
1

B. TECH. PROJECT REPORT
On

Integrated Scheduling and

Allocation for Simultaneous

Exploration of Unrolling Factor

and Datapath during Power-

Delay Trade-off
BY

Juhi Naik & Pavan Tarigopula

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

December 2014

2

 Integrated Scheduling and

Allocation for Simultaneous

Exploration of Unrolling Factor

and Datapath during Power-

Delay Trade-off
A PROJECT REPORT

Submitted in partial fulfillment of the

requirements for the award of the degrees

of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

Submitted by:

Juhi Naik and Pavan Tarigopula

Guided by:

Dr. Anirban Sengupta, Assistant Professor, IIT Indore

INDIAN INSTITUTE OF TECHNOLOGY INDORE

December 2014

3

CANDIDATE’S DECLARATION

We hereby declare that the project entitled “Integrated Scheduling and Allocation for

Simultaneous Exploration of Unrolling Factor and Datapath during Power-Delay Trade-

off” submitted in partial fulfillment for the award of the degree of Bachelor of Technology in

‘Computer Science and Engineering’ completed under the supervision of Dr. Anirban

Sengupta, Assistant Professor, Computer Science and Engineering, IIT Indore is an authentic

work.

 Further, I declare that I have not submitted this work for the award of any other degree

elsewhere.

Signature and name of the student(s) with date

CERTIFICATE by BTP Guide(s)

 It is certified that the above statement made by the students is correct to the best of

my/our knowledge.

Signature of BTP Guide(s) with dates and their designation

4

Preface

This report on “Integrated Scheduling and Allocation for Simultaneous Exploration of Unrolling Factor and

Datapath during Power-Delay Trade-off” is prepared under the guidance of Dr. Anirban Sengupta.

Through this report we have tried to give a detailed explanation of the design and working of the novel

approach devised by us for integrated scheduling and allocation while simultaneously exploring unroll factor

and datapath. We hope this will be useful in making the process of High Level Synthesis (HLS), used in the

building of various digital systems, more efficient.

We have tried to the best of our abilities and knowledge to explain the content in a lucid manner. We have also

added figures and comparative tables to make it more illustrative and provided pseudo-codes of algorithms,

wherever necessary.

Juhi Naik(1100115) & Pavan Tarigopula(1100134)

B.Tech. IV Year

Discipline of Computer Science and Engineering

IIT Indore

5

Acknowledgements

I wish to express my gratitude to Dr. Anirban Sengupta, Assistant Professor, IIT Indore for his kind support

and valuable guidance. I wish to thank Ms. Saumya Bhadauria and Mr. Vipul Kumar Mishra, Ph. D. Scholars,

Computer Science and Engineering, IIT Indore for their guidance all throughout the project. Also, I wish to

thank my project partner, Mr. Pavan Tarigopula, B. Tech IV Year, Computer Science and Engineering, IIT

Indore for his support throughout the project.

It is their help and support, due to which we became able to complete the project and the technical report.

Without their support this project as well as report would not have been possible.

Juhi Naik(1100115) & Pavan Tarigopula(1100134)

B. Tech. IV Year

Discipline of Computer Science and Engineering

IIT Indore

6

Abstract
This report presents a novel integrated design space exploration (DSE) methodology driven by bacterial

foraging optimization algorithm(BFOA) that is equipped with the capability to explore an optimal combination

of datapath resource configuration and loop unrolling factor (UF) for optimal scheduling for control data flow

graphs (CDFGs). The proposed approach also comprises of novel bacterium encoding strategy for both

‘datapath bacterium’ and ‘auxiliary bacterium’. The approach presented supports operation chaining in

scheduling during delay evaluation as well as considers the impact of loop unrolling on the configuration of

multiplexer size during power evaluation. The above all have not jointly been addressed in literature so far.

Finally, the results of proposed approach on standard benchmarks yielded significantly improved quality of

result (cost minimization) and reduced exploration runtime compared to recent genetic algorithm (GA) driven

DSE approaches.

7

Table of Contents

CANDIDATE’S DECLARATION ... 3

CERTIFICATE by BTP Guide(s) .. 3

Preface .. 4

Acknowledgements .. 5

Abstract .. 6

List of Figures .. 8

List of Tables ... 9

Chapter 1: Introduction .. 10

1.1 Motivation ... 10

1.2 Preamble.…………………………………………………………………………………………… 11

1.3 Objectives .. 155

Chapter 2: Literature Survey .. 166

Chapter 3: Analysis .. 177

Chapter 4: Proposed Algorithm ... 2222

Chapter 5: Implementation ... 29

Chapter 6: Testing and Results .. 34

6.1 Sensitivity Analysis on Cost and Convergence Iteration due to Population Size 34

6.2 Results of Proposed approach .. 35

6.3 Comparison of QoR and Exploration Runtime with previous approaches .. 3536

6.4 Comparison of QoR and Exploration Runtime with GA ... 3538

Chapter 7: Conclusion .. 38

Chapter 8: Future Work ... 38

References .. 39

8

List of Figures
Figure 1 Design Flow of HLS .. 11

Figure 2 Data Flow Graph of an application .. 12

Figure 3 Input to the application in the form of a .txt file .. 12

Figure 4 Example of a Module Library .. 13

Figure 5 Example of a schedule: Automated exploration of datapath and unrolling factor during power–

performance tradeoff in architectural synthesis using multi-dimensional PSO algorithm, Anirban Sengupta,

Vipul Kumar Mishra .. 13

Figure 6 Proposed Flowchart of the Exploration Process .. 22

Figure 7 A CDFG example .. 24

Figure 8 Schedules for comparing two encoding schemes of auxiliary bacterium .. 24

