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ABSTRACT 

The rapid growth of consumer electronics (CE) industry has led to cut-throat 

competition of developing sophisticated devices. As the complexity of the CE 

design increases along with shortening of time-to-market deadlines, the 

designers are becoming heavily reliant on reusable Intellectual Property (IP) 

cores generated at higher levels of design abstraction. A malicious attacker 

may exploit dependency on IP cores through security issues/vulnerabilities 

such as piracy, Trojan insertion, overbuilding, reverse engineering etc. Hence, 

methodologies are required to ensure security of the IP cores.  

Further similar to IP core security, IP core reliability is also becoming a major 

concern. As the demand for CE devices with sophisticated features such as 

low-power consumption, smaller silicon area, etc. increases, the IP core 

designers are heavily depending upon technology scaling to meet these design 

objectives. However, technology scaling enhances several reliability concerns 

such as bias temperature instability, multi-cycle and multi-unit transient faults, 

electromigration etc. Hence, methodologies are required for designing reliable 

IP cores. 

To advance the state-of-the-art for designing reliable and secured IP cores, this 

thesis makes following contributions: (a) A novel methodology for generating 

a DSP IP core that is simultaneously resilient/secure against multi-cycle 

(temporal) and (multi-unit) spatial effect of transient fault. (b) A novel 

methodology for generating a DSP IP core that is simultaneously tolerant 

against multi-cycle temporal and multi-unit spatial effect of transient fault for 

data intensive applications. (c) A novel methodology for generating a DSP IP 

core that is simultaneously tolerant against multi-cycle temporal and multi-

unit spatial effect of transient fault for loop-based control intensive 

applications. (d) A novel methodology for generating a low-cost, highly 

secure, functionally obfuscated DSP IP core. (e) A novel methodology for 

analyzing the aging effect of NBTI stress on performance of DSP IP core. (f) 

A novel computational forensic engineering methodology for resolving 

ownership conflict of DSP IP core generated using high level synthesis. 
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Chapter 1 

Introduction 

The invention of transistor in the mid-20
th

 century has led to unimaginable 

progress of electronics industry. Since its invention, the reduction in 

transistor’s dimensions has followed a well-known prediction termed as 

Moore’s law [1]. In the 1970-80’s the devices made from transistors such as 

computers could only be afforded by the large-scale industries/business-

houses due to their features such as large size, high power consumption, high 

cost etc. However, as the transistor scaling continues, devices having low 

power consumption, compact form-factor, better heat dissipation, were made 

possible. These advances have led to a whole new industry, centered toward 

manufacturing electronics devices for personal/home usage known as 

consumer electronics (CE). Along with transistor scaling other technological 

advances such as internet, smart phones, etc. have made consumer electronics 

a major market force (with estimated sales in multi-billion dollars [2]). Due to 

huge demand of CE devices, the competition for designing best product and 

launching them as fast as possible has increased tremendously. The cut-throat 

competition has resulted in very stringent (short) time-to-market deadlines. 

Additionally, the increasing demand for miniscule devices possessing as many 

features as possible has resulted in enhanced design complexity (for devices 

such as smart phones, smart watches, etc.). In order to meet these stringent 

time-to-market deadlines as well as reduce design complexity, the device 

designers are highly dependent on third-party Intellectual property (IP) cores 

designed at higher levels of design abstraction through high-level synthesis / 

behavioral synthesis / architectural synthesis [3-5]. 

As more and more sophisticated electronics devices are becoming integral part 

of business-critical and mission-critical systems, along with globalization of 

supply-chain, the chances of a malicious attack on an electronics device in a 

mission-critical system has increased tremendously [3-5]. Therefore, it is 

mandatory to devise algorithms that can ensure security of IP cores. 

Furthermore, the devices designed using scaled transistors are becoming more 

sensitive to their environment than earlier technology scales. Therefore, as the 
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technology scaling continues in the sub-nanometer range, the reliability of 

contemporary and future IP cores has become a major concern. Thus, 

methodologies are required for developing reliable IP core for mission-critical 

systems [6, 66-68]. 

This chapter briefly presents the background of the methodologies proposed in 

this thesis for designing reliable and secured IP cores. The first section 

discusses IP cores and its relevance in electronics industry. The second section 

briefly discusses various design abstraction levels of a generic integrated 

circuit (IC) design flow. The third section elaborates on the higher level of 

design abstraction through a process called ‘high level synthesis (HLS)’. 

Subsequently, the fourth, fifth, and sixth sections discuss the proposed 

reliability and security methodologies. Finally, the seventh section discusses 

the organization of the thesis.  

1.1.  IP core and its background 

An intellectual property core in electronics refers to a reusable logic block that 

is an intellectual property of an IP owner. Reusable IP cores plays a vital role 

in reducing the design complexity and helps the designers to meet time-to-

market deadlines. An IP core is analogues to a library in the context of a 

computer program. Like a library, an IP core can be utilized to design a system 

on chip (SoC) quickly and easily. An IP buyer could purchase IP core (s) from 

third party IP vendors and combine them along with in-house technologies (if 

any) to generate a ‘market-ready’ product. For instance, consider a company 

interested in developing a personal computer, it may buy IP cores for digital 

signal processor (DSP), memory, etc. and combine it with its in-house 

components to create a ‘market-ready’ product. Thereby, reducing time, effort 

and cost to build in-house IP cores. An IP core can be of three types; soft IP 

core or hard IP core or firm IP core [7]. A soft IP core is typically delivered as 

a synthesizable Register transfer level (RTL) code in a hardware description 

language (such as Verilog or VHDL) or schematic design. Similarly, a hard IP 

is typically delivered as a layout design in the form of a GDS II file [4]. A soft 

IP core is comparatively more modifiable/tweakable than a hard IP core. The 

word hard and soft represents modifiability of these IP core. A question arises 
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several times that whether an IP core should be provided as a soft IP core or 

hard IP core? A hard IP core is easily predictable but not portable for instance, 

a hard IP core cannot be ported from initially targeted foundry to another 

foundry.  On the other hand, a soft IP core is portable but not predictable i.e., 

its performance may vary significantly as it gets converted into lower levels of 

design abstractions. Therefore, a third type of IP core is required that is 

simultaneously predictable and portable. This type of an IP core is termed 

‘firm IP core’ [7, 69]. An IP core design process can be clearly understood 

with the help of a generic integrated circuit design flow as discussed in section 

1.2. 

1.2.  Generic VLSI design flow 

A generic integrated circuit design flow is based on divide and conquer 

technique. As shown in fig. 1.1, a complex design is divided into various 

abstraction levels. At each level, design is optimized to achieve certain 

objectives/goals. A generic IC design flow takes system specification as input 

in the form of a programming language or a hardware description language. 

Subsequently, high level synthesis is performed to obtain register transfer 

level (RTL) datapath as discussed in section 1.3. Later, the RTL datapath is 

converted into gate level netlist using logic synthesis.  The gate level netlist 

thus obtained is converted into layout design (typically in the form of a GDS II 

file) during physical design step of the IC design flow. The layout file thus 

generated is analyzed to check whether the layout design meets the design 

objectives (specification/constraints). Once the layout is verified, it is sent for 

fabrication. Once, the fabrication is completed, a ‘die’ is created. 

Subsequently, the die is packaged and tested. The test approved ICs are made 
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available in the market [3-7, 21]. 

1.3.  Background on High Level Synthesis 

High level synthesis (a.k.a. behavioral or architectural synthesis) is a 

technique to convert a behavioral description of a system into a register 

transfer level design. The HLS methodology takes behavioral description of a 

system (such as processors) and converts it into register transfer level design 

(having elements such as ALU, muxes, demuxes, registers, etc.). The first step 

of the HLS is to convert behavioral description in the form of a programming 

language or hardware description Language into an internal representation. 

Two types of internal representation are typically used during HLS: parse tree 

and graphs [8,9]. In our proposed methodologies we have utilized graphical 

representation. The graphical representation can further be in the form of a 

data flow graph (DFG) or a control data flow graph (CDFG). The next two 

steps of high level synthesis namely scheduling and allocation are closely 

related to each other [8, 9, 46]. Scheduling step is responsible for assigning the 

operations to the control steps, while allocation step assigns the hardware 

resources to the operations i.e. functional units, storage and communication 

elements (such as muxes, demuxes, buses). The aim of scheduling is to 

minimize the number of control steps or time required for completion of the 

program, while the aim of allocation is to minimize the number of hardware 

resources required for complete execution of the program. Once the 

scheduling and allocation steps are completed, binding step is executed. The 

aim of binding is to determine the size of the switching elements 

(muxes/demuxes) of the datapath. Once binding step is completed, the register 

transfer level datapath is obtained. However, controller to drive the datapath 

(as per the schedule’s requirement) is yet to be built.  

A controller is typically designed as hardwired or micro-coded. In hardwired 

controller design a control step corresponds to a state in the finite state 

machine (FSM). Similarly, in a micro-coded controller, a control step 

corresponds to a microprogram step [8, 9]. Subsequently, the controller is 

optimized and synthesized. Once the controller and datapath of design are 

available in the form RTL design. The lower level design steps are performed 

to obtain the ‘market ready’ integrated circuit as shown in the fig. 1.1.  
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1.4. Transient fault resiliency/tolerance of IP cores 

 As the transistor scaling continues in the sub-nanometer range, the amount of 

charge stored in a circuit’s nodes continues to shrink, enhancing its 

susceptibility to reliability concerns such as multi-cycle and multi-unit 

transient fault [10, 11]. A transient fault may occur when a particle with 

moderate energy strikes a circuit node. As the amount of charge stored in a 

node is reduced, so does the critical charge required for changing the logic 

level of a circuit, thereby increasing chances of transient fault due to particle 

with moderate energy. Additionally, a particle with moderate energy that was 

capable of affecting a single node in previous technology scale, can affect 

more than one node placed within the same nanometer area in subsequent 

technology scales (spatial effect) [27]. Therefore, the resulting impact of 

transient fault could affect multiple hardware units placed in the 

neighborhood. This spatial effect of TF is termed as multi-unit transient fault. 

Similarly, as a result of continuous technology scaling, the supply voltage of 

the device and clock-cycle time is decreasing (frequency is increasing). 

Therefore, the temporal effect of a single particle strike will last for multiple 

clock cycles in current and future technology scales [12, 17]. Hence, 

methodologies are required to tackle both multi-cycle (temporal) as well as 

multi-unit (spatial effect) of single event transient. The thesis proposes novel 

solutions to these problems. 

1.5. Security of IP cores 

In past few years, the globalization of the market has presented several 

opportunities for growth. However, globalization comes with its own set of 

drawbacks. As the number of components of a device that are manufactured 

outside the homeland continue to increase, the threat of a malicious attack is 

also increasing. Further, the lack of strict laws for punishing attackers, has 

resulted in higher vulnerability against these security threats. Traditionally, 

intellectual property were protected using techniques / tools such as patents, 

trademarks, copyright, trade secret, etc. However, these methodologies are 

either not applicable or are inefficient in protecting IP cores of digital systems 

[5, 13].  
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An IP core is vulnerable against various threats such as IP piracy, IP 

overbuilding, trojan insertion, etc. Hence, methodologies are required to 

protect IP cores against these threats. The methodologies presented in this 

thesis provides protection / security to IP cores against these threats as 

discussed in upcoming chapters. 

Although most of the approaches, either address only security or only 

reliability. However, negative bias temperature instability based accelerated 

aging attack belongs partially to both reliability as well as security domain 

[14, 15]. The thesis proposes novel solutions to these problems. 

1.6. NBTI stress analysis based accelerated aging attack on IP cores 

Aging is a natural process of any electronic device. As a result of it, the 

performance of aged systems become un-reliable. Natural aging is a reliability 

concern that can be accelerated by a malicious attack that aims to reduce the 

life-span of the device [15]. This type of attack is known as accelerated aging 

attack.  

Negative bias temperature instability is a physical phenomenon observed in 

metal oxide semiconductor field effect transistors (MOSFETs). NBTI is a 

major factor contributing to natural aging process. A malicious attacker can 

accelerate the aging of third-party IP core by applying input vectors causing 

maximum performance degradation when the device is not in active use. 

Thereby, device is degraded at maximum rate in inactive (standby mode) state. 

