer selected value of ‘ω’. Proposed DLCs are capable of 

hindering the probability of obtaining correct key (<<1) even through 

exhaustive trials, thus rendering the brute force attack ineffective. The 

proposed approach achieved higher security at lower design overhead 

than the existing logic locking techniques. 

 

11.2 Future work  

In the conventional hardware security techniques for IP cores authentication, 

designer’s secret information is not uniquely associated with the designer’s 

identity. Therefore in future, we target to offer unique/non-conflicting 

authentication to IP cores. To do so, we aim at exploiting the vendor’s unique 

information based on physiological or behavioral biometric traits to offer 

robust detective control on IP piracy.    
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