Figure 9 A bacterium’s locomotion process .. 25

Figure 10 pre-processing of unrolling factors .. 26

Figure 11 Screen shot of BFOA.exe .. 29

Figure 12 Screen shot of BFOA.exe giving maximum power and latency and the unrolled factors allowed for

the FIR filter. .. 30

Figure 13 Screen shot of BFOA.exe showing the final output. ... 31

Figure 14 Screen shot of GA.exe ... 32

Figure 15 Screen shot of GA.exe showing the output ... 33

file:///E:/IITI/7th%20Sem%20lessons/BTP/report%20PPt%20etc/final%20report.docx%23_Toc405555864
file:///E:/IITI/7th%20Sem%20lessons/BTP/report%20PPt%20etc/final%20report.docx%23_Toc405555865
file:///E:/IITI/7th%20Sem%20lessons/BTP/report%20PPt%20etc/final%20report.docx%23_Toc405555866
file:///E:/IITI/7th%20Sem%20lessons/BTP/report%20PPt%20etc/final%20report.docx%23_Toc405555867
file:///E:/IITI/7th%20Sem%20lessons/BTP/report%20PPt%20etc/final%20report.docx%23_Toc405555867
file:///E:/IITI/7th%20Sem%20lessons/BTP/report%20PPt%20etc/final%20report.docx%23_Toc405555867
file:///E:/IITI/7th%20Sem%20lessons/BTP/report%20PPt%20etc/final%20report.docx%23_Toc405555868
file:///E:/IITI/7th%20Sem%20lessons/BTP/report%20PPt%20etc/final%20report.docx%23_Toc405555869
file:///E:/IITI/7th%20Sem%20lessons/BTP/report%20PPt%20etc/final%20report.docx%23_Toc405555871
file:///E:/IITI/7th%20Sem%20lessons/BTP/report%20PPt%20etc/final%20report.docx%23_Toc405555872

9

List of Tables
Table 1 . Encoded values for auxiliary bacterium for CDFG in figure 6 .. 24

Table 2 Sensitivity Analysis of the impact of Population Size on Cost and Convergence Iteration 34

Table 3 Results of proposed approach. .. 35

Table 4 Comparison of QoR and Exploration Runtime ... 36

Table 5 Comparison of QoR and Exploration Runtime with GA using GA.exe ... 37

10

Chapter 1: Introduction

1.1 Motivation

Design Space Exploration (DSE) refers to the process of designing a data flow or schedule by searching for a

solution which is optimal in terms of certain objectives (e.g. Power, latency etc.) while constrained by certain

factors (e.g. No. of resources available). It involves trying out different alternate design parameters to “explore

the design space” [12]. Exhaustively evaluating each and every design point, however, is prohibitive for the

large design spaces that are usually found in general applications. Loop Unrolling is a way of achieving

Instruction Level Parallelism so as to decrease the latency at the cost of increased number of resources as well

as power [13]. Deciding when to apply loop unrolling and by what factor itself leads to widening the design

space to a large extent, thus increasing the complexity of the problem manifold. To overcome the problem of

DSE combined with automated loop unrolling, we incorporate knowledge of the design space into the search

strategy by using the evolutionary mechanisms of Bacterial Foraging Optimization (BFO) i.e. chemo taxis,

swarming, reproduction, and elimination-dispersal [6] tailored to the needs of our problem. As mentioned

earlier, an exhaustive exploration of the design space is impractical due to the sheer size of the design space.

Thus, to get an optimal design point, we need to use sophisticated AI methods and heuristics as well as

calculated trade-offs. Such trade-off decisions include not only the balance between the various variables like

power, latency, loop unrolling factor etc. but also deciding the precision required for the design point versus

the time required to achieve that precision. Thus, active work is going on to implement faster and more

intelligent search algorithms.

Unrolling of a loop mainly consists of replications of its body corresponding to consecutive iterations. This

not only increases the level of parallelism but also, when unrolled fully, can enable the reuse of data across the

newly exposed inner loop leading to a substantial reduction of the number of memory access if the reused data

is kept in registers [13]. In this project we aim to apply one of the newer AI algorithms, BFO, to create a tool

for High level Synthesis (HLS) for traditional DSE combined with the added factor - loop unrolling.

11

1.2 Preamble

High level synthesis (HLS) involves transition from an algorithmic level description of an application in

CDFG to its equivalent register transfer level (RTL) counterpart which implements the specified behavior as

well as satisfies the conflicting user constraints such as power and delay. The above process includes

exploration which complicates with the inclusion of an ancillary variable called ‘loop unrolling factor’ during

exploration of an optimal scheduling during HLS. Such an intricate and intractable problem requires

administration of advanced algorithms equipped with adaptive capabilities to change direction when a certain

search path is found unrewarding. BFO mechanism is known to have the aforesaid capabilities to search an

optimal solution which motivated us to adopt its framework as our exploration backbone [1, 6].

Problem description

The DSE problem with HLS can be stated as follows :

Given a high-level design specification with a budget of i iterations, and HLS tool, find the best

approximate Pareto- optimal solution of RTL designs without exceeding i.

The following figure depicts the input and output flow for the HLS tool.

Figure 1 Design Flow of HLS

Explanation of the inputs and outputs

Behavioural Specifications – The specifications will be given as a Control Flow Graph (CFG) in .txt

format giving the behaviour and functionality of the application required. In a CFG representation the

interconnected vertices are called basic blocks (BB). Each basic block contains a sequence of data

operations ended by a control flow statement as its last instruction. This means that the operations inside

a BB are completely data oriented and can be represented as data flow graph (DFG) [14].

12

Figure 2 Data Flow Graph of an application

Figure 3 Input to the application in the form of a .txt file

Design Constraints – There are two types of design constraints applicable,

1) The implicit ones that we can get from the Behavioural Specs and Module Library like – Precedence

Relations of operations, Number of available hardware resource units available as well as the power and

time taken for one instruction on each type of hardware etc.;

13

Figure 4 Example of a Module Library

Figure 5 Example of a schedule: Automated exploration of datapath and

unrolling factor during power–performance tradeoff in architectural

synthesis using multi-dimensional PSO algorithm, Anirban Sengupta, Vipul

Kumar Mishra

Optimization Function – The optimization function, BFO, will be a part of the actual coding of the tool

itself. However, certain factors (e.g. Minimum/Maximum number of iterations to be done) will be taken

as input through the GUI.

Final Schedule – The HLS tool, after applying DSE using the above parameters, allocating resources

and binding modules to the operations, will give a Pareto-optimal design point in terms of its schedule,

i.e. the operations to be done in each clock cycle. This schedule can be represented in .txt format too.