Thus, causing maximum degradation without detection (as testing and 

validation is typically performed in active states). This calls for methodology 

to identify presence of accelerated aging attack in IP cores. The thesis has 

proposed a novel methodology to perform NBTI stress analysis on DSP IP 

cores, that can further be applied to predict/identify the presence of accelerated 

aging attack on DSP IP cores. 

1.7.  Organization of thesis 

The upcoming chapters of the thesis are organized as follow: Chapter 2 

presents state-of-art with respect to proposed methodologies.  Chapter 3 

presents the proposed methodology to provide simultaneous resiliency 
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against multi-cycle temporal and multi-unit spatial effect of single event 

transient in DSP IP cores. Chapter 4 presents the proposed methodology to 

provide simultaneous tolerance against multi-cycle temporal and multi-unit 

spatial effect of single event transient for data intensive applications. Chapter 

5 presents the proposed methodology to generate a low-cost (low-area, low-

delay) optimized DSP IP core simultaneously tolerant against multi-cycle 

temporal and multi-unit spatial effect of transient fault for loop-based control-

intensive applications. Chapter 6 will present presents a methodology to 

generate low-cost, highly-secure, logic obfuscated DSP IP cores to provide 

security against key-sensitization based attacks. Chapter 7 presents 

methodology to analyze effect of NBTI stress on DSP IP core and identify the 

presence of accelerated aging attack. Chapter 8 presents computational 

forensics engineering based methodology to resolve ownership of DSP IP 

core. Chapter 9 presents the experimental results of the proposed 

methodologies and compares them with their respective state-of-the-arts. 

Chapter 10 concludes the thesis and briefly discusses the future work.  
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Chapter 2 

State of the art 

This chapter discusses state-of-the-art related to the proposed methodologies 

presented in this thesis. The first section presents state-of-the-art on transient 

fault (TF) reliability. The second section presents approaches related to 

security of DSP IP cores. The third section presents state-of-the-art on NBTI 

stress analysis of DSP IP cores. The fourth section describes the objective of 

this thesis. The fifth section summarizes the contributions of this thesis.  

2.1. State of the art on transient fault security/tolerance of an IP core 

As discussed in previous chapter, a transient fault may occur due to particle 

strike. Reliability against transient fault can be achieved either through 

security (resiliency) or tolerance. A security mechanism aims to detect 

occurrence of transient fault in a circuit. However, it cannot prevent the impact 

of transient fault from affecting the correct functionality of the circuit. On the 

other hand, a tolerance mechanism aims to preserve correct functionality of 

the circuit. In other words, a tolerant IP core guarantees generation of correct 

output in the presence of transient fault. Whereas, a secure IP core only detects 

the occurrence of transient fault but cannot guarantee generation of correct 

output in presence of transient fault. 

State-of-art on transient fault security: methodologies for creating transient 

fault secured circuits can be designed at various levels of design abstractions. 

A few approaches such as [16], [17], and [18] consider transient fault security 

at behavioral level. However, none of these approaches provide simultaneous 

security against multi-cycle temporal and multi-unit spatial effect of transient 

fault.  

Multi-cycle transient fault security: The approaches presented in [16-18] 

have adopted a dual modular redundancy (DMR) based technique for 

detecting concurrent error due to transient fault. The primary motive of the 

DMR structure is to isolate the impact of the transient fault in one of the 

modules, such that the other unaffected module could produce correct output. 

Hence, when the outputs of two modules are compared, a difference indicates 
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the occurrence of transient fault in the device. However, there is no technique 

to identify which one of these two modules has produced the correct output. 

Hence, only detection is possible through DMR based approaches.  

The approach presented in [17] is more sophisticated than [16, 18]. This is 

because in [16, 18], at-least two-distinct hardware were required for ensuring 

security, which is not mandatory in [17]. The methodology presented in [17] 

ensures transient fault detection using a single hardware resource of a 

particular type. All these techniques consider only multi-cycle temporal effect 

of transient fault. However, they do not consider spatial effect of single event 

transient. 

Multi-unit transient fault security: Most approaches in the literature 

consider multiple event transient fault on memory. However, a few approaches 

such as [19, 20] consider effect of multiple transient fault at logic level. 

Nonetheless, these approaches do not consider security at behavioral level.  

The proposed approach presents a novel methodology to provide simultaneous 

security against multi-cycle temporal and multi-unit spatial effects of single 

event transient on DSP IP cores generated using high level synthesis.  

State-of-art on transient fault tolerance: 

Multi-cycle transient fault tolerance: There is only one work that presents a 

technique to create a multi-cycle transient fault tolerant design using high 

level synthesis [12]. However, it fails to provide either security or tolerance 

against spatial effect of transient fault. 

Multi-unit transient fault tolerance: There is no technique present in the 

literature to generate multi-unit TF tolerant design using high level synthesis. 

However, the techniques such as [19], [20] are present in the literature that 

only considers security (no tolerance) against multi-unit spatial effect of 

transient fault. The approaches [19], [20] do not consider multi-cycle temporal 

effect of TF. Further, these approaches do not take measures to reduce design 

overhead and are not applicable on loop-based applications. 

This thesis presents novel techniques for generating a low-cost DSP IP core 

that is simultaneously tolerant against multi-cycle temporal and multi-unit 
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spatial effect of single event transient for loop-based control intensive and 

non-loop based data intensive DSP applications. 

2.2. State of the art on security of IP core 

An IP core is vulnerable against several security threats such as IP piracy, IP 

overbuilding, false claim of ownership, Trojan insertion etc. To tackle these 

security threats, several approaches are present in the literature such as IP 

metering, structural obfuscation, functional obfuscation, etc. However, in this 

section, we only discuss the state-of-the-art approaches that are closely related 

to our proposed methodologies for ensuring security of IP cores i.e., functional 

obfuscation and hardware watermarking of DSP core. 

State-of-art on functional obfuscation: The aim of functional obfuscation is 

to protect an IP core from a malicious attacker present in the third-party 

fabrication facility. Functional obfuscation (a.k.a. functional locking) is a 

technique that locks an IP core by inserting locking units (such as logic gates, 

multiplexers/demultiplexers). Thereby, only the person who knows the valid 

key can unlock the IP core. The state-of-the-art functional obfuscation 

techniques are presented in [21], [22]. Authors of [21] and [22] have presented 

some novel attacks based on ‘key-sensitization’ technique. Subsequently, they 

have suggested few security features that can enhances resiliency against key-

sensitization based attacks.  

The proposed functional obfuscation methodology enhances resiliency against 

key-sensitization attacks with the help of novel locking units termed as ‘IP 

functional locking blocks (ILBs)’. The proposed ILBs are 8-key bit (per ILB) 

intertwined structures of many logic gates such as AND, NAND, NOT, XOR, 

XNOR, etc. On the other hand, function obfuscation technique of [21], [22] 

uses only XOR and/or XNOR gates as locking units (1-key bit per locking 

unit). The novel security features of the proposed ILBs enormously enhances 

resiliency against ‘key-sensitization’ attacks. Furthermore, the proposed 

approach integrates particle swarm optimization based design space 

exploration (PSO-DSE) framework for exploring low-cost functionally 

obfuscated design solution. However, no effort was made in [21] or [22] to 

obtain low-cost design solution. 
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State-of-art on ownership protection of DSP IP cores: digital watermarking 

based approaches (such as [13], [23]) were the state-of-the-art techniques to 

resolve ownership conflict of DSP IP core generated using high level 

synthesis. However, the security of a watermarked IP core can be breached 

using attacks such as signature tampering, reverse engineering etc. 

Furthermore, integral step of digital watermarking such as signature insertion 

can cause performance degradation, design overhead, etc. Hence, a more 

sophisticated signature-free methodology was required to resolve ownership of 

an IP core. The proposed computational forensics engineering (CFE) based 

methodology overcome these drawbacks as it does not depend on in-design 

based step such as signature insertion and there is no known attack on the 

proposed approach. 

2.3.  State of the art on NBTI stress analysis of DSP IP core 

NBTI stress is a physical phenomenon observed in PMOS transistors that 

partially contributes to natural aging of these transistors. There was no effort 

made in the literature to study and analyze the impact of aging on IP cores 

generated using high level synthesis. The proposed approach presents a novel 

methodology for analyzing the aging effect of NBTI stress on performance of 

DSP IP core generated using high level synthesis. The phenomenon of natural 

aging due to NBTI stress can be utilized to perform accelerated aging attack. 

An attacker can accelerate the natural aging process of a transistor by 

continuously applying NBTI stress when the device is in inactive usage (such 

as in standby mode). The aim of an attacker is to accelerated aging process of 

a device such that it fails within the warranty period [15]. The proposed 

methodology to analyze the natural aging of DSP IP core can further be 

utilized to detect the presence of accelerated aging attack on the IP cores 

generated using high level synthesis.   

2.4. Objective of the thesis 

The objective of the thesis is to develop novel methodologies for ensuring 

reliability and security of DSP IP core against specific hardware 

threats/concerns. To achieve this aim following objectives were set: 
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1. To develop a methodology for generating a DSP IP core that is 

simultaneously secure/resilient against multi-cycle temporal and multi-

unit spatial effect of transient fault. 

2. To develop a methodology for generating a low-cost DSP IP core that 

is simultaneously tolerant against multi-cycle temporal and multi-unit 

spatial effect of transient fault for data intensive applications. 

3. To develop a methodology for generating a low-cost DSP IP core that 

is simultaneously tolerant against multi-cycle temporal and multi-unit 

spatial effect of transient fault for loop-based control intensive 

applications. 

4. To develop a methodology for generating a low-cost, highly secure, 

functionally obfuscated DSP IP core. 

5. To develop a methodology for analyzing the aging effect of NBTI 

stress on performance of DSP IP core. 

6. To develop a methodology for resolving ownership conflict of DSP IP 

core. 

2.5. Summary of the contributions 

This thesis presents several novel methodologies for ensuring/enhancing 

reliability and security of DSP IP core. In order to advance the state-of-the-art, 

following contributions were made: 

 A novel methodology for generating a DSP IP core that is 

simultaneously resilient/secure against multi-cycle temporal and multi-

unit spatial effect of transient fault. (publications: J7, J10, B1, C1) 

- Proposes a novel security-aware floor-planning technique / rules 

for providing resiliency against multi-unit spatial effect of transient 

fault. 

- Proposes an integrated approach for providing security 

simultaneously against multi-cycle temporal and multi-unit spatial 

effect of transient fault. 

- Presents a novel cost function for evaluating cost of the design 

solution based on schedule latency, chip area and wire-length. 

 A novel methodology for generating a DSP IP core that is 

simultaneously tolerant against multi-cycle temporal and multi-unit 
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spatial effect of transient fault for data intensive applications. 

(publications: J1, B1) 

- Propose novel scheduling rules for generating multi-cycle transient 

fault tolerant triple modular redundant (TMR) schedule. 

- Propose novel tolerance-aware floor-planning rules for ensuring 

tolerance against multi-unit spatial effect of transient fault. 

- Integrates a particle swarm optimization based design space 

exploration (PSO-DSE) framework for exploring low-cost transient 

fault tolerant design solution for data intensive DSP applications. 

- Proposed methodology is applicable on data intensive DSP 

application. 

 A novel methodology for generating a DSP IP core that is 

simultaneously tolerant against multi-cycle temporal and multi-unit 

spatial effect of transient fault for loop-based control intensive 

applications. (publications: J8, B1) 

- Integrates a modified particle swarm optimization based design 

space exploration (PSO-DSE) framework for exploring low-cost 

design solution for loop-based control-intensive DSP applications. 

- Integrates a pre-processing technique for generating optimal 

unrolling factor for loop-based control-intensive DSP applications.  

 A novel methodology for generating a low-cost, highly secure, 

functionally obfuscated DSP IP core. (publications: J2, J3) 

- Proposes a novel Functional obfuscation methodology for 

obfuscating DSP IP cores. 

- Proposes a set of novel locking units termed as IP functional 

locking blocks (ILBs). 

- Presents security enhancing features/properties of proposed ILBs.  

- Integrates a modified PSO-DSE framework for exploring low-cost 

obfuscated design solution.  

- Presents a novel technique for insertion of proposed ILBs. 

