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Preface

This report on “Integrated Scheduling and Allocation for Simultaneous Exploration of Unrolling Factor and
Datapath during Power-Delay Trade-off” is prepared under the guidance of Dr. Anirban Sengupta.

Through this report we have tried to give a detailed explanation of the design and working of the novel
approach devised by us for integrated scheduling and allocation while simultaneously exploring unroll factor
and datapath. We hope this will be useful in making the process of High Level Synthesis (HLS), used in the

building of various digital systems, more efficient.

We have tried to the best of our abilities and knowledge to explain the content in a lucid manner. We have also
added figures and comparative tables to make it more illustrative and provided pseudo-codes of algorithms,

wherever necessary.
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Abstract

This report presents a novel integrated design space exploration (DSE) methodology driven by bacterial
foraging optimization algorithm(BFOA) that is equipped with the capability to explore an optimal combination
of datapath resource configuration and loop unrolling factor (UF) for optimal scheduling for control data flow
graphs (CDFGs). The proposed approach also comprises of novel bacterium encoding strategy for both
‘datapath bacterium’ and ‘auxiliary bacterium’. The approach presented supports operation chaining in
scheduling during delay evaluation as well as considers the impact of loop unrolling on the configuration of
multiplexer size during power evaluation. The above all have not jointly been addressed in literature so far.
Finally, the results of proposed approach on standard benchmarks yielded significantly improved quality of
result (cost minimization) and reduced exploration runtime compared to recent genetic algorithm (GA) driven

DSE approaches.
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Chapter 1: Introduction

1.1 Motivation
Design Space Exploration (DSE) refers to the process of designing a data flow or schedule by searching for a

solution which is optimal in terms of certain objectives (e.g. Power, latency etc.) while constrained by certain
factors (e.g. No. of resources available). It involves trying out different alternate design parameters to “explore
the design space” [12]. Exhaustively evaluating each and every design point, however, is prohibitive for the
large design spaces that are usually found in general applications. Loop Unrolling is a way of achieving
Instruction Level Parallelism so as to decrease the latency at the cost of increased number of resources as well
as power [13]. Deciding when to apply loop unrolling and by what factor itself leads to widening the design
space to a large extent, thus increasing the complexity of the problem manifold. To overcome the problem of
DSE combined with automated loop unrolling, we incorporate knowledge of the design space into the search
strategy by using the evolutionary mechanisms of Bacterial Foraging Optimization (BFO) i.e. chemo taxis,
swarming, reproduction, and elimination-dispersal [6] tailored to the needs of our problem. As mentioned
earlier, an exhaustive exploration of the design space is impractical due to the sheer size of the design space.
Thus, to get an optimal design point, we need to use sophisticated Al methods and heuristics as well as
calculated trade-offs. Such trade-off decisions include not only the balance between the various variables like
power, latency, loop unrolling factor etc. but also deciding the precision required for the design point versus
the time required to achieve that precision. Thus, active work is going on to implement faster and more

intelligent search algorithms.

Unrolling of a loop mainly consists of replications of its body corresponding to consecutive iterations. This
not only increases the level of parallelism but also, when unrolled fully, can enable the reuse of data across the
newly exposed inner loop leading to a substantial reduction of the number of memory access if the reused data
is kept in registers [13]. In this project we aim to apply one of the newer Al algorithms, BFO, to create a tool

for High level Synthesis (HLS) for traditional DSE combined with the added factor - loop unrolling.
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1.2 Preamble

High level synthesis (HLS) involves transition from an algorithmic level description of an application in
CDFG to its equivalent register transfer level (RTL) counterpart which implements the specified behavior as
well as satisfies the conflicting user constraints such as power and delay. The above process includes
exploration which complicates with the inclusion of an ancillary variable called ‘loop unrolling factor’ during
exploration of an optimal scheduling during HLS. Such an intricate and intractable problem requires
administration of advanced algorithms equipped with adaptive capabilities to change direction when a certain
search path is found unrewarding. BFO mechanism is known to have the aforesaid capabilities to search an

optimal solution which motivated us to adopt its framework as our exploration backbone [1, 6].

Problem description

The DSE problem with HLS can be stated as follows :
Given a high-level design specification with a budget of i iterations, and HLS tool, find the best
approximate Pareto- optimal solution of RTL designs without exceeding i.

The following figure depicts the input and output flow for the HLS tool.

Optimization function

}:I LS Final Schedule
4
—>
. 8in ..

Figure 1 Design Flow of HLS

Explanation of the inputs and outputs

Behavioural Specifications — The specifications will be given as a Control Flow Graph (CFG) in .txt
format giving the behaviour and functionality of the application required. In a CFG representation the
interconnected vertices are called basic blocks (BB). Each basic block contains a sequence of data
operations ended by a control flow statement as its last instruction. This means that the operations inside

a BB are completely data oriented and can be represented as data flow graph (DFG) [14].