14

Loop Unrolling

Loop unrolling is a type of Instruction level parallelism where a set of consecutive iterations in the loop

are unrolled and performed parallelly. After unrolling by a factor of U, the cycle count (latency) of the

block reduces by U while the gate count (and hence power) increases by U (approx.)

for(i=0; i<36; i++) {

P=P * (A[i] + B[i]);

q=q + (A[i] * B[i]);

 }

C code before un-rolling

for(i=0; i<36; i+=2) {

P=P * (A[i] + B[i]); P=P * (A[i+1] + B[i+1]);

q=q + (A[i] * B[i]); q=q + (A[i+1] * B[i+1]);

}

C code after unrolling with an unroll factor of 2

There are a few things however that need to be kept in mind while performing unrolling:

1) The unrolling factor has to be a divisor of the iteration count of loop.

2) Actual unrolling is too expensive to perform for analysis purposes given the extreme complexities of

the applications on which the algorithm will potentially be applied. Hence, a method needs to be devised

to calculate the optimal U without performing any actual unrolling.

3) The advantages or returns due to unrolling start diminishing after sometime. Hence, we need to find

this balanced design point.

Constraints for Loop Unrolling

Taking care of tailing iterations in case of an unroll factor which does not perfectly divide the iteration

count.

Discarding unfeasible unroll factors to save computation time.

Decreasing/Avoiding repetitive unrolling for the same unroll factors but different resource constraints.

15

Mathematical Aspect

Since the problem is a multi-objective optimization problem, it has three main parts:

Variables - Combination of which forms the basic optimization function

Constraints - To be satisfied by the variables

Optimization function – A combination of the multiple objectives to be achieved with an appropriate

weight for each.

Variables

Array of number of resources of each type to be used in schedule i.e. [R1, R2, …. , Rn] where Ri is one

of the resource types given in the module library. Array of unroll factors in each direction (in case of

nested loops) for eg. In case of the following loop:

for(i = 0; i<10; i++) {

for(j=0;j<15;j++) {

z = z * (i+j);

}

}

The array of unroll factors could be [2,3] i.e. 2 in i direction and 3 in j direction.

1.3 Objectives

1. Represent the DSE with loop unrolling problem as a mathematical multi-objective

optimization problem with respective constraints.

 2. Map the major mechanisms of Bacterial Foraging optimization to the problem in hand.

3. Devise a way to analyze the impact of unrolling factor and find the optimal factor in loop unrolling

without performing the actual unrolling.

4. Decide number of iterations (generations) required in BFO and produce a complete algorithm for

the problem.

5. Implement the algorithm programmatically i.e. write an HLS tool (probably using Java).

6. Test and record results on various benchmarks and compare with other algorithms.

16

Chapter 2: Literature Survey

There has been no previous work that addresses automated integrated exploration of datapath resource

configuration and loop unrolling factor for optimal operation chaining based scheduling during HLS. For

example, in [1], though authors handled CDFGs, they did not handle exploration of an optimal scheduling

using any priority function resolver. Further, GA based DSE was proposed in [2] whose main drawback is

besides requiring manual intervention to decide UF, considers only evenly divisible UFs as potential

candidates. This results in chances of an optimal UF being sacrificed. In [3] GA is used for exploring the

design space, but it explores only datapath resource configuration as output, and is unable to perform

exploration of loop unrolling factor of CDFGs for optimal scheduling. Approach [4] accepts only a scheduled

data flow graph as an input as well as does not explore UF. This signifies the inability of their approach to

resolve the scheduling problem as well as optimize unrolling factor for CDFGs. Further authors in [4] have

proposes a cost function which does not consider resource binding (area of mux and demux). In [5] although

exploration of an optimal scheduling is done, however, loop based CDFGs are not handled. Besides, GA is

used which results in exponential time complexity. In [6] bacterial foraging optimization is used for exploration

of datapath resource configuration, but optimization of loop unrolling with various candidate unrolling factors

are not considered. Finally in [7], the authors introduced a tool for HLS whose limitation is that the unrolling

factor for the loop is user-directed and is therefore not able to automatically determine optimal combination of

UF and datapath configuration together during scheduling. Various deterministic and non-deterministic

approaches were previously used to solve DSE problems. These have been discussed in the sections below and

their drawbacks are given. We studied these approaches and logically concluded that BFOA is the most

efficient approach.

17

Chapter 3: Analysis

Deterministic Methods [9]

 These focus is on the amount of influence each resource unit can have on each of the

parameters of the objective function.

 A "priority factor" is calculated for each resource such as adder, multiplier etc. for each

parameter namely area, time of execution and power consumption. This priority factor gives

us an understanding on to what extent a particular type of resource can have its influence on

the parameters of the objective function.

Based on the priority factors the search space is ordered with respect to each parameter and those

points which satisfy all the constraints are considered. For example If there are forty design points in

the design space and only a set of twenty satisfy the given power constraints and a set of ten satisfy

the given time constraint. Then say there are only five design points which satisfy both the power and

the time constraints. These five are now ordered based on the priority factor of the area and

configuration which give the minimum magnitude is chosen as the global best and the solution for the

DSE problem.

 The main drawback of this approach is that it is an exhaustive search of the design space and

therefore takes a lot of time for evaluating each and every point and comparing them.

 This algorithm is stated to be taking hours of time for simpler DSE problems which doesn’t

involve any loop unrolling, imagine the time it would be taking for complex CDFGs.

Non-Deterministic Methods

 Heuristic Based - Heuristic approaches like simulated annealing, hill climbing randomly pick

a possible solution inside the solution space and determine if it is better than the current best

solution.

 Evolutionary Algorithms - Genetic algorithms reach to the solution over a few

generations by eliminating the lower health off-springs.

 Bio-Inspired - Bio-inspired techniques like Particle-Swarm optimization and Bacterial

Foraging optimization are developed by mimicking biological process of various

organisms.

18

Simulated Annealing (SA)

Initially a point in the search space is picked randomly and exploration is done from this point. It moves to

the next position in the search space only if it’s better than the current position or if a probability factor is less

than the (e^(-delta/temperature)).

delta=new position-old position and temperature is decreased by a factor ‘alpha’ in each iteration.