- Security comparison of proposed approach with state-of-art 

approach, shows a minimum security enhancement of 4.29 e+9 

times for the tested benchmarks. 
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 A novel methodology for analyzing the aging effect of NBTI stress on 

performance of DSP IP core. (publications: J4, J6, C2) 

- Proposes a technique to identify input vector that causes maximum 

performance degradation due to NBTI stress on DSP IP core. 

- Proposes a methodology to analyze the effect of NBTI stress with 

respect to varying stress times on critical path delay of DSP cores. 

- Presents a performance comparison of stress v/s no-stress condition 

of DSP cores with respect to various input vector samples.  

- Presents a technique to predict the presence of accelerated aging 

attack on DSP IP core. 

 A novel computational forensic engineering methodology for resolving 

ownership conflict of DSP IP core generated using high level 

synthesis. (publications: J5, J9, C3) 

- Proposes a novel feature-set containing ten features that can be 

utilized for resolving ownership conflict of an IP core. 

- Proposes novel feature extraction rules/algorithms for each of the 

proposed features. 

- The proposed technique incurs zero-overhead, zero-performance 

degradation compared to watermarking based IP core protection 

(due to its signature independence). 
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Chapter 3 

Methodology for generating a DSP IP core - 

Simultaneously resilient/secure against multi-cycle 

temporal and multi-unit spatial effect of transient fault 

This chapter presents a novel methodology for detecting the presence of 

transient fault due to temporal and spatial effects of single event transient. The 

first section introduces the problem. The second section provides a detailed 

description of the proposed approach. Subsequently, the proposed 

methodology is illustrated with the help of a demonstrative example in third 

section. Further, the advantages and disadvantages of the proposed approach 

are presented in the fourth section and conclusions are drawn in the fifth 

section. 

3.1. Introduction 

As discussed in earlier chapters, a transient fault (TF) may occur when a 

particle with moderate energy strikes a circuit. A particle with linear energy 

transfer (LET) value more than critical charge can change the logic state of the 

affected node. An example of such a particle capable of causing transient fault 

is ‘α-particle’ (present in packaging material of an integrated circuit). In the 

past, the impact of a single particle strike was assumed (modelled) to be 

capable of affecting only a single node. However, as the technology scale 

reaches 130 nanometer range, it becomes evident that this assumption can no 

longer hold true for current and future technology scales [24-27]. In future, a 

single particle strike is more likely to affect more than one node placed 

adjacent to each other [27]. Additionally, if these nodes belong to different 

hardware units, then all these hardware units will produce faulty outputs. This 

spatial impact of transient fault on more than one hardware unit is termed as 

multi-unit transient fault (MTF). In our proposed approach, the worst-case 

spatial impact of transient fault is considered as ‘km-units’. The value of ‘km’ 

is estimated by the designer based on the environment in which the circuit will 

be deployed and fed as an input to the proposed approach. 
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In a manner similar to the spatial effect, the temporal effect of a single event 

transient is expected to last for multiple clock cycles [12, 17, 24]. This is due 

to factors such as input voltage scaling, increasing frequency of the devices, 

etc. This temporal effect of transient fault is termed as multi-cycle transient 

fault (MCT). In the proposed approach, the worst-case temporal effect of 

transient fault is considered as ‘kc-cycles’. The value of ‘kc’ is estimated by 

the designer and fed as an input to the proposed methodology. 

Moreover, as the technology scaling continues and the demand for smaller and 

faster devices increases, the design complexity has also increased. Therefore, 

to reduce the effort required to design complex circuits, many designers have 

moved to higher level of design abstraction such as architectural (a.k.a. 

behavioral / high) level [3-6]. Hence, novel methodologies are required at 

architectural level to identify the presence of temporal and spatial effect of 

transient fault. The proposed approach presents a novel methodology that 

integrates ‘high level synthesis (HLS)’ and ‘physical design’ frameworks for 

generating a DSP IP core that is simultaneously resilient/secure against multi-

cycle temporal and multi-unit spatial effects of transient fault. 

3.2. Proposed approach 

This section provides a detailed description of our proposed methodology.    

3.2.1. Problem formulation 

Given a DSP application in the form of data flow graph (DFG) along with 

module library, strength of multi-cycle transient fault (kc-cycles), strength of 

Fig.3.1. Overview of proposed transient fault security approach 

Transient Fault Secured Block 

Block for generating kc-cycle transient fault 

resilient design using DMR Scheduling (during 

HLS) 

Block for generating km-unit transient fault 

resilient design using Physical Floorplanning 

List L[k] of hardware modules 

kc-cycle & km-unit transient fault resilient 

design 

Latency of DMR schedule 

Area of Enveloping Rectangle  

and Wirelength 

 
Transient fault strength in 

temporal domain (kc) 

 Transient fault strength in 

spatial domain (km) 

 
CDFG/ DFG 

 

 

Module Library/ Resource 

constraint 

 

 

 

Input Block 



17 

multi-unit transient fault (km-units), user-provided resource constraint Xi, 

generate a kc-cycle and km-unit transient fault resilient design.  

3.2.2. Overview of proposed methodology 

As discussed earlier, in future technologies, transient fault occurring due to 

radiation strike can last for multiple cycles as well as can affect multiple 

hardware units placed in the neighborhood of the affected unit (node). Hence, 

it is necessary for future technologies to consider both the temporal and spatial 

effect of transient fault during the creation of transient fault resilient (secured) 

design. A single particle strike could simultaneously cause multi-cycle and 

multi-unit transient faults. However, as MCT affects in temporal domain and 

MTF affects in spatial domain. Therefore, domain specific independent 

techniques are required to detect the effect of transient fault in their respective 

domains. As shown in fig.3.1, the proposed approach integrates multi-cycle 

transient fault resilient ‘high level synthesis’ framework with a novel multi-

unit TF resilient ‘physical design’ framework to generate a simultaneously 

MCT and MTF resilient DSP IP core design. 

A detailed flow diagram of the proposed approach is shown in fig.3.2. In the 

initial step of proposed approach, a dual modular redundant (DMR) system is 

created by duplicating all the operations of DFG application. Subsequently, 
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these operations are concurrently scheduled based on the user specified 

resource constraint (Xi). The scheduled DFG (SDFG) thus obtained, along 

with the strength of multi-cycle transient fault (kc-cycles) are fed into a multi-

cycle transient fault resiliency algorithm (adopted from [28, 17]) to obtain a 

kc-cycle transient fault resilient SDFG DMR. The schedule latency of kc-

cycle resilient design is extracted and stored for cost/fitness evaluation in the 

future. Once temporal resiliency is achieved, the MCT resilient design along 

with strength of multi-unit TF (km-units) are fed into spatial resiliency 

framework. In the first step of spatial resiliency framework, a list ‘L[k]’ of 

hardware modules comprising of functional units, multiplexers/demultiplexers 

units etc. is generated. Subsequently, a physical level floorplan ([70]) is 

generated based the proposed km-unit transient fault resiliency rules. Further, 

global routing of modules is performed based on which wirelength is 

estimated. Subsequently, wirelength and rectangular chip area of the km-unit 

transient fault tolerant floorplan along with schedule delay (stored earlier) are 

utilized for evaluating the cost of the generated design solution as discussed in 

section 3.2.6. The upcoming sections 3.2.3 and 3.2.4 will discuss framework 

for multi-cycle and multi-unit resiliency respectively. 

3.2.3. Methodology for generating a kc-cycle transient fault resilient 

design 

This section provides a detailed description of the methodology for designing 

kc-cycle fault resilient SDFG DMR (adopted from [28, 17]). The MCT 

resiliency algorithm takes resource constraints (Xi), DFG application, strength 

of MCT (kc-cycles) and module library as inputs and produces a kc-cycle 

transient fault resilient DMR schedule. The initial step of resiliency algorithm 

is to create a DMR system by duplicating all the operations of original (input) 

DFG as duplicate DFG. The DMR system thus created has original unit (O
U
) 

and duplicate unit (D
U
) as shown in fig 3.3. In the next step, both O

U
 and D

U
 

are concurrently scheduled (a step of HLS) based on list scheduling algorithm 

and the user specified resource constraints Xi. Once scheduled DMR system is 

generated, the hardware allocation of both the units (O
U
 and D

U
) is performed 

based on the following fault resiliency conditions as stated below: 

i. Allocate opn (v) ∈ O
U
 and opn (v′) ∈ D

U
 to distinct operators 

(hardware units) based on availability. 
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ii. If unavailable, then:  

Keep same assignment for v′ (as v) in D
U
 such that: 

t(v') – t(v) ≥ kc                (3.1) 

iii. If the above condition (Eq. (3.1)) is false, then: 

Push v′ (and its successors) ∈ D
U
 one CS below until Eq. (3.1) is 

true.  

Hardware allocation of duplication unit’s operations without obeying 

conditions (i), (ii) or (iii) may result in transient fault hazards (TFH) between 

similar operations of O
U
 and D

U
. In other words, TFH occurs if: 

t(v') – t(v) ≤ kc; where (v) ∈ O
U
 and (v′) ∈ D

U
             (3.2) 

The TFHs are resolved by pushing the affected operation of the duplicate unit 

(along with its successors) in later control steps. The pushing of operations 

ensures that the time interval between v and v′ is greater than (or equals to) kc-

cycles [28]. Hence, the temporal effect of transient fault will remain isolated in 

the affected module. Therefore, when a single event transient will cause a fault 

in one of the modules, other module will produce correct output. Thus, 

difference between the output of original unit and duplicate unit will indicate 

presence of transient fault in a DSP IP core. The outputs of the O
U
 and D

U
 are 

compared with the help of a special circuit as discussed in the upcoming sub-

section. 

Protecting the guard in DMR schedule 

As shown in fig. 3.3, error detection block comprises of two stages. In the first 

stage, outputs of the original & duplicate units of the scheduled DMR are fed 

into three comparators (C1, C2 & C3). In the second stage, the output of the 

comparators C1, C2 & C3 are subsequently fed to a voter (V). This multi-

Original unit Duplicate unit 

Comparator 

(C1) 

Comparator 

(C2) 

Comparator 

(C3) 

Voter (V) 

Stage 1 

Stage 2 

Fig.3.3. Protecting the guard: Error-detection block 

Error-detection block 

DMR system 
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stage setup (adopted from [29]) protects the transient fault resilient design 

against a possible vulnerability of transient fault due to a particle strike on the 

comparator.  

The transient fault can affect the comparator(s) in two possible scenarios: (a) 

faulty comparator & fault in hardware of original unit or duplicate unit: In 

this scenario, any two faultless comparators will produce logic ‘1’ as output 

indicating difference in outputs of original and duplicate unit. On the contrary, 

the faulty comparator will yield a logic ‘0’ indicating no difference in output 

of O
U
 and D

U
. Therefore, when the outputs of these three comparators are fed 

into voter, a logic ‘1’ will be produced at voter output thereby, indicating 

presence of transient fault in the DMR system. (b) faulty comparator & no 

fault in hardware original or duplicate: In this scenario, two faultless 

comparators will produce logic ‘0’ as output indicating no difference in 

outputs of O
U
 and D

U
 while faulty comparator will produce logic ‘1’ 

indicating a difference in outputs of O
U
 and D

U
. Therefore, when the outputs 

of three comparators are fed into voter, a logic ‘0’ will be produced at voter 

output thereby, indicating no occurrence of transient fault in the DMR system. 

Both the scenario shows that the multi-stage setup will always detect the 

presence of the transient fault in the circuit even if the particle strike affects a 

comparator. Further, note that the voter adopted in our proposed approach is 

tolerant against temporal effect of transient fault [30]. 

3.2.4. Methodology for generating a km-unit transient fault resilient 

design 

The proposed algorithm takes kc-cycle transient fault resilient schedule and 

obtain the list ‘L[k]’ of hardware modules (functional units, interconnect units 

etc.). The hardware module list L[k], along with strength of multi-unit 

transient fault (km) are fed as input to the proposed km-resiliency algorithm. 

Subsequently, the hardware modules present in the L[k] are placed based on 

the proposed resiliency/security aware floorplanning rules:  

1. Select a pair of sister operations (v & v′) in kc-cycle resilient SDFG DMR. 

2. Find corresponding sister hardware functional modules (Mv & Mv′) 

assigned to sister operations in DMR SDFG. 
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3. Place sister hardware modules in a floorplan such that they are at least km 

units apart i.e. S(Mv′) ≥ S(Mv) + km; where S(Mv′) and S(Mv) are the 

starting point of placement of modules Mv & Mv′ along x-axis or y-axis 

(spatial domain) in a floorplan. 