Figure 2 Data Flow Graph of an application
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Figure 3 Input to the application in the form of a .txt file

Design Constraints — There are two types of design constraints applicable,
1) The implicit ones that we can get from the Behavioural Specs and Module Library like — Precedence
Relations of operations, Number of available hardware resource units available as well as the power and

time taken for one instruction on each type of hardware etc.;

12
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adder(16),0.739pj,20830au,278ns,3
subtractor(16),8.739pj,2030au,276ns,3
multiplier(16),9.8pj,2464au,11606ns,8
comparator(16),8.739pj,2838au,278ns,2
mux2:1,8.1pj,126au,28ns,8

Figure 4 Example of a Module Library

Optimization Function — The optimization function, BFO, will be a part of the actual coding of the tool
itself. However, certain factors (e.g. Minimum/Maximum number of iterations to be done) will be taken
as input through the GUI.

Final Schedule — The HLS tool, after applying DSE using the above parameters, allocating resources
and binding modules to the operations, will give a Pareto-optimal design point in terms of its schedule,
i.e. the operations to be done in each clock cycle. This schedule can be represented in .txt format too.

Figure 5 Example of a schedule: Automated exploration of datapath and
unrolling factor during power—performance tradeoff in architectural
synthesis using multi-dimensional PSO algorithm, Anirban Sengupta, Vipul
Kumar Mishra



Loop Unrolling
Loop unrolling is a type of Instruction level parallelism where a set of consecutive iterations in the loop
are unrolled and performed parallelly. After unrolling by a factor of U, the cycle count (latency) of the

block reduces by U while the gate count (and hence power) increases by U (approx.)

for(i=0; i<36; i++) {

P=P * (A[i] + BJi]);

q=q + (A[i] * B[i]);

}

C code before un-rolling

for(i=0; i<36; i+=2) {

P=P * (A[i] + B[i]); P=P * (A[i+1] + B[i+1]);
q=q + (A[i] * B[i]); a=q + (A[i+1] * B[i+1]);
}

C code after unrolling with an unroll factor of 2

There are a few things however that need to be kept in mind while performing unrolling:

1) The unrolling factor has to be a divisor of the iteration count of loop.

2) Actual unrolling is too expensive to perform for analysis purposes given the extreme complexities of
the applications on which the algorithm will potentially be applied. Hence, a method needs to be devised
to calculate the optimal U without performing any actual unrolling.

3) The advantages or returns due to unrolling start diminishing after sometime. Hence, we need to find
this balanced design point.

Constraints for Loop Unrolling

Taking care of tailing iterations in case of an unroll factor which does not perfectly divide the iteration
count.

Discarding unfeasible unroll factors to save computation time.

Decreasing/Avoiding repetitive unrolling for the same unroll factors but different resource constraints.

14
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Mathematical Aspect
Since the problem is a multi-objective optimization problem, it has three main parts:
Variables - Combination of which forms the basic optimization function
Constraints - To be satisfied by the variables
Optimization function — A combination of the multiple objectives to be achieved with an appropriate
weight for each.
Variables
Array of number of resources of each type to be used in schedule i.e. [R1, R2, ...., Rn] where Ri is one
of the resource types given in the module library. Array of unroll factors in each direction (in case of
nested loops) for eg. In case of the following loop:
for(i = 0; i<10; i++) {
for(j=0;j<15;j++) {
z=2*(it));
}
}

The array of unroll factors could be [2,3] i.e. 2 in i direction and 3 in j direction.
1.3 Objectives

1. Represent the DSE with loop unrolling problem as a mathematical multi-objective
optimization problem with respective constraints.

2. Map the major mechanisms of Bacterial Foraging optimization to the problem in hand.

3. Devise a way to analyze the impact of unrolling factor and find the optimal factor in loop unrolling
without performing the actual unrolling.

4. Decide number of iterations (generations) required in BFO and produce a complete algorithm for
the problem.

5. Implement the algorithm programmatically i.e. write an HLS tool (probably using Java).

6. Test and record results on various benchmarks and compare with other algorithms.
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Chapter 2: Literature Survey

There has been no previous work that addresses automated integrated exploration of datapath resource
configuration and loop unrolling factor for optimal operation chaining based scheduling during HLS. For
example, in [1], though authors handled CDFGs, they did not handle exploration of an optimal scheduling
using any priority function resolver. Further, GA based DSE was proposed in [2] whose main drawback is
besides requiring manual intervention to decide UF, considers only evenly divisible UFs as potential
candidates. This results in chances of an optimal UF being sacrificed. In [3] GA is used for exploring the
design space, but it explores only datapath resource configuration as output, and is unable to perform
exploration of loop unrolling factor of CDFGs for optimal scheduling. Approach [4] accepts only a scheduled
data flow graph as an input as well as does not explore UF. This signifies the inability of their approach to
resolve the scheduling problem as well as optimize unrolling factor for CDFGs. Further authors in [4] have
proposes a cost function which does not consider resource binding (area of mux and demux). In [5] although
exploration of an optimal scheduling is done, however, loop based CDFGs are not handled. Besides, GA is
used which results in exponential time complexity. In [6] bacterial foraging optimization is used for exploration
of datapath resource configuration, but optimization of loop unrolling with various candidate unrolling factors
are not considered. Finally in [7], the authors introduced a tool for HLS whose limitation is that the unrolling
factor for the loop is user-directed and is therefore not able to automatically determine optimal combination of
UF and datapath configuration together during scheduling. Various deterministic and non-deterministic
approaches were previously used to solve DSE problems. These have been discussed in the sections below and
their drawbacks are given. We studied these approaches and logically concluded that BFOA is the most

efficient approach.