Genetic Algorithm (GA)

The genetic algorithm is a model of machine learning which derives its behavior from a metaphor of the

processes of evolution in nature. This is done by the creation within a machine of a population of individuals

represented by chromosomes, in essence a set of character strings that are analogous to the base-4

chromosomes that we see in our own DNA. The individuals in the population then go through a process of

evolution. The various steps involved is explained briefly below

 The problem is encoded into chromosomes.

 The 'good' chromosomes which give low objective function value are crossed over with each

other to eliminate low quality chromosomes and to predict better solutions.

 Success of the algorithm is highly dependent on the crossover mechanism and the encoding

scheme of the problem to the chromosomes.

 GA is a slow starter compared to SA but it gives better results than SA and it has more than

one exploration point compared to only one the SA has.

 The problem with GA is that it runs for exponential time even for lesser complex problems

and as we are using a control flow data graph compared to the normal data graphs we are bound

to get a much more execution time for the algorithm.

Particle Swarm Optimization

 Particle Swarm Optimization (PSO) is an evolutionary approach proposed by Eberhart and Kennedy,

inspired by the behavior of bird flocks or schools of fish. This is a bio-inspired algorithm which is

getting a great recognition these days.

 It operates on a population of candidate solutions referred to as a swarm.

 Each solution in a swarm is called a particle.

19

 The best solution in each swarm is called the 'particle best' and the best solution among all the swarms

so far is the 'global best'. The movements of the particles are guided by their own best known position

in the search-space as well as the entire swarm's best known position.

 When the swarm moves, each particle is subjected to a velocity which tends to propel it in the direction

of pbest as well gbest.

 The pbest and gbest are updated based on the positions of the particles.

 Almost 'twice' as fast as Simulated Annealing [10].

 The drawbacks this algorithm has is that it’s very rigid by nature. It is dictated by many parameters

such as inertia coefficient, velocity coefficient and accelerator coefficient which if not chosen suitably

might not lead us to the solution and stuck at the local minima.

Bacterial Foraging Optimization Algorithm (BFOA)

BFOA is a relatively new bio-inspired algorithm which has been gaining a lot of recognition in various fields.

It has been giving optimum results in lesser time compared to other approaches in various problems like job

scheduling and at the same not very rigid as compared to the PSO. It is very simple and have very few factors

that dictate the search criteria. It was proposed by Passino by mimicking the movement of the E.coli bacteria.

The process basically consists of four steps

1. Chemotaxis

2. Swarming

3. Reproduction or replication

4. Elimination and dispersal

Chemotaxis

Chemotaxis is the process in which the locomotion of the bacteria is stimulated by tumbling and swimming

using the flagella. It picks a direction randomly and swims in the direction if the objective function value

decreases in that direction, otherwise it tumbles again and changes it direction.

Suppose if bacterium 'i' is at position theta(i), the new position of the bacteria will be

"theta(i)+c(i)*(del(i)/|del(i)|)", where c(i) is the step-length and del(i) is the tumble vector.

20

Swarming

Swarming is a collective behavior observed in these bacteria. The bacteria are stimulated by high levels of

'succinate', which helps them to aggregate into groups and thus move as concentric patterns of swarms with

high bacterial density.

Reproduction and Replication

Replication is a process in which, half of the bacteria of low health (high objective function value), are

destroyed and the remaining half are replicated and put in the previous positions only. These bacteria again

follow the chemotaxis independently.

Elimination and Dispersal

Changes in the local environment of the bacteria, such as temperature changes can occur killing a part of the

bacteria population in a particular region and dispersing the rest to some random positions.

Mapping BFOA to a DSE problem

The BFOA explained above illustrates a normal BFOA which is nothing but an optimization algorithm. We

need to map this general BFOA to the DSE problem. These are few issues which were dealt with during the

design of the flowchart and the pseudo code of the algorithm for the exploration process.

1. Is replication algorithm necessary?

Ø If we use a replication algorithm, we will be re-evaluating the same point twice, which is time consuming

and potentially not necessary. So we decided not to implement the replication algorithm.

2. What should be the size of the population?

Ø The size of the population is to be decided in such a way that, it should be sufficient to explore most of the

design space and at the same time, should also not be time consuming. We decided to keep the default

population size to be 3, but we have also tested with two more population sizes: 5 and 7.

3. How many elimination dispersal are to be introduced and what is the criteria for it?

Ø The elimination-dispersal serves the same purpose of the mutation algorithm in the Genetic Algorithm. It

induces diversity in the solutions and avoids premature convergence. So conventionally, the elimination

dispersal are 5 and the criteria is all the 5 elimination dispersal steps are evenly spaces among the number of

chemotactic steps.

4. How will tumble operate?

Ø Tumble operates by choosing a vector which is made up of random components, which then is divided by

its Euclidean norm, to give a unit vector, which is known as the tumble vector.

21

5. When will chemotactic step increment?

Ø There are two cases when a chemotactic step increments

I. If the newly found position after tumbling is better than the previous position of the bacteria.

II. If the bacteria cannot find a better position even after 5 tumblings.

6. How will violation during exploration be handled during chemotaxis and dispersal?

Ø If during exploration the bacteria moves out of the design space, we again bring it back and place it on the

boundary, by which the violation during exploration is handled.

7. What is the elimination dispersal mechanism?

Ø The dispersal mechanism should be in such a way that it improves the health of the population, by killing

the lower health bacterium and putting new ones at better positions than the previous ones.

8. What should be initial positions of the bacteria?

Ø The initial positions of the bacteria should be in such a way that they are equally spaced in the design space

so that all the points have the equal probability of being visited.

22

Chapter 4: Proposed Algorithm
The input to the proposed framework is a Control Data Flow Graph (CDFG) of an application that describes

the behavioral description of the data-path, set of user specified design constraints for power and delay, and

the module library that contains viz. maximum resources available, clock cycles and area of each resource.

The flow chart of the proposed BFOA driven exploration process is shown in Figure 6. The proposed

methodology is based on a novel bacterium encoding structure (consisting of two components called ‘datapath

bacterium’ and ‘auxiliary bacterium’) for control data flow graph. This bacterium encoding scheme is

responsible for integrated exploration of optimal scheduling for loop based CDFGs. The ‘datapath bacterium’

is capable of simultaneously exploring the optimal resource configuration array and unrolling factor. On the

other hand, the auxiliary bacterium is encoded through load value and utilization value metric which resolves

priority conflict between multiple operations during scheduling. The ‘auxiliary bacterium’ behaves as a support

bacterium to its corresponding ‘datapath bacterium’ and is not subjected to evolutionary operation (or

evolution) during exploration.