4. Repeat steps 2–3 for all remaining pair of sister operations present in the 

kc-cycle resilient DMR SDFG. 

The aim of the proposed floorplanning rules is to isolate spatial effect of 

transient fault within a single module of the DMR system. To this end, FP 

rules ensures that any pair of functional modules allocated to sister operations 

are bi-directionally placed at least km units apart from each other in a 

floorplan. This is because, if functional modules allocated to sister operations 

are bi-directionally placed within km units, then the spatial effect of transient 

fault due to a potential radiation strike may affect both the units similarly. In 

such a scenario, both O
U
 and D

U
 will produce same erroneous output 

(concurrent error). Therefore, error detection block will not be able to 

(distinguish between the output of O
U
 and D

U
) detect fault. Thus, proposed 

floorplanning rules ensures a minimum bi-directional distance of km units 

between functional units allocated to sister operations. 

 In our proposed methodology, the strength of multiple transient fault is 

considered in terms of km-units. Where 1 unit = 0.768 μm has been assumed 

based on sample values of MTF (in nanometer range) presented in [19,31]. the 

strength of multiple transient fault (km) represents the worst possible impact 

 

Operation 
of UOG 

Operation 
of UDP 

Corr. H/w of 
UOG 

Corr. H/w 
of UDP 

1 1’ M1 M2 

2 2’ M2 M1 

3 3’ M1 M2 

4 4’ A1 A2 

5 5’ A1 A2 

6 6’ M2 M1 

7 7’ A1 A2 

8 8’ M1 M2 

9 9’ A1 A2 

10 10’ C1 C2 

 

Table 3.1 Conflict details of sister operations in 2-cycle 

transient fault resilient SDFG DMR of IIR 
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of MTF provided to the designer as an input. For the purpose of demonstration 

km = 4 is assumed. However, our proposed algorithm is applicable for any 

value of km. In practical scenario, the km value depends on the expected 

energy of the particle. (Note: in our approach we have assumed spatial impact 

of transient fault between functional units such as adders, multipliers, etc. but 

not on multiplexers / demultiplexers)  

3.2.5. Wirelength estimation 

Once kc-cycle and km-unit transient fault resilient floorplan is generated, 

wirelength is estimated as per the following equation. 

dijcijW
ji

FP 
,

 
     (3.3) 

Where cij is connectivity between hardware units i & j and dij is Manhattan 

distance between center of rectangles i & j. For evaluating Manhattan 

distance, the I/O connectivity is assumed to be at the center of each module. 

3.2.6. Cost evaluation 

In prosed approach, cost is evaluated as the normalized weighted sum of 

wirelength, chip area (enveloping rectangular area), and latency as shown by 

the following equation: 

FP

FP

FP

FP

DMR

DMR

if
W

W

A

A

L

L
XC

maxmax

2

max

1 3)(         (3.4) 

Where, Cf (Xi), is the cost/fitness function of transient fault resilient design 

+ 
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Fig.3.4. A dual modular redundant system of IIR Filter 
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based on resource constraint Xi; φ1 = φ2 = φ3 are the user specified weights 

of schedule latency, floorplan chip area and floorplan wirelength respectively. 

Equal weightage is assumed for φ1 = φ2 = φ3 = 0.333. L
DMR

 = latency of kc-

cycle transient fault resilient DMR schedule, based on user provided resource 

constraint Xi; Lmax
DMR

 = latency of kc-cycle transient fault resilient DMR 

schedule, based on maximum resources available for each type in the design 

space; A
FP 

= floorplan chip area of km-unit TF resilient floorplan based on user 

provided resource constraints; Amax
FP

 = floorplan chip area of km-unit multiple 

transient fault resilient floorplan based on maximum number of resources in 

the design space; W
FP

 = wirelength of FP based on user provided resource 

constraints; Wmax
FP

 = wirelength of FP based on maximum number of 

resources in the design space. 

3.3. Demonstrative example 
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This section provides a detailed description of the proposed approach with the 

help of an example of IIR filter benchmark. In demonstrative example, 

strength of multi-cycle and multi-unit transient faults are assumed to be kc=2 

cycles and km=4 units (where, 1 unit=768 nm) respectively. Further, in the 
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demonstrative example 1 cycle or control step is equal to 100 ps. In the initial 

step of proposed approach, a DMR system is created by duplicating all the 

operations of original DFG application as duplicate unit D
U
 as demonstrated 

with IIR benchmark shown in fig. 3.4. Subsequently, scheduling (using list 
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scheduling algorithm) of the DMR system is performed based on user 

specified resource constraints Xi = (2A, 2M). Once Scheduled DMR system is 

generated proposed kc-cycle transient fault resilience rules are applied to 

generate 2-cycle transient fault resilient design as shown in fig. 3.5. 
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2-cycle transient fault resilient SDFG of IIR (2A, 2M) 
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The kc-cycle transient fault tolerant design thus obtained is used to create a list 

of hardware modules L[k]. The list L[k] of the SDFG DMR thus obtained is 

L[k] = {(Adders: A1, A2), (Comparator: C1, C2, C3), (Multipliers: M1, M2), 

(2:1MUX: m01, m02), (4:1MUX: m11, m12), (8:1MUX:m03,m13,m04,m14), 

(demux1:4:d1,d2), (demux1:8: d3,d4) } 

After list L[k] is created, a table comprising of conflicting hardware resources 

(hardware resources allocated to sister operations within kc control steps) is 

generated as shown by table 1. Subsequently, the hardware modules are 

floorplanned based on the proposed km-unit transient fault resilient 

floorplanning rules discussed in section 3.2.4. (Note that the geometric 

dimensions of the modules based on NanGate 15 nm open source technology 

library [31] are shown in table 2.) For example, consider a pair of conflicting 

hardware M1 and M2 allocated to operation 1 and 1’ respectively (within kc-

cycles). Hence, to avoid transient fault impacting both the operations 1 and 1’, 

hardware modules M1 and M2 must be placed at least km-units apart from 

each other. Hence, as shown in fig. 3.6, M1 and M2 are placed km=4 units 

distance apart from each other. Similarly, other conflicting hardware modules 

are placed. The floorplan thus obtained is km-unit & kc-cycles transient fault 

resilient. On the contrary, fig. 3.7 shows the non-resilient floorplan. In this 

normal floorplan hardware modules M1 and M2 are placed adjacent to each 

 
Module name Height width 

 nm units nm units 

Multiplier 6144 8 3072 4 

Adder 1536 2 768 1 

Comparator 4480 5.75 768 1 

Subtractor 1792 2.25 768 1 

2:1 MUX 832 1 768 1 

4:1 MUX 2496 3.25 768 1 

8:1 MUX 5824 7.5 768 1 

16:1 MUX 12480 16.25 768 1 

32:1 MUX 25792 33.5 768 1 

1:2 demux 960 1.25 768 1 

1:4 demux 2880 3.75 768 1 

1:8 demux 6720 8.75 768 1 

1:16 demux 14400 18.75 768 1 

1:32 demux 29760 38.75 768 1 

 

Table 3.2. Library details based on 15nm NanGate 
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other. Hence, in such a design although kc-cycle (temporal) resiliency is 

achieved. However, the design is still vulnerable to spatial effect of transient 

fault. Therefore, to ensure complete resiliency against transient faults, it is 

mandatory that the resiliency is provided against both the temporal as well as 

spatial effect of single event transient (SET). The proposed approach ensures 

resiliency against both temporal and spatial effects of SET. 

3.4. Advantages and disadvantages of proposed approach at 

behavioral level 

3.4.1. Advantages 

(i) Offers lower implementation runtime than existing fault secured 

approaches at lower level. 

(ii) Offers greater reliability (i.e. temporal & spatial transient fault aware 

digital design synthesis flow) than lower level techniques. 

(iii) Offers automated generation of multiple alternative hardware 

implementations that are simultaneously resilient against multi-cycle 

and multi-transient fault compared to lower level techniques. 

(iv) Offers flexibility to design resilient digital systems against any kc-

cycle and km-unit transient fault as per user requirement compared to 

lower level techniques where specification of worst case transient fault 

range (strength) may not be possible as input. 

3.4.2. Disadvantages 

(i) Area, power and delay overhead may be larger compared to lower 

level techniques. 

(ii) Lower level interconnection/wirelength/datapath details are not 

available much at behavioral level which makes solution cost 

evaluation complicated. 

3.5. Summary 

The proposed methodology is the first approach in the literature that 

simultaneously consider temporal and spatial effects of transient fault. It 

integrates ‘high level synthesis’ and ‘physical design’ frameworks for 

providing security/resilience against multi-cycle temporal and multi-unit 

spatial effects of transient fault. Further, the proposed approach presents novel 
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security-aware floor-planning rules for providing resiliency against multi-unit 

spatial effect of transient fault. Additionally, the proposed approach presents a 

novel cost function for evaluating cost of the design solution based on 

schedule latency, chip area and wire-length. By virtue of these novel 

contributions the proposed approach can generate a DSP IP core that is 

simultaneously resilient against multi-cycle temporal and multi-unit spatial 

effects of transient fault. 
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Chapter 4 

Methodology for generating a low-cost DSP IP core 

that is simultaneously tolerant against multi-cycle 

temporal and multi-unit spatial effects of transient 

fault for data intensive applications 

This chapter presents the proposed approach to generate a DSP IP core that 

will produce correct output even on the occurrence of transient fault. The first 

section introduces the problem. The second section presents a brief overview 

of the proposed methodology. The third, fourth and fifth section describes the 

major blocks of the proposed approach. The sixth section summarize the major 

contributions of the proposed approach. 

4.1. Introduction 

As discussed in preceding chapters, radiation induced transient fault in digital 

systems has become a major reliability concern. Although, detection of 

transient faults can be sufficient in many applications. However, only 

detection of transient fault is not enough for mission-critical applications. Due 

to criticality of the application, it is mandatory to ensure that correct output is 

generated even on the occurrence of transient fault. 

For instance, consider mission-critical application such as aircraft control 

system. The aircraft control system comprises of important sub-systems such 

as computers (involving processors), sensors and actuators.  The criticality of 

these control systems mandates ensuring correct operation of processing cores 

such as application specific processing (ASPs) cores or integrated circuits 

(ASICs) even on the occurrence of transient fault. Moreover, due to typical 

working environment of aircrafts, they remain exposed to radiations that may 

result into transient faults. Further, due to demand of high operational speeds 

(high frequency), low area, low power application specific processors in the 

aerospace systems. The chances of temporal effect of transient fault lasting for 

multiple cycles has increased manifold. Similarly, the chances of spatial effect 

of transient fault affecting multiple units placed in the neighborhood has also 

increased. Hence, it is mandatory to consider both the temporal as well as 
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spatial impact of transient fault while designing applications for mission-

critical systems. 

The proposed approach presents a novel methodology for generating a ‘low 

cost optimized transient fault tolerant hardware against multi-cycle (temporal) 

and multi-unit (spatial) effect of transient fault for data-intensive digital signal 

processing (DSP) applications’. 

4.2. Proposed approach 

This section provides a brief overview of our proposed methodology.  

4.2.1. Problem formulation 

Given a data intensives DSP application in the form of data flow graph (DFG) 

along with module library, strength of multi-cycle transient fault (kc), strength 

of multi-unit transient fault (km), as inputs, generate a kc-cycle and km-unit 

transient fault tolerant low-cost design solution as output.  

4.2.2. Overview of proposed methodology 

As shown in fig 4.1, the proposed methodology comprises of three major 

components. The first component particle swarm optimization-based design 

space exploration (PSO-DSE) is primarily responsible for generating low-cost 

design solution. The second component is responsible for providing tolerance 

against temporal effect of transient fault. The third and the last component 

provides tolerance against spatial effect of transient fault.  
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As shown in fig.4.2, The first step of proposed approach is to initialize the 

particle swarm [32, 33]. Subsequently, cost along with PSO-DSE parameters 

such as velocity, local best and global best are initialized. Afterwards, for each 

particle of the swarm, a triple modular redundant (TMR) system is created, 

and the proposed kc-cycle transient fault tolerant rules are applied to obtain 

kc-cycle transient fault tolerant schedule. The latency of the schedule thus 

generated, is stored for cost evaluation. Subsequently, a list of conflicting 

hardware is created, and proposed km-unit fault tolerant design rules are 

applied to obtain km-unit transient fault tolerant floorplan. The overall system 

thus generated is kc-cycle and km-unit transient fault tolerant design. The 

rectangular floorplan (chip) area thus obtained is stored for cost evaluation. 