Chapter 3: Analysis

Deterministic Methods [9]

These focus is on the amount of influence each resource unit can have on each of the

parameters of the objective function.

A "priority factor" is calculated for each resource such as adder, multiplier etc. for each
parameter namely area, time of execution and power consumption. This priority factor gives
us an understanding on to what extent a particular type of resource can have its influence on

the parameters of the objective function.

Based on the priority factors the search space is ordered with respect to each parameter and those

points which satisfy all the constraints are considered. For example If there are forty design points in

the design space and only a set of twenty satisfy the given power constraints and a set of ten satisfy

the given time constraint. Then say there are only five design points which satisfy both the power and

the time constraints. These five are now ordered based on the priority factor of the area and

configuration which give the minimum magnitude is chosen as the global best and the solution for the
DSE problem.

The main drawback of this approach is that it is an exhaustive search of the design space and
therefore takes a lot of time for evaluating each and every point and comparing them.
This algorithm is stated to be taking hours of time for simpler DSE problems which doesn’t

involve any loop unrolling, imagine the time it would be taking for complex CDFGs.

Non-Deterministic Methods

Heuristic Based - Heuristic approaches like simulated annealing, hill climbing randomly pick
a possible solution inside the solution space and determine if it is better than the current best

solution.

Evolutionary Algorithms - Genetic algorithms reach to the solution over a few

generations by eliminating the lower health off-springs.

Bio-Inspired - Bio-inspired techniques like Particle-Swarm optimization and Bacterial
Foraging optimization are developed by mimicking biological process of various

organisms.

17
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Simulated Annealing (SA)

Initially a point in the search space is picked randomly and exploration is done from this point. It moves to
the next position in the search space only if it’s better than the current position or if a probability factor is less
than the (e”(-delta/temperature)).

delta=new position-old position and temperature is decreased by a factor ‘alpha’ in each iteration.

Genetic Algorithm (GA)

The genetic algorithm is a model of machine learning which derives its behavior from a metaphor of the
processes of evolution in nature. This is done by the creation within a machine of a population of individuals
represented by chromosomes, in essence a set of character strings that are analogous to the base-4
chromosomes that we see in our own DNA. The individuals in the population then go through a process of
evolution. The various steps involved is explained briefly below
e The problem is encoded into chromosomes.
e The 'good' chromosomes which give low objective function value are crossed over with each
other to eliminate low quality chromosomes and to predict better solutions.
e Success of the algorithm is highly dependent on the crossover mechanism and the encoding
scheme of the problem to the chromosomes.
e GA is a slow starter compared to SA but it gives better results than SA and it has more than
one exploration point compared to only one the SA has.
e The problem with GA is that it runs for exponential time even for lesser complex problems
and as we are using a control flow data graph compared to the normal data graphs we are bound

to get a much more execution time for the algorithm.

Particle Swarm Optimization

e Particle Swarm Optimization (PSO) is an evolutionary approach proposed by Eberhart and Kennedy,
inspired by the behavior of bird flocks or schools of fish. This is a bio-inspired algorithm which is
getting a great recognition these days.

e |t operates on a population of candidate solutions referred to as a swarm.

e Each solution in a swarm is called a particle.
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e The best solution in each swarm is called the 'particle best' and the best solution among all the swarms
so far is the 'global best'. The movements of the particles are guided by their own best known position
in the search-space as well as the entire swarm's best known position.

e When the swarm moves, each particle is subjected to a velocity which tends to propel it in the direction
of pbest as well gbest.

e The pbest and gbest are updated based on the positions of the particles.

e Almost twice' as fast as Simulated Annealing [10].

e The drawbacks this algorithm has is that it’s very rigid by nature. It is dictated by many parameters
such as inertia coefficient, velocity coefficient and accelerator coefficient which if not chosen suitably

might not lead us to the solution and stuck at the local minima.

Bacterial Foraging Optimization Algorithm (BFOA)

BFOA is a relatively new bio-inspired algorithm which has been gaining a lot of recognition in various fields.
It has been giving optimum results in lesser time compared to other approaches in various problems like job
scheduling and at the same not very rigid as compared to the PSO. It is very simple and have very few factors
that dictate the search criteria. It was proposed by Passino by mimicking the movement of the E.coli bacteria.

The process basically consists of four steps

1. Chemotaxis

2. Swarming

3. Reproduction or replication
4. Elimination and dispersal

Chemotaxis

Chemotaxis is the process in which the locomotion of the bacteria is stimulated by tumbling and swimming
using the flagella. It picks a direction randomly and swims in the direction if the objective function value

decreases in that direction, otherwise it tumbles again and changes it direction.

Suppose if bacterium ‘i* is at position theta(i), the new position of the bacteria will be

"theta(i)+c(i)*(del(i)/|del(1)|)", where c(i) is the step-length and del(i) is the tumble vector.
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Swarming

Swarming is a collective behavior observed in these bacteria. The bacteria are stimulated by high levels of
'succinate’, which helps them to aggregate into groups and thus move as concentric patterns of swarms with
high bacterial density.

Reproduction and Replication

Replication is a process in which, half of the bacteria of low health (high objective function value), are
destroyed and the remaining half are replicated and put in the previous positions only. These bacteria again
follow the chemotaxis independently.