No

Yes

C2<C
best

Datapath

bacterium

Datapath

bacterium

Auxiliary

bacterium

Schedule
Evaluate cost function

value (C1)

Tumble to new

position

New Datapath

bacterium

New Auxiliary
bacterium

New Schedule
New cost function

value (C2)
C2<C1

Move bacterium

to new position

Unroll

CDFG based

on UF value

New Datapath

bacterium

Unroll

CDFG based

on new UF

value

Update Cbest

Yes

This process is repeated for every bacterium in each chemotactic step till we reach a termination

condition.

Termination Conditions: There are two termination conditions for the algorithm.

1) When we have reached the maximum limit of the chemotactic steps (N
c
).

2) When the C
best

 hasn’t changed for 30 chemotactic steps.

 Figure 6 Proposed Flowchart of the Exploration Process

23

4.1 Encoding/Initialization of the Datapath Bacterium

The presented datapath bacterium (Bn) of the proposed generic bacterium structure for CDFGs is provided in

eqn. (1). This proposed datapath bacterium comprises of two segments: i) array of resource types (resource

configuration) ii) loop unrolling factor (UF). The size of the initial population of the bacteria is arbitrarily

assumed as three which are equally spaced in the design space. The first bacterium (B1) has been encoded

with resource configuration which results in the serial implementation (indicating worst case latency amongst

design solutions in the space). The second bacterium (B2) has been encoded with resource configuration which

results in the maximum parallel implementation (indicating best case latency amongst design solutions). The

third bacterium (B3) is placed in the middle of the design space (mid value (MV) between serial and parallel

implementation bacteria). The initial configurations of the bacteria are described as follows:

Bn = ((R1), (R2)…………. (Rn), (UF)) (1)

B1= (min(R1), min(R2)………….min(Rn), min(UF)) (2)

B2=(max(R1),max(R2)………….max(Rn),max(UF)) (3)

B3= (…. (min(Rn) + max(Rn))/2, (min(UF) + max(UF))/2) (4)

Where R1,R2…,Rn are various resource types and UF is the loop unrolling factor.

4.2 Encoding of the Auxiliary Bacterium

Once the initial population of datapath bacterium is created as described above, the unrolled untimed CDFG

corresponding to the UF value (specified in the datapath bacterium) is constructed for each parent. This

indicates that for B1, B2 and B3 the corresponding unrolled CDFGs are constructed for UFmin, UFmax and

UFMV. An auxiliary bacterium is then generated using a novel encoding technique corresponding to each

unrolled untimed CDFG of bacterium population (B1, B2 & B3). This indicates that in general an auxiliary

bacterium exists for each datapath bacterium. This auxiliary bacterium acts a priority resolver for operations

competing during scheduling. The priority resolution (E) of operation ‘oi’ is performed through proposed

encoding scheme given as :

Where LV is the load value and UV is the utilization value for each node (operation).W1 and W2 are designer

specified weights assumed as 0.5 each. The load value of an operation is defined as the summation of the load

factor (delay) of each successor operations including the operation itself. The utilization value of an operation

𝐸 (𝑜𝑖) = 𝑊1 ∗ (𝐿𝑉) +𝑊2 ∗ (𝑈𝑉) (5)

24

is its number of child branches. An example of encoding value of operations (for auxiliary bacterium)for an

example CDFG (Fig.7)is provided in Table 1.

 Further, a motivational example on this encoding strategy, which integrates utilization value besides load

value, is described below. Scenario 1: assume two encoded operations with load value (and having same load

values), whereby the tie is broken by randomly selecting the operations during scheduling. Scenario 2: the two

encoded operations have same load value. However, instead of randomly breaking, the tie is broken based on

the proposed encoding strategy (function of load value and utilization value) during scheduling. Example, for

a resource configuration, 2(+) and 1(*), the schedule in scenario 1 (for CDFG in Fig.7) uses only load values

to resolve operation priority during scheduling and thereby consumes 6 control steps compared to schedule in

scenario 2 which uses proposed encoding to resolve operation conflict during scheduling and consumes only

5 control steps.

Figure 8 Schedules for comparing two encoding schemes of auxiliary bacterium

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10

4 2 2 2.5 3 1.5 0.5 0.5 0.5 0.5

Table 1 . Encoded values for auxiliary bacterium for

CDFG in figure 6

2 5 4

3
6

7
8

9 10

 2

1

3 4

7 5

8 6

1

9 10

+ +

*

*

 + +

+ +

+ +

Scenario 1: Scheduling with load values

*

+ + *

+ +

+ +

+ +

Scenario 2: Scheduling with encoding

* *

+ + +

+ + +

+

+

1 2

6

7

10

3

8
9

4 5

Figure 7 A CDFG example

25

4.3 Proposed Movement of Bacterium

A bacterium moves through chemotactic movement in every step (j), the proposed DSE mechanism explores

new feasible solutions is given in figure 5. However, after a designer specified periodic intervals (‘yth’ iteration

step), the process of elimination dispersal (ED) occurs. The ED algorithm is repeated for Ned times (a temporary

counter ‘l’ is initialized with the values of Ned which decrements after every corresponding occurrence of ED

operation; where ‘Ned
’ is a designer specified variable that defines the number for times, ED occurs. Therefore,

it tracks the number of times ED is further allowed). Further, arrays (Ed [j-])) is created for ED process, each

to store the outcome, checking whether ED has been performed in last iterative step. This storage structures

are necessary to determine whether variables ‘y’ needs up gradation. If Ed [j--] has taken place, therefore, the

‘y’ needs to be updated.

The chemotactic function (eqn. (6)) incorporates a behavior of tumble/swim in order to explore the new

positions; where C(i) is the step size taken in random direction specified by the tumble and ∆ is a random

j (Step/iteration) = 1

Repeat

 {

 If j = (n*Nc/Ned) // 1<= n <= Ned

 Then perform Elimination-Dispersal mechanism

Tumble: Generate a random vector ∆m(i), whose each component is in the range of [-1,1].