Further, the cost of the transient fault tolerant design is evaluated and PSO-

DSE parameters (local best, global best, velocity, particle’s position) are 

updated. The process is repeated till one of the PSO-DSE termination criteria 

is met [33,32]. The optimal design solution thus explored is the low-cost kc-

cycle and km-unit transient fault tolerant design solution. 

PSO-DSE block 

Tolerance against spatial effect 

(km) of transient fault 

Proposed approach 

Spatial (km) & temporal (kc) fault tolerant 

low cost design solution 

Fig.4.1. Overview of proposed TF tolerant approach for data 

intensive applications 
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The upcoming sections describe major components of proposed methodology 

in detail.  

4.3. Proposed Methodology for generating a kc-cycle transient 

fault tolerant design 

This section provides a detailed description of the proposed methodology for 

designing kc-cycle transient fault tolerant scheduled DFG (SDFG) TMR 

system. The aim of the proposed methodology is to isolate the impact of 

transient fault in any one of the three modules (copy) of the TMR system such 

that remaining two modules (copies) should function correctly even in the 

presence of transient fault. Hence, when a voter is applied to the TMR system 

then voter will always vote-in the correct output.  

The proposed algorithm takes resource constraints (Xi), DFG application, 

strength of multi-cycle transient fault (kc) and module library as inputs and 

produces a kc-cycle transient fault tolerant TMR schedule. The initial step of 

proposed approach is to create a triple module redundant system by copying 

all the operations of original (input) DFG (O
C
) as duplicate copy (D

C
) and 

triplicate copy (T
C
) as shown in fig 4.3. Subsequently, scheduling and 

allocation of TMR system is performed based on resource constraints (particle 

position Xi, produced from PSO-DSE block) using the proposed kc-cycle 

transient fault tolerant scheduling and allocation rules.  

The temporal effect of transient fault may cause hardware conflicts during 

scheduling and allocation. The hardware conflict arises when a hardware 

resource allocated to an operation of a copy is re-allocated to another 

operation of its cloned copies within kc-cycles. The proposed kc-cycle 

transient fault tolerant scheduling and allocation rules to resolve these 

hardware conflicts are:  

a. Hardware resource (R) allocated to an operation of a copy can be re-

allocated to an operation of the same copy within kc control steps 

(cycles). 

b. Shift operation of a copy if no hardware resource can be allocated 

without conflicts. Thus, allocations are made based on the following: 
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i. Resource ‘R’ allocated to an operation of O
C
 (v ∈ O

C
) can be re-

allocated to an operation of D
C
 (v’ ∈ D

C
) or an operation of T

C
 (v’’ ∈ 

T
C
) only after a distance of kc control steps (cycles). 

i.e.  t(v’)-t(v)> kc, and 

t(v’’)-t(v)> kc 

ii. Resource ‘R’ allocated to an operation of D
C
 (v’ ∈ D

C
) can be re-

allocated to an operation of O
C
 (v ∈ O

C
) or an operation of T

C
 (v’’ ∈ 

T
C
) only after a distance of kc control steps (cycles). 

i.e.  t(v)-t(v’)> kc, and 

t(v’’)-t(v’)> kc 

iii. Resource ‘R’ allocated to an operation of T
C
 (v’’ ∈ T

C
) can be re-

allocated to an operation of O
C
 (v ∈ O

C
) or an operation of D

C
 (v’ ∈ 

D
C
) only after a distance of kc control steps (cycles). 

i.e.  t(v)-t(v’’)> kc, and 

t(v’)-t(v’’)> kc 

Proposed scheduling and allocation rules ensure fault isolation within a single 

copy i.e., a single particle strike causing transient fault in a copy (O
C
, D

C
 or 

T
C
) of the TMR system will not affect the remaining two copies. Hence, even 

in the presence of (temporal effect of) transient fault due to a single particle 

strike, two copies will always produce correct output thus voter will ensure 

correct output is always produced as final output of the TMR system. The 

delay of the kc-cycle transient fault tolerant design thus generated is stored for 

future utilization during cost evaluation.  

4.3.1 Demonstrative example of proposed methodology for generating a 

kc-cycle transient fault tolerant design 

This section illustrates proposed kc-cycle transient fault tolerant scheduling 

and allocation rules with the help of an example of DWT DFG benchmark. 

For the demonstrative purpose, the realistic delay value of one control step is 

taken as 100 ps [24]. Further the values of area and delay of hardware 

resources are based on 15nm technology open source NanGate library [31]. 

Additionally, for demonstrative purpose strength of transient fault is assumed 

to be (kc =) 4 control steps/cycles (equivalent to 400 ps) as adopted from [24]. 
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However, note that the proposed approach is applicable for any other kc 

values. 

Fig. 4.3 shows a basic TMR system of DWT benchmark. The proposed kc-

cycle transient fault tolerant scheduling and allocation rules are applied on the 

TMR system to obtain a 4-cycle transient fault tolerant scheduling based on 

particle  
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position Xi = {3A, 2M} as shown in fig.4.4. The proposed rule ‘a’ permits a 

hardware resource allocated in pervious control steps to an operation of a copy 

to be re-allocated within kc cycles to another operation of same copy. This is 

because fault affected hardware will perform operations of same copy within 

kc cycles, hence fault will remain isolated in the same copy and will not 

propagate to other copies. Further, it results in better hardware resource 

utilization leading to reduction in delay of the scheduled DFG. Thus, fault 

isolation within the same copy is ensured as long as rules b is also satisfied. 

For example, rule ‘a’ permits hardware M1 allocated to opn 1 (of O
C
) to be re-

allocated to opn 3 of the same copy within kc-control steps/cycles. As per 

proposed rule ‘b’, opn 1’ of D
C
 has been shifted to CS7 since no allocation 

was possible due to hardware conflicts. Further as per rule b i., hardware 

resource A1 allocated to opn 17 of O
C
 at CS10 is re-allocated to opn 14’ (of 

D
C
) at CS15 only after 4 cycles (control steps). Similarly, M1 allocated to opn 

15 of O
C
 at CS8 is re-allocated to operation 1’’ of T

C
 at CS13 only after 4-

cycles. Additionally, according to rule b.ii., hardware A2 allocated to opn 9’ 

can only be re-allocated to opn 9’’ (of T
C
) in CS 18 after 4 cycles. Further, 

according to rule b.iii., M1 allocated to operation 1’’ (of T
C
) could only be re-

allocated to an operation of D
C
 or O

C
 after 4 cycles. Thus, M1 allocated to 1’’ 

could not be re-allocated to 13’ or 15’.  

4.4. Proposed Methodology for generating a km-unit transient 

fault tolerant design 

The proposed methodology for generating a km-unit transient fault tolerant 

design takes kc-cycle fault tolerant TMR system along with strength of spatial 

effect of transient fault (km) as input and generates kc-cycles & km-unit fault 

tolerant floorplan as output. 

The proposed methodology considers spatial effect of transient fault in term of 

hardware conflicts. A hardware conflict due to spatial effect occurs when a 

hardware resource allocated to an operation of a copy is placed within km-unit 

distance to any hardware resource allocated to an operation of remaining two 

copies within kc-CS (cycles). In such a scenario if two hardware resources 

allocated to different copies are placed less than km-unit to each other then, 
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fault may propagate from one copy to another due to spatial effect of transient 

fault. Hence, more than one copy will generate incorrect output leading to 

incorrect output by voter. Therefore, resolving hardware conflicts due to 

spatial effect of transient fault is important to provide complete tolerance 

against transient faults. (Note that the voter utilized in the proposed approach 

is transient fault tolerant [30]). 

As shown in fig. 4.5, the first step of proposed methodology is to obtain list of 

all hardware resources [Ri] present in kc-cycle fault tolerant design. In the 

next step, a list of conflicting hardware (𝑍𝑅𝑖
[𝑅𝑗]) due to spatial effect of 

transient fault is generated for all the resources present in the list [Ri]. 

Subsequently, the hardware resources are placed during floorplanning such 

that each resource Ri is placed at least km-unit distance apart from its 

conflicting resources Rj.  These steps are repeated till all the resources are 

placed. The floorplan thus obtained is kc-cycle and km-unit transient fault 

tolerant floorplan.  

4.4.1 Demonstrative example of proposed methodology for generating a 

km-unit transient fault tolerant floorplan 

This section illustrates proposed km-unit transient fault tolerant methodology 

with the help of an example of DWT DFG benchmark. In the initial step, list 

of all hardware resource is obtained from 4-cycle transient fault tolerant TMR 

system (discussed earlier in section 3.2.4) as L[R] = {M1, M2, A1, A2, A3}. 

Subsequently, for each of the hardware resources, list of conflicting hardware 

is created. For instance, consider hardware resource M1, the M1 allocated to 

an operation 1 of OC at CS 1 will be in conflict with all the hardware allocated 

to any operation of DC or TC within kc = 4 cycles. However, there is no other 

Obtain a list 𝑳[𝑹𝒊] of all hardware resource (𝑹𝒊) from kc-cycle fault 

tolerant SDFG  

(where i=1,2,.., n.) 

Obtain list of conflicting hardware resources (𝑍𝑅𝑖
[𝑅𝑗]) for each element of 

[𝑅𝑖] . 

Place each element of 𝐿[𝑅𝑖] such that it is at least km-unit distance apart 

from each of its conflicting hardware listed in 𝑍𝑅𝑖
[𝑅𝑗] . 

 
Repeat until 𝐿[𝑅𝑖] ≠ ∅. 

Fig.4.5 Proposed km-unit transient fault tolerant 

floorplanning rules 
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operation of DC or TC scheduled till CS5. Hence, for M1 allocated to 

operation 1 of OC there is no conflict. Similarly, M1 allocated to opn 3 at CS2 

has no conflict. However, M1 allocated to opn 5 of OC at CS3 conflicts with 

M2 allocated to opn 1’ of DC. likewise, M1 allocated to opn 11 at CS4 

conflicts with M2 and A2 allocated to opn 1’ and 6’ of DC respectively. 

Similarly, other conflicts of resource M1 is evaluated and the list of 

conflicting hardware of resource M1 thus obtained is 𝑍𝑀1[𝑅𝑗] = {𝑀2, 𝐴1, 𝐴2}. In 

similar manner list of all conflicting hardware is obtained. Subsequently, in 

the third and final step of the proposed km-unit transient fault tolerant 

approach, the conflicting hardware are placed at least km-unit (=4) 

bidirectional distance apart from each other. For example consider the list of 

conflicting hardware of M1 :  𝑍𝑀1[𝑅𝑗] = {𝑀2, 𝐴1, 𝐴2} and A3 : 𝑍𝐴3[𝑅𝑗] =

{𝑀2, 𝐴1, 𝐴2} . Since both the conflicting list does not contain A3, or M1 

respectively. Hence, both M1 and A3 can be placed adjacent to each other as 

shown in fig.4.7. Similarly, as list of M1 contain A2 hence M1 and M2 are 

placed at least km=4 unit distance apart from each other. 

On the contrary, in case of spatially non-tolerant floorplan all the hardware 

resources are compactly placed as shown in fig.4.6. Although, such a floorplan 

has lesser area compared to proposed approach, it is vulnerable to spatial 

M1 

M2 

A
2 

A
1 V

1 

A
3 

2
  

8
 u

n
it

s 

3
1

.2
5

 u
n

it
s 

13 units 

AREA = 406.25 Sq. units 

Fig.4.7. kc=4 and km=4 fault-tolerant 

floorplan of DWT benchmark  

8
 u

n
it

s 

4 units 

4 units 

4 units 

6
 u

n
it

s 

A1 

A2 
M1 M2 

A3 

2
 u

n
it

s 
ea

ch
 

8
 u

n
it

s 

9 units 

AREA = 72 Sq. units 

4 units 

Fig.4.6. Non-tolerant Floorplan 

of DWT benchmark  



40 

effect of transient fault. The main crux of the proposed approach is to provide 

tolerance against temporal as well as spatial effect of the transient fault. 