Elimination and Dispersal

Changes in the local environment of the bacteria, such as temperature changes can occur killing a part of the
bacteria population in a particular region and dispersing the rest to some random positions.

Mapping BFOA to a DSE problem

The BFOA explained above illustrates a normal BFOA which is nothing but an optimization algorithm. We
need to map this general BFOA to the DSE problem. These are few issues which were dealt with during the
design of the flowchart and the pseudo code of the algorithm for the exploration process.

1. Is replication algorithm necessary?

@ If we use a replication algorithm, we will be re-evaluating the same point twice, which is time consuming
and potentially not necessary. So we decided not to implement the replication algorithm.

2. What should be the size of the population?

@ The size of the population is to be decided in such a way that, it should be sufficient to explore most of the
design space and at the same time, should also not be time consuming. We decided to keep the default
population size to be 3, but we have also tested with two more population sizes: 5 and 7.

3. How many elimination dispersal are to be introduced and what is the criteria for it?

@ The elimination-dispersal serves the same purpose of the mutation algorithm in the Genetic Algorithm. It
induces diversity in the solutions and avoids premature convergence. So conventionally, the elimination
dispersal are 5 and the criteria is all the 5 elimination dispersal steps are evenly spaces among the number of
chemotactic steps.

4. How will tumble operate?

@ Tumble operates by choosing a vector which is made up of random components, which then is divided by
its Euclidean norm, to give a unit vector, which is known as the tumble vector.
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5. When will chemotactic step increment?

@ There are two cases when a chemotactic step increments
I. If the newly found position after tumbling is better than the previous position of the bacteria.
1. If the bacteria cannot find a better position even after 5 tumblings.

6. How will violation during exploration be handled during chemotaxis and dispersal?

@ If during exploration the bacteria moves out of the design space, we again bring it back and place it on the
boundary, by which the violation during exploration is handled.

7. What is the elimination dispersal mechanism?

@ The dispersal mechanism should be in such a way that it improves the health of the population, by killing
the lower health bacterium and putting new ones at better positions than the previous ones.

8. What should be initial positions of the bacteria?

@ The initial positions of the bacteria should be in such a way that they are equally spaced in the design space
so that all the points have the equal probability of being visited.
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Chapter 4: Proposed Algorithm
The input to the proposed framework is a Control Data Flow Graph (CDFG) of an application that describes

the behavioral description of the data-path, set of user specified design constraints for power and delay, and
the module library that contains viz. maximum resources available, clock cycles and area of each resource.
The flow chart of the proposed BFOA driven exploration process is shown in Figure 6. The proposed
methodology is based on a novel bacterium encoding structure (consisting of two components called ‘datapath
bacterium’ and ‘auxiliary bacterium’) for control data flow graph. This bacterium encoding scheme is
responsible for integrated exploration of optimal scheduling for loop based CDFGs. The ‘datapath bacterium’
is capable of simultaneously exploring the optimal resource configuration array and unrolling factor. On the
other hand, the auxiliary bacterium is encoded through load value and utilization value metric which resolves
priority conflict between multiple operations during scheduling. The ‘auxiliary bacterium’ behaves as a support
bacterium to its corresponding ‘datapath bacterium’ and is not subjected to evolutionary operation (or

evolution) during exploration.

Datapath Unroll Datapath Auxiliary
bacterium CDFG based bacterium bacterium
on UF value

Tumblg FO new Evaluate cost function Schedul
position value (C1) chedule
New Datapath Unroll |  New Datapath New Auxiliary
bacterium CDFG based bacterium bacterium
on new UF
value
No
N functi N
— ew cost function ]
value (C2) New Schedule

Yes

Move bacterium

. Update C
to new position p best

This process is repeated for every bacterium in each chemotactic step till we reach a termination
condition.
Termination Conditions: There are two termination conditions for the algorithm.

1) When we have reached the maximum limit of the chemotactic steps (NC).

2) When the Chect hasn’t changed for 30 chemotactic steps.
Figure 6 Proposed Flowchart of the Exploration Process
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4.1 Encoding/Initialization of the Datapath Bacterium
The presented datapath bacterium (Bn) of the proposed generic bacterium structure for CDFGs is provided in

eqn. (1). This proposed datapath bacterium comprises of two segments: i) array of resource types (resource
configuration) ii) loop unrolling factor (UF). The size of the initial population of the bacteria is arbitrarily
assumed as three which are equally spaced in the design space. The first bacterium (B1) has been encoded
with resource configuration which results in the serial implementation (indicating worst case latency amongst
design solutions in the space). The second bacterium (B2) has been encoded with resource configuration which
results in the maximum parallel implementation (indicating best case latency amongst design solutions). The
third bacterium (B3) is placed in the middle of the design space (mid value (MV) between serial and parallel

implementation bacteria). The initial configurations of the bacteria are described as follows:

Bn=((R1),(R2)............. (Rn), (UF)) (1)
Bl= (min(R1), min(R2)............. min(Rn), min(UF)) )
B2=(max(R1),max(R2)............. max(Rn),max(UF)) 3)
B3= (... (min(Rn) + max(Rn))/2, (min(UF) + max(UF))/2) (4)

Where R1,R2...,Rn are various resource types and UF is the loop unrolling factor.