 Tumble-count=1

 Swim-count=1

 1.Generate a tumble vector ∆m(i) .

 2.Bi

new
 = Bi

current
+C(i) *(

∆m(i)

||∆m(i)||
) (6)

 3.Go to cost function based on the decoded CDFG and store it in Fi

new
.

 4. If Fi

old
 > Fi

new
 and tumble-count<=5

 Tumble-count=tumble-count+1

 Goto step 1.

 5.Else if Swim-count < 5

 Bi

current
= Bi

new

 Fi

current
= Fi

new

 Goto step 2.

j =j + 1

}

Figure 9 A bacterium’s locomotion process

26

vector whose elements lie in [-1, 1]. A substantially large value of C(i) is required for DSE, in order to avoid

redundant solutions.

Elimination-Dispersal Mechanism

In order to implement the elimination dispersal mechanism, new replacements are randomly initialized over

the search space (between the least fit and best fit bacterium position but beyond their midpoint, but closer to

the best fit bacterium) by eliminating the least fit bacterium. If the new replacement obtained is already found

to be explored, and then dispersal is repeated. Further, if the new cost of the dispersed bacterium position is

found to be higher than the replaced bacterium, then it is not accepted. The ED mechanism has been adopted

from [9].

Identifying and discarding unproductive unroll factors before start of algorithm [1]

The unroll factors are screened to reduce the execution time, by unrolling the ineffective ones. The pseudo-

code for the algorithm that is used to screen the unrolling factors is given in figure 6.

Pre-processing of unrolling factor

Input – value of ‘I’ (Total no. of loop iteration)

Output – screened set of unrolling factor (UF)

1. Begin

// Screening of UF

2. For UF =2 to I

Do

2.1 IF ((I mod UF < UF/2) && (UF <= I/2))Then

//Add UF into the accepted UF list

 2.2 Accepted UF[k] = UF

 2.3 k++

 2.4 End IF

 2.5 End For

3. End

 Figure 10 pre-processing of unrolling factors

27

4.4 Evaluation Models

There are two evaluation models each to estimate the Power and Execution time of each design specification.

These weighted sum of these two form the cost function which is used to evaluate the points in the design

space.

Evaluation model for estimation of execution time

The model used for evaluating the execution time taken by each point in the design space is as follows :

 TE = (Cfirst + (UF – 1)CII)*alpha + (I%UF)*Cfirst (7)

 ‘Cfirst’ is time required to execute first iteration

 ‘I’ is the maximum number of iteration (loop count)

 ‘αlpha’ is floor(I/UF)

 ‘CII’ is the difference in time between outputs of consecutive iteration in ns.

This is an estimation model for TE, where the necessity of tediously unrolling the CDFG is not required to

calculate TE, unless the number of of independent operations required to be performed in parallel due to

unrolling exceeds available resources (specified in bacterium).

Evaluation model for estimation of power

The total power(PT) represented by each point in the design space is a combination of two components

namely static power(PS) and dynamic power(PD).

The total power consumed is given by: PT = PS + PD (8)

The equation for PS is given by:

 PS = (∑ (𝑵𝑹𝒊 . 𝑲𝑹𝒊 + 𝑵𝒎𝒖𝒙 . 𝑲𝒎𝒖𝒙)
𝒗
𝒊=𝟏)*PC (9)

 ‘NRi’ represents the number of instance of resource Ri

 ‘KRi’ represents the area occupied by resource Ri

 ‘v’ is the number of resource types

 ‘NMUX’ is number of the multiplexer

28

 ‘KMUX’ is area occupied by the multiplexer

 ‘PC’ denotes the power dissipated per area unit (e.g. transistors)

 The equation for PD is given by:

PD =
𝒂𝒍𝒑𝒉𝒂 ∗(𝑬𝑭𝑼+ 𝑬𝒎𝒖𝒙)

(Cfirst + (UF – 1) CII) *alpha + (I%UF) *Cfirst
 (10)

 ‘PC’ denotes the power dissipated per area unit (e.g. transistors)

 EFU and Emux are the energy consumed by resources and mux respectively.

Cost Function

The cost function is a weighted sum of the power and execution time compared to the maximum power and

maximum execution time of the whole design space. The maximum power is obtained for the configuration of

most parallel implementation, while maximum execution time is obtained for the most serial configuration.

The cost function of each design space configuration is given by the equation:

 𝑪𝒇
𝒃 = 𝑾𝑻

𝑻𝑬

𝑻𝒎𝒂𝒙
+𝑾𝑷

𝑷𝑻

𝑷𝒎𝒂𝒙
 (11)

 𝑪𝒇
𝒃 = Fitness of bacterium b

 𝑾𝑻, 𝑾𝑷 = User defined weights for power and execution time

 𝑻𝒎𝒂𝒙, 𝑷𝒎𝒂𝒙 = maximum Time and power of any schedule

29

Chapter 5: Implementation

To test the theoretical conclusion that BFOA designed by us is a better approach compared to the previous

approaches we have implemented the BFOA and GA algorithms. The GA approach used for comparison has

been adopted from [11]

5.1 BFOA.exe

This is a program written in java to implement the BFOA as discussed in the previous sections. It’s very user

friendly. A screen shot of this is shown in the figure 7 below.

Figure 11 Screen shot of BFOA.exe

30

Figure 12 Screen shot of BFOA.exe giving maximum power and latency and the unrolled factors allowed for

the FIR filter.

After filling all the user defined fields now click on start scheduling. Then it runs the BFOA as presented in

the previous sections and in the output field present on the right side of the layout presents the iteration of the

convergence, the final configuration of the global best found, the cost function value, power and latency of

the global best, the time taken for the execution of the algorithm. It also presents the solution found out by

the brute force approach to cross check if we have the reached the golden solution, which is the global

optimum solution or not. The screen shot showing the outputs in shown in figure 9.

The inputs are same as that of any normal HLS problem. In addition the user can choose the parameters

such as No.of chemotactic steps, elimination dispersal steps, Population size, and respective weights of

power and latency during the evaluation of cost function. The ‘get Max and Min values for Power and

Latency’ button gives the maximum power and maximum latency of all the design space points and

outputs it as shown in figure 8.