Additionally, the proposed approach reduces the impact of area overhead by 

exploring low-cost design solution with the help of PSO-DSE framework.  

4.5. PSO-DSE framework for generating low-cost kc-cycle and 

km-unit transient fault tolerant design 

This section provides a detailed description of particle swarm optimization 

based design space exploration PSO-DSE framework [32, 33]. The PSO-DSE 

framework comprises of four major steps as follows: 

4.5.1 Particle encoding and swarm initialization 

In the initial step of the PSO-DSE framework, particles of the swarm (Pi) are 

encoded as Xi = {NR1, NR2, …, NRD} where Xi denotes position of i
th

 particle 

in the design space, NRD represents the number of resources of type RD in the 

D
th

 dimension of the design space[32, 33]. Each particle of the swarm 

represents number of hardware resources utilized for generating transient fault 

tolerant design solutions. Subsequently, particles are initialized in the design 

space. The first three particles (P1, P2 and P3) are initialized as: 

X1={min(R1), min(R2), … , min(RD)} 

X2={max(R1), max(R2), … , max(RD)} 

X3={[min(R1) + max(R1)]/2, … , [min(RD) + max(RD)]/2}  

Representing minimum, maximum, and middle positions of the design space. 

Hence, ensuring good coverage of design space. Afterwards, the remaining 

particles (Pi) are initialized as: 

Xi={[min(R1) + max(R1)]/2 ± 𝛼, … , [min(RD) + max(RD)]/2  ± 𝛼}  

Where, min(RD) and max(RD) denotes minimum and maximum resource in 

D
th

 dimension respectively. 𝛼 is a random integer between the min(RD) and 

max (RD).  

4.5.2 Fitness / cost evaluation 

Each particle’s position in the design space represent the number of hardware 

resources utilized for generating kc-cycle and km-unit transient fault tolerant 
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design solution. Based on the varying resource configuration (particle 

position) fault tolerant design solutions are generated and evaluated for 

analyzing fitness based on the following cost function.  

FTA

FTA

FTL

FTL

iXfC

max
2

max
1)(  

 

(4.1) 

where Cf (Xi) represents the cost/fitness of fault tolerant design solution based 

on the (resource configuration) particle position Xi, 1 and 2 are weightage 

of schedule latency and area of floorplan respectively. L
FT

 is the latency of 

transient fault tolerant design, Lmax
FT

 is the maximum latency of transient fault 

tolerant design solution in the design space (derived using minimum number 

of hardware resources), A
FT

 is the enveloping floorplan chip area of the fault 

tolerant design solution, Amax
FT

 is the maximum floorplan area of the transient 

fault tolerant design (derived using maximum number of hardware resources).  

4.5.3 Updating local best and global best 

In each iteration of the PSO-DSE framework, particle ‘P’ of the swarm 

explores some position ‘Xi’ in the design space. The local best denotes least 

cost (best fit) position explored by an individual particle ‘P’ of the swarm till 

the current iteration. Whereas, global best represents the best fit design 

solution explored by the entire particle population till the current iteration.  

In each iteration, local best of a particle ‘P’ is updated if a lower cost design 

solution compared to current local best is explored by particle ‘P’ in current 

iteration. Similarly, in each iteration global best of entire particle swarm is 

updated, if a lower cost design solution compared to previous global best is 

explored by particle swarm in current iteration.  

4.5.4 Updating Velocity and particle’s position 

After the local best and global best are updated, the velocity of a particle is 

updated using eq. 4.2. 

𝑉𝑑𝑖

+ = 𝜔𝑉𝑑𝑖
+ 𝑏1𝑟1[𝑅𝑑lbi

− 𝑅𝑑𝑖
] + 𝑏2𝑟2[𝑅𝑑𝑔𝑏

−  𝑅𝑑𝑖
] (4.2) 

Subsequently, the position of a particle is updated using 4.3. 

𝑅𝑑𝑖
+ =  𝑅𝑑𝑖 + 𝑉𝑑𝑖

+ (4.3)    

https://en.wikipedia.org/wiki/File:Greek_phi_Didot.svg
https://en.wikipedia.org/wiki/File:Greek_phi_Didot.svg
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Where 𝑉𝑑𝑖

+ ,𝑉𝑑𝑖
 ,𝜔, 𝑅𝑑lbi

 , 𝑅𝑑𝑔𝑏
 , 𝑅𝑑𝑖

 ,b1, b2 ,𝑟1 and 𝑟2 are as defined in 

nomenclature of this thesis ([32, 33]). 

Subsequently, for the new particle positions, kc-cycle and km-unit transient 

fault tolerant designs are generated and finesses are evaluated. This process 

continues till one of the termination criteria is satisfied: 

1. The global best is not updated for last 10 iterations. 

2. The user-defined maximum number of iterations have been executed. 

The PSO-DSE process generates optimal low-cost kc-cycle and km-unit 

transient fault tolerant design solution upon termination.  

4.6. Summary 

The proposed methodology is the first approach in the literature to generate 

DSP IP cores that are simultaneously tolerance against multi-cycle temporal 

and multi-unit spatial effects of transient fault for data intensive applications. 

The proposed approach presents novel TF tolerant Scheduling and 

floorplanning techniques for generating DSP IP cores simultaneously tolerant 

against temporal and spatial effect of transient fault. Further, the proposed 

approach generates low-cost design solution with the help of integrated PSO-

DSE framework. 
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Chapter 5 

Methodology for generating a low-cost DSP IP core 

that is simultaneously tolerant against multi-cycle 

temporal and multi-unit spatial effects of transient 

fault for loop-based control intensive applications 

The previous chapter has presented the methodology for generating transient 

fault tolerant DSP IP core for data intensive applications. In this chapter we 

will discuss methodology for generating transient fault tolerant DSP IP core 

for loop-based control intensive applications. The chapter is organized in five 

sections. In the first section we will introduce the problem. In the second 

section we will present a brief overview of the proposed solution. The third, 

fourth and fifth section will describe the major blocks of the proposed solution 

with the help of a demonstrative example. The fifth and the last section will 

conclude the chapter. 

5.1. Introduction 

As discussed in previous chapter, it is necessary to consider tolerance against 

radiation induced transient faults while designing applications for mission-

critical systems. Further, due to very stringent requirements such as low-

power, low-area, low-delay of mission-critical systems, it is equally (if not 

more) important to consider optimization while designing reliable systems. 

The mission critical systems require both data intensive as well as control 

intensive applications. Therefore, although technique discussed in previous 

chapter generates optimal design solutions for data intensive applications, it is 

not applicable to loop-based control intensive applications. Hence, novel 

methodology is required for generating optimal designs for control intensive 

DSP applications. 

The proposed approach presents a novel methodology for generating a ‘low 

cost optimized transient fault tolerant hardware against multi-cycle (temporal) 

and multi-unit (spatial) effect of transient fault for loop-based control 

intensive digital signal processing (DSP) applications’ 

5.2. Proposed approach 
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This section briefly describes major components of proposed methodology.  

5.2.1 Problem formulation 

Given a control intensives DSP application in the form of control data flow 

graph (CDFG) along with module library, strength of multi-cycle transient 

fault (kc), strength of multi-unit transient fault (km), generate a low-cost kc-

cycle and km-unit transient fault tolerant design solution. 

5.2.2 Overview of proposed methodology 

As shown in fig 5.1, the proposed methodology comprises of four major 

components namely PSO-DSE block, pre-processing block, kc-cycle tolerance 

block and km-unit tolerance block. The particle swarm optimization-based 

design space exploration (PSO-DSE) block is primarily responsible for 

exploring low-cost design solution. The pre-processing block takes CDFG 

application as input and determines the optimal unrolling factor. The kc-cycle 

tolerance block is responsible for providing tolerance against temporal effect 

of transient fault. The fourth and final block provides tolerance against spatial 

effect of transient fault.  

As shown in fig. 5.2, The first step of proposed methodology is to perform 

pre-processing of the CDFG application for identifying optimal unrolling 

factors (UF) for the design space. Subsequently, based on the pre-processed 

unrolling factors, particle swarm is initialized as Xi = {NR1, NR2, …, NRD, 
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UF} where Xi denotes position of i
th

 particle in the design space, NRD is the 

number of resources of type RD in the D
th

 dimension of the design space, UF is 

unrolling factor. Further, for each particle position Xi, CDFG application is 

unrolled based on unrolling factor UF. Subsequently, a TMR system of 

unrolled CDFG is created with respect to each particle position Xi. 

Afterwards, proposed transient fault tolerant rules are applied to generate kc-

cycle transient fault tolerant schedule. The kc-cycle transient fault tolerant 

schedule thus obtained is utilized for creating a list of hardware conflicts. 

Subsequently, the proposed km-unit fault tolerant rules are applied for 

generating kc cycle and km unit transient fault tolerant floorplan. Once kc-

cycle and km-unit transient fault tolerant design is generated, cost is evaluated 

and PSO-DSE parameters such as velocity, local best and global best are 

updated. The process is repeated till one of the PSO-DSE termination criteria 

is met. The optimal design solution thus explored is the low-cost kc-cycle and 

km-unit transient fault tolerant control intensive DSP application. The 

upcoming sections describe major components of proposed methodology in 

CDFGs Module Library Strength of multi-cycle 

transient fault (kc) 

Strength of multi-unit 

transient fault (km) 

Perform Pre-processing for 

Unrolling Factor (UF) 
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swarm with 
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proposed kc-cycle MCT fault 
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Obtain the list of hardware conflicts 

Create the km-unit fault tolerant 

floorplan  
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P
S
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D
S
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Fig. 5.2. Flow graph of the proposed TF tolerant methodology for loop-

based control intensive applications 
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detail.  

5.3. Preprocessing of CDFG 

The pre-processing of CDFG application is a process by which optimal 

unrolling factors for the given application are determined. The pre-processing 

step perform optimization by removing non-optimal UFs. Thereby, reducing 

design space to include only optimal unrolling factors. As shown in fig. 5.2, 

pre-processing step comprises of two sub-steps as described below 

5.3.1 Preprocessing of CDFG application for determining optimal 

unrolling factors 

The pre-processing approach is adopted from []. The pre-processing step takes 

CDFG application as input and determine the desirable unrolling factors as per 

follo

win

g equation 

where ‘I’ is total number of loop iterations and UF is unrolling factor.  The 

UFs thus obtained are most desirable UFs as shown in [VCAL vol.2 issue2 

etc. papers].  

5.3.2 Unrolling of CDFG 

In our proposed approach, each particle position Xi = {NR1, NR2, …, NRD, 

UF} comprises of a desirable UF. For each Xi, CDFG application is unfolded 

‘UF-1’ times to get unrolled CDFG. For instance, as shown in fig. 5.3, The 

original CDFG application (1
st
 iteration) is unfolded once more (2

nd
 iteration) 

to obtain unrolled CDFG with UF=2. The 1
st
 and 2

nd
 iterations are represented 

desirable UF = ((I mod UF <
𝑈𝐹

2
 ) && (UF <= 

𝐼

2
 ))  (5.1) 
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by light   
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blue and purple colored outlines respectively. The additional circuit 

comprising of an adder and a comparator is utilized for counting 

(incrementing) the number of iterations executed and comparing them with the 

maximum number of iterations (I) to be performed. This section provides a 

detailed description of the proposed methodology for designing kc-cycle 

transient fault tolerant scheduled DFG (SDFG) TMR system. The aim of the 

proposed methodology is to isolate the impact of transient fault in any one of 

the three modules (copy) of the TMR system such that remaining two modules 

(copies) should function correctly even in the presence of transient fault. 

Hence, when a voter is applied to the TMR system then voter will always 

vote-in the correct output. The pre-processed and unrolled CDFG thus 

generated is fed as input to next step of our proposed methodology. 

5.4. Proposed Methodology for generating a kc-cycle transient 

fault tolerant design 

The proposed methodology comprises of two steps as described below. 