4.2 Encoding of the Auxiliary Bacterium

Once the initial population of datapath bacterium is created as described above, the unrolled untimed CDFG
corresponding to the UF value (specified in the datapath bacterium) is constructed for each parent. This
indicates that for B1, B2 and B3 the corresponding unrolled CDFGs are constructed for UFmin, UFmax and
UFMV. An auxiliary bacterium is then generated using a novel encoding technique corresponding to each
unrolled untimed CDFG of bacterium population (B1, B2 & B3). This indicates that in general an auxiliary
bacterium exists for each datapath bacterium. This auxiliary bacterium acts a priority resolver for operations
competing during scheduling. The priority resolution (E) of operation ‘oi’ is performed through proposed

encoding scheme given as :
E (o) =W1x(LV)+W2=x (UV) (5)

Where LV is the load value and UV is the utilization value for each node (operation).W1 and W2 are designer
specified weights assumed as 0.5 each. The load value of an operation is defined as the summation of the load

factor (delay) of each successor operations including the operation itself. The utilization value of an operation
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is its number of child branches. An example of encoding value of operations (for auxiliary bacterium)for an
example CDFG (Fig.7)is provided in Table 1.

0l1|02|03 |04 |[05|06 |o7 |08 |09 | 010
4 |12 |2 |25|3 |15/05/05/05/|05

Table 1. Encoded values for auxiliary bacterium for
CDFG infigure 6

Figure 7 A CDFG example

Further, a motivational example on this encoding strategy, which integrates utilization value besides load
value, is described below. Scenario 1: assume two encoded operations with load value (and having same load
values), whereby the tie is broken by randomly selecting the operations during scheduling. Scenario 2: the two
encoded operations have same load value. However, instead of randomly breaking, the tie is broken based on
the proposed encoding strategy (function of load value and utilization value) during scheduling. Example, for
a resource configuration, 2(+) and 1(*), the schedule in scenario 1 (for CDFG in Fig.7) uses only load values
to resolve operation priority during scheduling and thereby consumes 6 control steps compared to schedule in
scenario 2 which uses proposed encoding to resolve operation conflict during scheduling and consumes only

5 control steps.

0
a
\_/
a
\_/

a

_/

Scenario 2: Scheduling with encoding Scenario 1: Scheduling with load values

Figure 8 Schedules for comparing two encoding schemes of auxiliary bacterium
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4.3 Proposed Movement of Bacterium

A bacterium moves through chemotactic movement in every step (j), the proposed DSE mechanism explores

> jteration

new feasible solutions is given in figure 5. However, after a designer specified periodic intervals (‘y
step), the process of elimination dispersal (ED) occurs. The ED algorithm is repeated for Ned times (a temporary
counter ‘I’ is initialized with the values of Ned Which decrements after every corresponding occurrence of ED
operation; where ‘Ned is a designer specified variable that defines the number for times, ED occurs. Therefore,
it tracks the number of times ED is further allowed). Further, arrays (Ed [j-])) is created for ED process, each
to store the outcome, checking whether ED has been performed in last iterative step. This storage structures
are necessary to determine whether variables ‘y’ needs up gradation. If Ed [j--] has taken place, therefore, the

‘y’ needs to be updated.

j (Step/iteration) = 1
Repeat
{
Ifj=@0*N/N,) // 1<=n<=N_,
Then perform Elimination-Dispersal mechanism

Tumble: Generate a random vector A_(1), whose each component is in the range of [-1,1].
Tumble-count=1
Swim-count=1
1.Generate a tumble vector A (1) .

new current . A, (1)
28"V =B, + *(_2mW)

3.Go to cost function based on the decoded CDFG and store it in Finew.

4. If Fiold > Finew and tumble-count<=5

Tumble-count=tumble-count+1

Goto step 1.
5.Else if Swim-count <5
Bicurrent= Binew
Ficun‘ent= Finew
Goto step 2.
j=it1
}

Figure 9 A4 bacterium’s locomotion process

The chemotactic function (eqn. (6)) incorporates a behavior of tumble/swim in order to explore the new

positions; where C(i) is the step size taken in random direction specified by the tumble and A is a random
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vector whose elements lie in [-1, 1]. A substantially large value of C(i) is required for DSE, in order to avoid

redundant solutions.
Elimination-Dispersal Mechanism

In order to implement the elimination dispersal mechanism, new replacements are randomly initialized over
the search space (between the least fit and best fit bacterium position but beyond their midpoint, but closer to
the best fit bacterium) by eliminating the least fit bacterium. If the new replacement obtained is already found
to be explored, and then dispersal is repeated. Further, if the new cost of the dispersed bacterium position is
found to be higher than the replaced bacterium, then it is not accepted. The ED mechanism has been adopted
from [9].

Identifying and discarding unproductive unroll factors before start of algorithm [

The unroll factors are screened to reduce the execution time, by unrolling the ineffective ones. The pseudo-

code for the algorithm that is used to screen the unrolling factors is given in figure 6.