31

Figure 13 Screen shot of BFOA.exe showing the final output.

In addition to the output shown on the layout of the program, another file is generated in the folder from where

the program is run with the file name in the format ‘BFO-<timestamp>’, the timestamp of the time of execution

of the program is appended each time the program is run. This contains all the local best configurations after

each iteration. The reset button resets all the input fields and a new configuration can be run.

32

5.2 GA.exe

This is a program written in java to implement the GA present in [11]. A screen shot of this is shown in the

figure 10 below.

Figure 14 Screen shot of GA.exe

The only difference between GA.exe and BFOA.exe is the genetic algorithm specifications the user needs to

supply. The Mutation probability can be varied between 0.5,0.25 and 0.1. The fraction of chromosomes

mutated can be varied between three options. It can be as small as 1 or 25% or 50% of the total size of the

population. After giving all the inputs and the constraints on power and latency, press the start scheduling

button for the program to run.

After the execution of the program and a solution is reached the output is displaced in the right hand side of

the layout. This contains the total no.of iterations taken for convergence, the configuration of the final

solution and the time taken for convergence. A screenshot of the layout showing the output is shown in

figure 11.

33

Figure 15 Screen shot of GA.exe showing the output

As in the case of BFOA.exe, GA.exe also generates a file with file name in the form of ‘GA-<timestamp>’

which has the configurations and cost function values of the local best after each generation.

34

Chapter 6: Testing and Results
The proposed approach has been implemented in Java and run on Intel core i5-2450M processor, 2.5 GHz with

3 MB L3 cache memory and 4 GB DDR3 RAM. The results are presented in three phases:

6.1 Sensitivity Analysis on Cost and Convergence Iteration due to Population Size

Benchmark Population Cost
Exploration time

(ms)
Iteration at which convergence is

achieved

FIR

3 0.3603 62 29
5 0.3603 81 26
7 0.3603 91 25

FFT

3 0.2245 197 36
5 0.2245 253 35
7 0.2245 300 34

Differential Equation

3 0.3013 165 38
5 0.3013 184 37
7 0.3013 247 34

Test Case

3 0.3735 176 34
5 0.3735 208 33
7 0.3735 274 31

IIR Butterworth

3 0.505 39 24
5 0.505 58 23
7 0.505 69 23

MPEG Motion
Vector

3 0.2991 47 26
5 0.2991 56 25
7 0.2991 68 24

JPEG downsample

3 0.6514 63 25
5 0.6514 83 23
7 0.6514 109 23

Table 2 Sensitivity Analysis of the impact of Population Size on Cost and Convergence Iteration

 As evident in table 2, for all benchmarks, as the population size increases, the convergence iteration

decreases (however, the exploration time increases).

 This is because the computational complexity per iteration is more for larger population size.

35

 Nevertheless the cost of final solution (quality of results: QoR) remains same for all benchmarks

regardless of population size.

6.2 Results of Proposed approach

Benchmark Resources and UF
Execution Time(us) Power (mW)

Constraint Proposed Solution Constraint
Proposed
Solution

FIR UF = 4, 1(+), 4(*), 1(<) 60 24.16 0.5 0.4599

FFT
UF = 2, 1(+), 1(-), 4(*),

1(<)
800 292.28 2 0.6519

Differential Equation
UF = 4, 1(+), 1(-), 4(*),

1(<)
600 267.24 1.2 0.6377

Test Case UF = 2, 1(+), 3(*), 1(<) 500 400.86 1.5 0.3859

IIR Butterworth 1(+), 3(*) 30 22.54 0.35 0.3119

MPEG Motion Vector 1(+), 5(*) 36 33.27 1 0.5511

JPEG downsample 2(+), 1(*) 26 24.97 0.6 0.3188
Table 3 Results of proposed approach.

 As evident in Table 3, the solution found indicates an optimal combination of resource array and loop

unrolling factor CDFG’s, where the final solution comprehensively meets the user constraints of

power and delay (execution time) as well as minimizes the final cost (As per eqn. (11)).

 It is worthwhile to mention that for all benchmarks we have achieved the real global best after

comparing with the golden solution obtained through brute force method.

36

6.3 Comparison of QoR and Exploration Runtime with previous approaches

Benchma

rk

 Final Solution Exploration Run time QoR(Co st)

Proposed [5] [3] Proposed(ms) [5] [3]secs Proposed [5] [3]

FIR 4(*), 1(+), 1(<),UF =

4
3(*),1(+), 1(<),UF= 8 4(-), 1(+),

1(<),UF= 8
62 4.31min 5.03 0.36 0.41 0.38

FFT 4(*), 1(+), 1(-) ,1(<),

UF = 2
3(*), 2(+), 1(-), 1(<),

UF = 16
2(*), 1(+), 1(-),

1(<), UF = 16
197 >1 hr 141 0.22 0.6 0.7

Differential

Equation

4(*), 1(+), 1(-
),1(<), UF = 4

4(*), 1(+), 2(-), 1(<),

UF = 16
3(*), 1(+), 1(-),

1(<), UF = 16
165 >1 hr 436 0.30 0.52 0.51

Test case 3(*),1(+),1(<), UF =

2
2(*), 4(+), 1(<), UF =

36
2(*), 1(+), 1(<),

UF = 36
176 >1 hr 351 0.37 0.78 0.87

MPEG

MMV

5(*),1(+) 3(*),1(+) 5(*),1(+) 47 5.45min 6.63 0.29 0.39 0.36

JPEG DS 1(*),2(+) 1(*),2(+) 1(*),1(+) 63 2.5 min 8.21 0.65 0.65 0.77

Table 4 Comparison of QoR and Exploration Runtime

The Proposed approach is compared with two other approaches in [3] and [5] and the comparison is given

above in table 4.

 As evident in table 4, the QoR of the proposed approach is significantly better than [3] and [5].

 This is because optimization of loop unrolling was not performed simultaneously with datapath

resource configuration in them.

 Additionally, adaptive features such as tumbling which assists in changing direction when a search

path is found ineffective does not exist in genetic based approaches.

 Besides above, the encoding of the individuals did not include utilization metric concept in resolving

priority during scheduling which assists in reducing latency. Therefore two different schedules

(different latency) are possible for same resource configuration (this has been established in section

3.2).