5.4.1. Creating TMR of the unrolled CDFG 

The first step of kc-cycle transient fault tolerant methodology takes unrolled 

CDFG as input and creates a triple modular redundant (TMR) system by 

copying all the operations of original unrolled CDFG (O
C
) as duplicate copy 

(D
C
) and triplicate copy (T

C
) as shown in fig. 5.3. The TMR system thus 

generated is fed into our proposed methodology for generating kc-cycle 

transient fault tolerant scheduled TMR system as discussed in the following 

sub-section.   

5.4.2. Methodology for generating kc-cycle transient fault tolerant 

scheduled TMR system 

The proposed algorithm takes D-dimensional resource configuration extracted 

from particle position Xi as input along with unrolled CDFG based TMR 

system, strength of multi-cycle transient fault (kc) and module library and 

produces a kc-cycle transient fault tolerant scheduled TMR system as output. 

The first step of proposed approach is to perform scheduling and allocation of 
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TMR system based on resource configuration extracted from Xi, using the 

proposed kc-cycle transient fault tolerant scheduling and allocation rules.  

The proposed approach considers the temporal effect of transient fault as 

hardware conflicts. A hardware conflict arises when a hardware resource 

allocated to an operation of a copy is re-allocated to another operation of its 

cloned copies within kc-cycles. The proposed kc-cycle transient fault tolerant 

scheduling and allocation rules applied to resolve these hardware conflicts are:  

a. Hardware resource (R) allocated to an operation of a copy can be re-

allocated to an operation of the same copy within kc control steps 

(cycles). 

b. Shift operation of a copy if no hardware resource can be allocated 

without conflicts. Thus, allocations are made based on the following: 

i. Resource ‘R’ allocated to an operation of O
C
 (v ∈ O

C
) can be re-

allocated to an operation of D
C
 (v’ ∈ D

C
) or an operation of T

C
 (v’’ ∈ 

T
C
) only after a distance of kc control steps (cycles). 

i.e.  t(v’)-t(v)> kc, and 

t(v’’)-t(v)> kc 

ii. Resource ‘R’ allocated to an operation of D
C
 (v’ ∈ D

C
) can be re-

allocated to an operation of O
C
 (v ∈ O

C
) or an operation of T

C
 (v’’ ∈ 

T
C
) only after a distance of kc control steps (cycles). 

i.e.  t(v)-t(v’)> kc, and 

t(v’’)-t(v’)> kc 

iii. Resource ‘R’ allocated to an operation of T
C
 (v’’ ∈ T

C
) can be re-

allocated to an operation of O
C
 (v ∈ O

C
) or an operation of D

C
 (v’ ∈ 

D
C
) only after a distance of kc control steps (cycles). 

i.e.  t(v)-t(v’’)> kc, and 

t(v’)-t(v’’)> kc 

c.  

i. There should be at least control steps (cycles) delay between 

execution of two consecutive sequential loops such that there are no 

conflicts: 

i.e.  𝑇𝑆ⅇ𝑞2
𝑠 −  𝑇𝑆ⅇ𝑞1

𝐸 > 𝑘𝐶, 
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ii. There should be at least control steps (cycles) delay between 

execution of two consecutive parallel loops such that there are no 

conflicts: 

i.e.  𝑇𝑝𝑎𝑟2
𝑠 −  𝑇𝑝𝑎𝑟1

𝐸 > 𝑘𝐶, 

iii. There should be at least control steps (cycles) delay between start of 

the execution of sequential loop1 and completion of parallel loop2 

such that there are no conflicts: 

i.e.  𝑇𝑆ⅇ𝑞1
𝑠 −  𝑇𝑝𝑎𝑟2

𝐸 > 𝑘𝐶, 

Proposed scheduling and allocation rules ensure fault isolation within a single 

copy i.e., a single particle strike causing transient fault in a copy (O
C
, D

C
 or 

T
C
) of the TMR system will not affect the remaining two copies. Hence, even 

in the presence of (temporal effect of) transient fault due to a single particle 

strike, two copies will always produce correct output. Hence, voter applied to 

output of TMR system will ensure correct output is always produced as final 

output of the TMR system. The proposed rules are elaborated in upcoming 

section 5.4.3. The delay of the kc-cycle transient fault tolerant design thus 

generated is evaluated (as discussed below) and stored for future utilization 

during cost evaluation.  

Proposed Latency model: The latency of kc-cycle transient fault tolerant 

TMR (L
TMR

) is given by following equation 

𝐿𝑇𝑀𝑅 = (𝐼%𝑈𝐹) ∗ 𝐿𝑠ⅇ𝑞 + (
𝐼

𝑈𝐹
)

𝑞𝑢𝑜𝑡𝑖ⅇ𝑛𝑡

∗ 𝐿𝑝𝑎𝑟 
(5.2) 

Where, (𝐼%𝑈𝐹) indicates the number of sequential loops, and (
𝐼

𝑈𝐹
)

𝑞𝑢𝑜𝑡𝑖ⅇ𝑛𝑡

 

denotes number of parallel loops, 𝐿𝑠ⅇ𝑞, 𝐿𝑝𝑎𝑟 denotes latency of sequential 

body and parallel body respectively. The 𝐿𝑠ⅇ𝑞, 𝐿𝑝𝑎𝑟 are calculated as 

summation of ‘delay of each control step of the kc-cycle fault tolerant 

schedule’ and ‘delay of strength of kc-cycle transient fault’ as shown by eq. 

(3).  

𝐿𝑠ⅇ𝑞/𝑝𝑎𝑟 = {∑ 𝑀𝑎𝑥(𝐷(𝑜𝑝𝑖), . . , 𝐷(𝑜𝑝𝑛), 𝐷(𝑜𝑝𝑖′), . . , 𝐷(𝑜𝑝𝑛′), 𝐷(𝑜𝑝𝑖′′), . . , 𝐷(𝑜𝑝𝑛′′)
𝑁

𝑐𝑠=1
} + 𝑘𝑐(5.3) 

Where delay of a control step is evaluated as maximum value among ‘delay of 

all the operations belonging to any copy of the TMR system’. where ‘D(opi)’, 
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‘D(opi’)’, ‘D(opi’’)’ represents delay of operation belonging to original copy, 

duplicate copy and triplicate copy respectively. Further, 1 ≤ i ≤ n; 1’≤ i’ ≤ n’; 

1’’≤ i’’ ≤ n’’, where, i, i’ and i’’ = operations of original copy, duplicate copy 

and triplicate copy respectively. n, n’ and n’’ = maximum number of nodes of 

original, duplicate and triplicate copy respectively; N = maximum number of 

control steps (cs) of the scheduled CDFG; kc denotes the delay of kc-cycles. 

Addition of kc in the eq. (5.3), ensures kc-cycle difference between execution 

of consecutive sequential/parallel loops. Hence, ensuring fault doesn’t 

propagate within two consecutively scheduled sequential and parallel bodies. 

The upcoming sub-section will describe the proposed methodology with the 

help of an example. 

5.4.3. Demonstrative example of proposed methodology for generating a 

kc-cycle transient fault tolerant design for control intensive DSP 

applications. 

This section illustrates proposed kc-cycle transient fault tolerant scheduling 

and allocation rules with the help of an example of differential equation 

benchmark. For the demonstrative purpose, the realistic delay value of one 

control step is taken as 1000 ps for designing an application specific processor 

with frequency 1Ghz. Additionally, for demonstrative purpose strength of 

transient fault is assumed to be (kc =) 2 control steps (equivalent to 2000 ps) 

as adopted from [39,41,40]. Further, the values of area and delay of hardware 

resources are based on 15nm technology open source NanGate library [30]. 

However, note that the proposed approach is applicable for any other kc 

values. 

Fig. 5.3 shows a basic TMR system of unrolled differential equations 

benchmark. The proposed kc-cycle transient fault tolerant scheduling and 

allocation rules are applied on the TMR system to obtain a 2-cycle transient 

fault tolerant schedule based on D-dimensional resource constrains extracted 

from particle position Xi = {6M, 3A, 3S, 2C, UF=2} as {6M, 3A, 3S, 2C} 

where UF=2 is already utilized during creation of unrolled CDFG.  

The proposed rule ‘a’ permits a hardware resource allocated in pervious 

control steps to an operation of a copy to be re-allocated within kc cycles to 
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another operation of same copy. This is because fault affected hardware will 

perform operations of same copy within kc cycles, hence fault will remain 

isolated in the same copy and will not propagate to other copies. Further, it 

results in better hardware resource utilization leading to reduction in delay of 

the scheduled CDFG. Thus, fault isolation within the same copy is ensured as 

long as rules b and c are also satisfied. For example, rule ‘a’ permits hardware 

M1 allocated to opn 1 (of O
C
) to be re-allocated to opn 4 of the same copy 

within kc-control steps/cycles.  

As per proposed rule ‘b’, opn 1’ & 2’of D
C
 have been shifted to CS4 since 

no allocation was possible due to hardware conflicts. Further, as per rule b i., 

hardware resource M5 allocated to opn 11 of O
C
 at CS1 can only be re-

allocated to opn 1’ (of D
C
) at CS4 after 2 cycles (control steps). Similarly, as 

per rule b ii., hardware resource M5 allocated to opn 13’ of D
C
 at CS6 is re-

allocated to opn 10’’ (of T
C
) at CS9 only after 2 cycles (control steps). Further, 

according to rule b.iii., M5 allocated to operation 10’’ (of T
C
) could only be 

re-allocated to an operation of O
C
 or D

C
 after 2 cycles in case re-allocation of 

M5 was needed. 

5.5. Proposed Methodology for generating a km-unit transient 

fault tolerant design 

The proposed methodology for generating a km-unit transient fault tolerant 

design takes kc-cycle fault tolerant TMR system along with strength of spatial 

effect of transient fault (km) as input and generates kc-cycles & km-unit fault 

tolerant floorplan as output. 

The proposed methodology considers spatial effect of transient fault in term of 

hardware conflicts. A hardware conflict due to spatial effect occurs when a 

hardware resource allocated to an operation of a copy is placed within km-unit 

distance to any hardware resource allocated to an operation of remaining two 

Obtain a list 𝑳[𝑹𝒊] of all hardware resource (𝑹𝒊) from kc-cycle fault tolerant 

SDFG (where i=1,2,.., n.) 

Obtain list of conflicting hardware resources (𝑍𝑅𝑖
[𝑅𝑗]) for each element of [𝑅𝑖] 

. 

Place each element of 𝐿[𝑅𝑖] such that it is at least km-unit distance apart from 

each of its conflicting hardware listed in 𝑍𝑅𝑖
[𝑅𝑗] . 

 
Repeat until 𝐿[𝑅𝑖] ≠ ∅. 

Fig. 5.6 Proposed km-unit transient fault tolerant floorplanning rules 
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copies within kc-CS (cycles). In such a scenario if two hardware resources 

allocated to different copies are placed less than km-unit to each other then, 

fault may propagate from one copy to another due to spatial effect of transient 

fault. Hence, more than one copy will generate incorrect output leading to 

incorrect output by voter. Therefore, resolving hardware conflicts due to 

spatial effect of transient fault is important to provide complete tolerance 

against transient faults. 

As shown in fig. 5.5, the first step of proposed methodology is to obtain list of 

all hardware resources [Ri] present in kc-cycle fault tolerant design. In the 

next step, a list of conflicting hardware (𝑍𝑅𝑖
[𝑅𝑗]) due to spatial effect of 

transient fault is generated for all the resources present in the list [Ri]. 

Subsequently, the hardware resources are placed during floorplanning such 

that each resource Ri is placed at least km-unit distance apart from its 

conflicting resources Rj.  These steps are repeated till all the resources are 

placed. The floorplan thus obtained is kc-cycle and km-unit transient fault 

tolerant floorplan.  