Pre-processing of unrolling factor

Input — value of ‘I’ (Total no. of loop iteration)
Output — screened set of unrolling factor (UF)
1. Begin

// Screening of UF

2.ForUF=2toI

Do
2.1 IF (I mod UF < UF/2 ) && (UF <=1/2))Then
//Add UF into the accepted UF list
2.2 Accepted UF[k] = UF
2.3 k++
2.4 End IF
2.5 End For
3. End

Figure 10 pre-processing of unrolling factors
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4.4 Evaluation Models

There are two evaluation models each to estimate the Power and Execution time of each design specification.
These weighted sum of these two form the cost function which is used to evaluate the points in the design

space.
Evaluation model for estimation of execution time
The model used for evaluating the execution time taken by each point in the design space is as follows :
Te = (Crirst + (UF = 1)Cpi)*alpha + (120UF)*Crirst @)
®» “Crirst’ 1s time required to execute first iteration
® ‘[’ is the maximum number of iteration (loop count)
®» ‘glpha’ is floor(I/UF)
» ‘Cy’ is the difference in time between outputs of consecutive iteration in ns.

This is an estimation model for Te, where the necessity of tediously unrolling the CDFG is not required to
calculate Te, unless the number of of independent operations required to be performed in parallel due to
unrolling exceeds available resources (specified in bacterium).

Evaluation model for estimation of power

The total power(PT) represented by each point in the design space is a combination of two components
namely static power(PS) and dynamic power(PP).

The total power consumed is given by: PT = PS + PP (8)
The equation for PSis given by:
Ps=(XZ1(Nri- Kri + Nimux - Kinux))*Pc ©)
®» ‘Nri’ represents the number of instance of resource Ri
» ‘KRi’ represents the area occupied by resource Ri
®» ‘v’ is the number of resource types

®» ‘Nmux’ is number of the multiplexer
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®» ‘Kmux’ is area occupied by the multiplexer
®» ‘Pc’ denotes the power dissipated per area unit (e.g. transistors)

The equation for PP is given by:

PD — alpha *(Epy+ Emux) (10)
(Cfirst + (UF — 1) CII) *alpha + (I%UF) *Cfirst

®» ‘Pc’ denotes the power dissipated per area unit (e.g. transistors)

®» FEry and Emux are the energy consumed by resources and mux respectively.

Cost Function

The cost function is a weighted sum of the power and execution time compared to the maximum power and
maximum execution time of the whole design space. The maximum power is obtained for the configuration of
most parallel implementation, while maximum execution time is obtained for the most serial configuration.

The cost function of each design space configuration is given by the equation:

Cj=wr T,T.ix W P::u (11)

» Cf = Fitness of bacterium b

» W, Wp = User defined weights for power and execution time

® T.axr Pmax = Maximum Time and power of any schedule
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Chapter 5: Implementation

To test the theoretical conclusion that BFOA designed by us is a better approach compared to the previous
approaches we have implemented the BFOA and GA algorithms. The GA approach used for comparison has
been adopted from [11]

5.1 BFOA.exe

This is a program written in java to implement the BFOA as discussed in the previous sections. It’s very user
friendly. A screen shot of this is shown in the figure 7 below.

Integrated Exploration of Scheduling and Module Selection for Loop Based Control Data Flow Graphs during High Level
Synthesis using Bacterial Foraging

Choose Input COFG file: | Choosefile..

Choose Unrolled CDFG file: | Choose file.. |
Choose module library: Choose file..

Get Max and Min values for Power and Latency J

Power constraint: 1000000 W

—

Latency constraint: 1000000 ns

Ma. of Chemotactic steps:

Ma. of Elimination-Dispersal steps:

Population size:

Weight of power factor:

Weight of latency factor:

. Reset | | Start Scheduling |

Project by: Juhi Maik and Pavan Tarigopula Supenvised by: Dr. Anirban Sengupta

Figure 11 Screen shot of BFOA.exe
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The inputs are same as that of any normal HLS problem. In addition the user can choose the parameters
such as No.of chemotactic steps, elimination dispersal steps, Population size, and respective weights of
power and latency during the evaluation of cost function. The ‘get Max and Min values for Power and
Latency’ button gives the maximum power and maximum latency of all the design space points and
outputs it as shown in figure 8.

Integrated Exploration of Scheduling and Module Selection for Loop Based Control Data Flow Graphs during High Level
Synthesis using Bacterial Foraging

Cutput: Choose Input CDFG file: Choose file..

Allowed unroll factors = [2, 4] J
Maximum Latency = 90160 Choose Unrolled CDFG file: Choose file..
Minimum Power = 270477.38

Maximum Power = 1015875.0 Choose module library: Choose file..
Minimum Latency = 13160

Get Max and Min values for Power and Latency ]

Power constraint: 1000000 i

—

Latency constraint: 1000000 ns

Ma. of Chemotactic steps:

Ma. of Elimination-Dispersal steps:

Population size:

Weight of power factor:

Weight of latency factor:

Reset | | Start Scheduling J

Project by: Juhi Maik and Pavan Tarigopula Supenvised by: Dr. Anirban Sengupta

Figure 12 Screen shot of BFOA.exe giving maximum power and latency and the unrolled factors allowed for
the FIR filter.

After filling all the user defined fields now click on start scheduling. Then it runs the BFOA as presented in
the previous sections and in the output field present on the right side of the layout presents the iteration of the
convergence, the final configuration of the global best found, the cost function value, power and latency of
the global best, the time taken for the execution of the algorithm. It also presents the solution found out by
the brute force approach to cross check if we have the reached the golden solution, which is the global
optimum solution or not. The screen shot showing the outputs in shown in figure 9.