 The exploration runtime of [3 and [5] were higher because, both the previous approaches being

driven through genetic algorithm induces greater computational complexity than proposed fast

bacterial foraging driven DSE process.

37

6.4 Comparison of QoR and Exploration Runtime with GA of [11]

Table 5 Comparison of QoR and Exploration Runtime with GA using GA.exe

As you can see from the table 5 above that GA reaches to the golden solution only for two benchmarks and

the execution time is also very very high compared to the proposed approach.

Chapter 7: Conclusion
An automated exploration of optimal datapath configuration and loop unrolling factor for integrated scheduling

and module selection of CDFG’s using bacterial foraging is proposed. The proposed approach has been able

to attain improvement in QoR and reduction in exploration runtime compared to [3], [5]. We have also

implemented the GA in [11] and found out that it’s reaching to the golden solution only for three benchmarks.

Out of the seven bench marks tested three converged prematurely and one has not converged at all within the

limit of the maximum number of iterations. For all the bench marks the execution time of the GA is much

more than the proposed BFOA.

Chapter 8: Future Work

 Better approximations to evaluate design spaces points like considering registers and latches also.

 Using better encoding scheme for encoding the bacteria.

Benchmark Mutation Factor (Fm) Cost Exploration time (ms) Iteration at which convergence is achieved Configuration

single least fit 0.385984 99 33 UF: 4 2(+), 4(*), 1(<)

lower 25% 0.360327 237 44 UF: 4 1(+), 4(*), 1(<)

single least fit 0.263173 275 50 UF: 5 1(+), 1(-), 8(*), 2(<)

lower 25% 0.253643 169 50 UF: 4 1(+), 3(-), 4(*), 1(<)

single least fit 0.312822 141 33 UF: 5 1(+), 1(-), 4(*), 1(<)

lower 25% 0.310825 153 45 UF: 5 1(+), 1(-), 5(*), 1(<)

single least fit 0.41585 121 34 UF: 2 1(+), 4(*), 2(<)

lower 25% 0.41585 158 34 UF: 2 1(+), 4(*), 2(<)

single least fit 0.535144 206 33 1(+), 2(*)

lower 25% 0.504985 273 45 1(+), 3(*)

single least fit 0.768476 71 33 1(+), 4(*)

lower 25% 0.651423 77 33 2(+), 1(*)

single least fit 0.330782 408 33 2(+), 7(*)

lower 25% 0.330782 453 33 2(+), 7(*)

Legend: Premature Convergence

FIR

FFT

Differential Equation

Test Case

Note: Pm = 0.25, Max population size = 100

Golden Solution Reaching maximum iterations without convergence

IIR Butterworth

JPEG downsample

MPEG Motion Vector

38

References

[1] A Sengupta, VK Mishra, “Automated exploration of datapath and unrolling factor during power–

performance tradeoff in architectural synthesis using multi-dimensional PSO algorithm”, Elsevier Journal on

Expert Systems,Vol. 41, Issue 10, 2014, pp. no:4691-4703.

[2] Holzer, M.; Knerr, B.; Rupp, M., "Design Space Exploration with Evolutionary Multi-Objective

Optimisation," Proc. International Symposium on Industrial Embedded Systems, 2007, pp.126 – 133.

[3] V Krishnan, S Katkoori, A Genetic Algorithm For The Design Space Exploration Of Data Paths Using

High-Level Synthesis,IEEE Transactions On Evolutionary Computation, Vol. 10, No. 3, June 2006.

[4] C. Mandal, P. P. Chakrabarti, and S. Ghose, “GABIND: A GA approach to allocation and binding for the

high-level synthesis of data paths,” IEEE Trans. on VLSI, vol. 8, no. 5, pp.747–750, 2000.

[5] A Sengupta, R Sedaghat, “Integrated Scheduling, Allocation and Binding in High Level Synthesis using

Multi Structure Genetic Algorithm based Design Space Exploration System”, Proc. of 12th IEEE Intl

Symposium on Quality Electronic Design (ISQED), California, 2011, pp. 486-494.

[6] A Sengupta, S Bhadauria, “Automated Exploration of Datapath in High Level Synthesis using Temperature

Dependent Bacterial Foraging Optimization Algorithm”, Proc. of 27th IEEE Canadian Conference on

Electrical & Computer Engineering, Toronto, 2014, pp. 1- 5.

[7] Gupta, S.; Dutt, N.; Gupta, R.; Nicolau, A., "Loop shifting and compaction for the high-level synthesis of

designs with complex control flow," in Proc. of DATE, 2004, pp.114-119.

[8] Express Benchmark Suite, http://express.ece.ucsb.edu/benchmark/.

[9] Anirban Sengupta, Reza Sedaghat , Zhipeng Zeng, “A high level synthesis design flow with a novel

approach for efficient design space exploration in case of multi-parametric optimization objective”,

Microelectronics Reliability,31/3/2010,volume 50,issue 3,pages 424-437.

[10] Professor M. Bolic, “Design space exploration: comparaitive study of simulated annealing and particle

swarm optimization”, http://carg.site.uottawa.ca/doc/ELG6158VishalThareja.pdf, December 3, 2007.

[11] Anirban Sengupta, Reza Sedaghat, Pallabi Sarkar, “A multi structure genetic algorithm for integrated

design space exploration of scheduling and allocation in high level synthesis for DSP kernels”, journal of

Swarm and Evolutionary Computation published by Elsilvier dated 31/12/2012,volume 7, pages 35-46.

39

[12] Methods for Evaluating and Covering the Design Space during Early Design Development, Matthias

Gries, Technical Memorandum UCB/ERL M03/32, August 12, 2003

[13] Modeling Loop Unrolling Approaches and Open Issues, João M. P. Cardoso and Pedro C. Diniz, in

International Workshop on Systems, Architectures, Modeling, and Simulation (SAMOS IV), Samos, Greece,

July 19-21, 2004

[14] M. Holzer, B. Knerr, and M. Rupp, “Design Space Exploration with Evolutionary Multi-Objective

Optimization” Proc. Industrial Embedded Systems, p.125-133, Lisbon, Portugal, 2007