Integrated Exploration of Scheduling and Module Selection for Loop Based Control Data Flow Graphs during High Level

Cutput:

Allowed unroll factors =[2, 4]
Total iterations for convergence = 33

Final Solution

LF: 4 Resources: [1,0, 4, 1]
Cost- 0.36032742
Power - 459918.5
Latency - 24160

Time taken for calculation = 16 ms.

Golden cost by Brute Force = 0.36032742
Encoding: UF: 4 Resources: [1, 0, 4, 1]

Project by: Juhi Maik and Pavan Tarigopula

Synthesis using Bacterial Foraging

Choose Input CDFG file: | Choose file.. |

Choose Unrolled CDFG file: | Choosefile.
Choose module library: Choose file..

Get Max and Min values for Power and Latency J

Power constraint: 1000000 i

Latency constraint: 1000000 ns

—

Ma. of Chemotactic steps:

Ma. of Elimination-Dispersal steps:

Population size:

Weight of power factor:

Weight of latency factor:

. Reset | | Start Scheduling |

Supernvised by: Dr. Anirban Sengupta
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Figure 13 Screen shot of BFOA.exe showing the final output.

In addition to the output shown on the layout of the program, another file is generated in the folder from where
the program is run with the file name in the format ‘BFO-<timestamp>’, the timestamp of the time of execution
of the program is appended each time the program is run. This contains all the local best configurations after
each iteration. The reset button resets all the input fields and a new configuration can be run.
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5.2 GA.exe

This is a program written in java to implement the GA present in [11]. A screen shot of this is shown in the
figure 10 below.

Comparison with Genetic Algorithm

Choose Input COFG file: Choose file..

Choose Unrolled CDFG file: . Choosefile. |

Choose module library: Choose file.

Power constraint: 1000000

Latency constraint: 1000000

Mumber of generations: 100
Population size:
Weight of power factor: 045

Weight of latency factor: 045

Mutation Probability: () 05 () 025 (U 0.1

Fraction of Chromosomes mutated: () least1 () lower 25%

() lower 50%

| Resst | | Start Scheduling |

Project by: Juhi Maik and Pavan Tarigopula Supervised by: Dr. Anirban Sengupta

Figure 14 Screen shot of GA.exe

The only difference between GA.exe and BFOA.exe is the genetic algorithm specifications the user needs to
supply. The Mutation probability can be varied between 0.5,0.25 and 0.1. The fraction of chromosomes
mutated can be varied between three options. It can be as small as 1 or 25% or 50% of the total size of the
population. After giving all the inputs and the constraints on power and latency, press the start scheduling
button for the program to run.

After the execution of the program and a solution is reached the output is displaced in the right hand side of
the layout. This contains the total no.of iterations taken for convergence, the configuration of the final
solution and the time taken for convergence. A screenshot of the layout showing the output is shown in
figure 11.



Comparison with Genetic Algorithm
Cutput: Choose Input COFG file: Choose file..

Allowed unroll factors = [2, 4] Choose Unrolled CDFG file: Choose file..
Total iterations for convergence = 32

Choose module library: Choose file..

Power constraint: 1000000

Final Solution
UF: 4 Resources: [2,0,4,1]
Cost- 03858837

Power-512050.72 Latency constraint. | 1000000
Latency - 24160

—

Time taken for calculation = 67 ms. Number of generations: 100
Population size:
Weight of power factor: 0.5

Weight of latency factor: 0.5

Mutation Probability:  (® 05 (025 () 04

Fraction of Chromosomes mutated: () least1  (®) lower 25%
() lower 50%

| Reset | Start Scheduling

Project by: Juhi Maik and Pavan Tarigopula Supenvised by: Or. Anirban Sengupta

Figure 15 Screen shot of GA.exe showing the output

As in the case of BFOA.exe, GA.exe also generates a file with file name in the form of ‘GA-<timestamp>’
which has the configurations and cost function values of the local best after each generation.
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Chapter 6: Testing and Results

The proposed approach has been implemented in Java and run on Intel core i5-2450M processor, 2.5 GHz with
3 MB L3 cache memory and 4 GB DDR3 RAM. The results are presented in three phases:

6.1 Sensitivity Analysis on Cost and Convergence lteration due to Population Size

Exploration time

Iteration at which convergence is

JPEG downsample

Benchmark Population Cost .

(ms) achieved

3 0.3603 62 29

5 0.3603 81 26

FIR 7 0.3603 91 25

3 0.2245 197 36

5 0.2245 253 35

FFT 7 0.2245 300 34

3 0.3013 165 38

5 0.3013 184 37

Differential Equation 7 0.3013 247 34

3 0.3735 176 34

5 0.3735 208 33

Test Case 7 0.3735 274 31

3 0.505 39 24

5 0.505 58 23

IIR Butterworth 7 0.505 69 23

3 0.2991 47 26

MPEG Motion > 02591 > 25

Vector 7 0.2991 68 24

3 0.6514 63 25

5 0.6514 83 23

7 0.6514 109 23

Table 2 Sensitivity Analysis of the impact of Population Size on Cost and Convergence Iteration

> As evident in table 2, for all benchmarks, as the population size increases, the convergence iteration
decreases (however, the exploration time increases).

» This is because the computational complexity per iteration is more for larger population size.
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> Nevertheless the cost of final solution (quality of results: QoR) remains same for all benchmarks
regardless of population size.

6.2 Results of Proposed approach

Execution Time(us) Power (mW)
Benchmark Resources and UF
. . . Proposed
Constraint |Proposed Solution | Constraint .
Solution
FIR UF =4, 1(+), 4(*), 1(<) 60 24.16 0.5 0.4599
UF = 21 1(+)I 1(')1 4(*)1
800 292.28 2 0.6519
FFT 1(<)
UF = 41 1(+)I 1(')1 4(*)1
600 267.24 1.2 0.6377
Differential Equation 1(<)
UF=2,1(+), 3(*), 1 500 400.86 1.5 0.3859
Test Case (+), 3("), 1<)
1(+), 3(* 30 22.54 0.35 0.3119
IIR Butterworth (+), 3(%)
1(+), 5(* 36 33.27 1 0.5511
MPEG Motion Vector (+),5(%)
2(+), 1(* 26 24.97 0.6 0.3188
JPEG downsample (+), 1)

Table 3 Results of proposed approach.

» Asevident in Table 3, the solution found indicates an optimal combination of resource array and loop
unrolling factor CDFG’s, where the final solution comprehensively meets the user constraints of
power and delay (execution time) as well as minimizes the final cost (As per egn. (11)).

> It is worthwhile to mention that for all benchmarks we have achieved the real global best after

comparing with the golden solution obtained through brute force method.




6.3 Comparison of QoR and Exploration Runtime with previous approaches

36

Benchma Final Solution Exploration Run time QoR(Cost)
rk
Proposed [5] [3] Proposed(ms) [5] [3]secs | Proposed | [5] [3]
FIR 40, 1(+), U)UF =13().1(1), U<)LUF=8| - 4(), 1(+), 62 4.31min 5.03 0.36 041 0.38
4 1(<),UF=8
FET 400100, 10) 1(<). | 3(). 2(+), 10), 1<), | 2(%), 1(+), 1(), 197 >1hr 141 0.22 0.6 0.7
UF=2 UF=16 1(<), UF = 16
Differential| 4, 15,1 14(%), 1(+), 20, 1(<), | 3(*), 1(+), 10), 165 >1hr 436 0.30 052 | 051
. ),1(<), UF=4 UF=16 1(<), UF = 16
Equation
Test case 3(*)'1(+)'§<<)‘ UF = 12("), 4(+)'3(13(<)'UF: 2(*)01F(j)'32<<)‘ 176 >1 hr 351 0.37 0.78 | 0.87
MPEG 5(*),1(+) 3(%),1(+) 5(*),1(+) 47 5.45min 6.63 0.29 0.39| 0.36
MMV
JPEG DS 1(*%),2(+) 1(%),2(+) 1(%),1(+) 63 2.5 min 8.21 0.65 0.65| 0.77

Table 4 Comparison of QoR and Exploration Runtime

The Proposed approach is compared with two other approaches in [3] and [5] and the comparison is given
above in table 4.

>

>

resource configuration in them.

path is found ineffective does not exist in genetic based approaches.

As evident in table 4, the QoR of the proposed approach is significantly better than [3] and [5].

This is because optimization of loop unrolling was not performed simultaneously with datapath

Additionally, adaptive features such as tumbling which assists in changing direction when a search

Besides above, the encoding of the individuals did not include utilization metric concept in resolving

priority during scheduling which assists in reducing latency. Therefore two different schedules
(different latency) are possible for same resource configuration (this has been established in section
3.2).

The exploration runtime of [3 and [5] were higher because, both the previous approaches being

driven through genetic algorithm induces greater computational complexity than proposed fast
bacterial foraging driven DSE process.
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6.4 Comparison of QoR and Exploration Runtime with GA of [11]

Benchmark Mutation Factor (Fm) Cost Exploration time (ms) eration at which convergence is achieve Configuration
single least fit
FIR
lower 25%
FET single least fit 0.263173
lower 25% 0.253643
. . . single least fit
Differential Equation lower 25%
single least fit
T
est Case lower 25%
single least fit
1IR Butterworth lower 25%
single least fit
JPEG downsample lower 25%
single least fit
fIPEG Motion Vectg lower 25%

Legerd: [ Premlure Comvergence | GokenSobon Reaching maxium teraions without convergerce

Note: Pm=0.25, Max population size = 100

Table 5 Comparison of QoR and Exploration Runtime with GA using GA.exe
As you can see from the table 5 above that GA reaches to the golden solution only for two benchmarks and
the execution time is also very very high compared to the proposed approach.

Chapter 7: Conclusion
An automated exploration of optimal datapath configuration and loop unrolling factor for integrated scheduling

and module selection of CDFG’s using bacterial foraging is proposed. The proposed approach has been able
to attain improvement in QoR and reduction in exploration runtime compared to [3], [5]. We have also
implemented the GA in [11] and found out that it’s reaching to the golden solution only for three benchmarks.
Out of the seven bench marks tested three converged prematurely and one has not converged at all within the
limit of the maximum number of iterations. For all the bench marks the execution time of the GA is much
more than the proposed BFOA.

Chapter 8: Future Work

o Better approximations to evaluate design spaces points like considering registers and latches also.

e Using better encoding scheme for encoding the bacteria.
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