5.5.1 Demonstrative example of proposed methodology for generating a 

km-unit transient fault tolerant floorplan 

This section illustrates proposed km-unit transient fault tolerant methodology 

with the help of an example of differential equation benchmark. In the initial 

step, list of all hardware resource is obtained from 2-cycle transient fault 

tolerant TMR system (discussed earlier in section 5.4) as L[R] = {M1, M2, … 

, M6, A1, A2, A3, S1, S2, S3, C1, C2}. Subsequently, for each of the 

hardware resources, list of conflicting hardware is created. for instance, 

consider hardware resource M1, the M1 allocated to an operation 1 of O
C
 at 

CS 1 will be in conflict with all the hardware allocated to any operation of D
C
 

or T
C
 within kc = 2 cycles. Thus, for M1 scheduled at CS1 allocated to opn 1 

of O
C
, the conflicting hardware in terms of spatial effect are A2, C2 (allocated 

to opn 19’ and 20’ of D
C
 at CS 1 and 2 respectively) and A3 (allocated to opn 

19’’ of T
C
 at CS1). Similarly, for M1 scheduled at CS2, the conflicting 

hardware in terms of spatial effect are C2, M5 and M6. Similarly, for M1 

scheduled at CS5, the conflicting hardware are: M5, M6, M4, M3, C1, S3, S1 

and S2. Further, for M1 scheduled at CS10 the conflicting hardware are M2, 
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M6, S3, M4, M5, S2 and M3. Likewise, for M1 scheduled at CS11 the 

conflicting hardware are M2, M6, S3, M4, M5, S2, M3, S1 for all occurrences 

of M1 is obtained and a set of all those conflict hardware as shown below is 

termed as list of conflicting hardware with respect to M1: 

 𝑍𝑀1[𝑅𝑗] = {𝑀2, 𝑀3, 𝑀4, 𝑀5, 𝑀6, 𝐶1, 𝐶2, 𝑆1, 𝑆2, 𝑆3, 𝐴2, 𝐴3}   
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Similarly, the list of all the conflicting hardware with A2 is  

𝑍𝐴2[𝑅𝑗] = {𝑀1, 𝑀2, 𝑀3, 𝑀4, 𝑀5, 𝑀6, 𝑆1, 𝑆2, 𝑆3, 𝐴1, 𝐴3, 𝐶1}.  

Therefore, as evident from the above lists, A2 has conflict with M1 and vice-

versa. Hence, A2 cannot be placed in neighborhood of M1. In similar manner, 

in the third and final step of the proposed km-unit transient fault tolerant 

floorplanning approach. The conflicting hardware are placed at least km-unit 

(=2) bidirectional distance apart from each other as shown in fig.5.6. 

Likewise, voter is also placed at km-distance apart from each hardware 

resource of the TMR system to avoid fault propagation from hardware 

resources to voter and vice-versa.  

On the contrary, in case of spatially non-tolerant floorplan all the hardware 

resources are compactly placed as shown in fig.5.5. Hence, transient fault due 

to particle strike with strengths kc=2 (and km=2) affecting M1 during 

execution of operation 8 in CS5 will affect both M2 and M4 due to spatial 

effect and hence will affect operation 4’, 12’. Hence, fault will propagate from 

original copy (O
C
) to duplicate copy (D

C
). Thus, voter will not be able to vote-

in correct output in case of non-tolerant floorplan. Therefore, although such a 

floorplan has lesser area compared to proposed approach, it is vulnerable to 

spatial effect of transient fault. The main crux of the proposed approach is to 

provide tolerance against temporal as well as spatial effect of the transient 

fault. Hence, small area overhead could be inconsequential. However, 

considering the criticality of mission-critical systems, the proposed approach 

reduces the impact of area overhead by exploring low-cost design solution 

with the help of PSO-DSE framework.  

5.6. Proposed PSO-DSE framework for generating low-cost 

kc-cycle and km-unit transient fault tolerant design 

This section provides a detailed description of optimization based on PSO-

DSE framework. The PSO-DSE framework comprises of four major steps as 

follows: 

5.6.1 Particle encoding and swarm initialization 
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In the initial step of the PSO-DSE framework, particles of the swarm (Pi) are 

encoded as Xi = {NR1, NR2, …, NRD, UF} where Xi denotes position of i
th

 

particle in the design space, NRD represents the number of resources of type 

RD in the D
th

 dimension of the design space, UF is the pre-processed unrolling 

factor. Each particle of the swarm represents number of hardware resources 

(along with unrolling factor) utilized for generating transient fault tolerant 

design solutions. Subsequently, particles are initialized in the design space. 

The first three particles (P1, P2 and P3) are initialized at positions: 

X1={min(R1), min(R2), … , min(RD), min(UF)} 

X2={max(R1), max(R2), … , max(RD), max(UF)} 

X3={[min(R1) + max(R1)]/2, … , [min(RD) + max(RD)]/2,  

[min(UF) + max(UF)]/2}  

Representing minimum, maximum, and middle positions of the design space. 

Hence, ensuring good coverage of design space. Subsequently, the remaining 

particles (Pi) are initialized at positions: 

Xi={[min(R1) + max(R1)]/2 ± 𝛼, … , [min(RD) + max(RD)]/2  ± 𝛼,  

[min(UF) + max(UF)]/2 ± 𝛼} 

Where, min(RD) and max(RD) denotes minimum and maximum resource in 

D
th

 dimension respectively. Similarly, min(UF) and max(UF) denotes 

minimum and maximum pre-processed unrolling factor respectively. 𝛼 is a 

random integer between minimum and maximum value of D
th 

dimensional 

resource or unrolling factor. 

5.6.2 Fitness / cost evaluation 

Each particle’s position in the design space contains the number of hardware 

resources in D
th

 dimension and unrolling factor. From each position, resource 

configuration is extracted and utilized for generating kc-cycle and km-unit 

transient fault tolerant design solution. The fitness of the generated design 

solution is evaluated using following cost/fitness function.  

FTA

FTA

FTL

FTL

iXfC

max
2

max
1)(  

 

(5.4) 
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where Cf (Xi) represents the cost/fitness of fault tolerant design solution based 

on the (resource configuration) particle position Xi, 1 and 2 are weightage 

of schedule latency and area of floorplan respectively. L
FT

 is the latency of 

transient fault tolerant design, Lmax
FT

 is the maximum latency of transient fault 

tolerant design solution in the design space (derived using minimum number 

of hardware resources), A
FT

 is the enveloping floorplan chip area of the fault 

tolerant design solution, Amax
FT

 is the maximum floorplan area of the transient 

fault tolerant design (derived using maximum number of hardware resources).  

5.6.3 Updating local best and global best 

In each iteration of the PSO-DSE framework, particle ‘P’ of the swarm 

explores some position ‘Xi’ in the design space. The local best denotes least 

cost (best fit) position ‘Xi’ explored by an individual particle ‘P’ of the swarm 

till the current iteration. Whereas, global best represents the best fit design 

solution explored by the entire particle population till the current iteration.  

In each iteration, local best of a particle ‘P’ is updated if a lower cost design 

solution compared to current local best is explored by particle ‘P’ in current 

iteration. Similarly, in each iteration global best of entire particle swarm is 

updated, if a lower cost design solution compared to previous global best is 

explored by particle swarm in current iteration.  

5.6.4 Updating Velocity and particle’s position 

After the local best and global best are updated, the velocity of a particle is 

updated using eq. 5.5. 

𝑉𝑑𝑖

+ = 𝜔𝑉𝑑𝑖
+ 𝑏1𝑟1[𝑅𝑑lbi

−  𝑅𝑑𝑖
] + 𝑏2𝑟2[𝑅𝑑𝑔𝑏

−  𝑅𝑑𝑖
] (5.5) 

Subsequently, the position of a particle is updated using eq. 3. 

𝑅𝑑𝑖
+ =  𝑅𝑑𝑖 + 𝑉𝑑𝑖

+ (5.6)    

Where 𝑉𝑑𝑖

+ ,𝑉𝑑𝑖
 ,𝜔, 𝑅𝑑lbi

 , 𝑅𝑑𝑔𝑏
 , 𝑅𝑑𝑖

 ,b1, b2 ,𝑟1 and 𝑟2 are as defined in 

nomenclature of this thesis ([32, 33]).  

Subsequently, for the new particle positions, kc-cycle and km-unit transient 

fault tolerant designs are generated and finesses are evaluated. This process 

continues till one of the termination criteria is satisfied: 

https://en.wikipedia.org/wiki/File:Greek_phi_Didot.svg
https://en.wikipedia.org/wiki/File:Greek_phi_Didot.svg
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3. The global best is not updated for last 10 iterations. 

4. The user-defined maximum number of iterations have been executed. 

The PSO-DSE process generates optimal low-cost kc-cycle and km-unit 

transient fault tolerant design solution upon termination.  

5.7. Summary 

The paper presented a novel methodology that achieves fault tolerance against 

multi-cycle temporal and multi-unit spatial effect of transient fault in loop-

based control intensive DSP IP cores generated using high level synthesis. 

Further, the proposed approach generates low-cost design solution for loop 

based CDFG applications with the help of integrated PSO-DSE framework.  
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Chapter 6 

Methodology for generating a low-cost, highly secure, 

functionally obfuscated DSP IP core 

This chapter presents the proposed methodology for generating low-cost 

functionally obfuscated DSP IP core. The chapter is organized in four 

sections. In the first section the problem is introduced. In the second section 

threat model is presented. The third and fourth section describe the proposed 

solution with the help of a demonstrative example. The fifth and the last 

section will summarize the chapter. 

6.1. Introduction 

As discussed in the introductory chapters, the continuous technology scaling 

has led to various reliability and security concerns. Further, rapid technology 

scaling and increasing cost of maintaining advanced fabrication facility has led 

to the monopoly of few advanced fabrication facilities. Majority of design 

houses lacks an in-house fabrication facility and must send their designs to 

third-party fabrication facility. This dependency of design houses on advanced 

fabrication facilities has enhanced security vulnerabilities such as IP Piracy, IP 

overbuilding, reverse engineering etc. [21, 34, 35]. Hence, methodologies are 

required for providing protection against these security vulnerabilities/threats. 

The proposed approach provides protection against some of these threats using 

logic locking (a.k.a. functional obfuscation/locking). Logic locking is a 

technique that inserts locking units (logic gates such as AND/ OR/ XNOR 

etc.) such that correct output cannot be obtained until a correct key is applied 

to the locked circuit. A malicious attacker would be motivated to identify the 

correct key with the help of attacks based on reverse engineering [21, 35]. The 

proposed approach provides protection by enhancing the complexity of the 

reverse engineering. The proposed approach presents novel locking units 

termed as ‘IP locking blocks (ILBs)’. The proposed ILBs incorporates some 

novel properties to enhance its robustness against state-of-art attacks. Further, 

the proposed approach integrates PSO-DSE framework for generating a low-

cost logically 
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locked DSP IP core. This is because DSP circuits have several alternative 

design solutions and selection of an optimal (or low-cost) alternative requires 

integration of a design space exploration framework such as PSO-DSE. In 

case, if an optimization framework such as PSO-DSE is not incorporated 

while designing DSP IP cores, then the generated design may incur huge area, 

power, and delay overheads.  

The proposed approach presents a novel methodology for generating a ‘low 

cost highly secure, functionally obfuscated DSP IP core through robust 

locking’  

6.2. Threat model 

Fig. 6.1 shows the typical IC design flow. The IP core designer will take DSP 

application as input and perform functional obfuscation (functional locking) to 

generate locked netlist of IP core. These IP cores will be integrated in SoC 

designs and a layout of SoC is created in the form of GDS-II file which is 

further processed as shown in fig.6.2. A malicious attacker could perform 

reverse engineering on layout, mask, non-functional IC to obtain the locked 

netlist. Further, he could perform attack such as key sensitization attack to 

obtain the unlocked (deciphered netlist). The primary motive of an attacker is 

to determine the secret key, so that he/she could unlock the circuit, 

manufacture the IC and sell them illegally. Additionally, an attacker can 

understand the design if correct key-bits are known and hence could insert 

hard to detect trojans at safe places [21, 22]. To accomplish these attacks, an 

attacker is assumed to possess the following:  

(a) Locked netlist: obtained through theft or reverse engineering of layout 

or mask. 

(b) A functional IC: brought from open market. 

6.3. Proposed approach 

This section briefly describes major components of proposed methodology.  

6.3.1. Problem formulation 

Given a DSP application in the form of data flow graph (DFG) or control data 

flow graph (CDFG) along with module library, IP core locking blocks (ILBs), 
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PSO control parameters as inputs, generate a low-cost highly secure 

functionally obfuscated DSP IP core. 

6.3.2. Overview of proposed methodology 

As shown in fig 6.2, the proposed methodology comprises of two major 

components namely PSO-DSE and IP functional locking. The first step of the 

proposed approach is to initialize the particle swarm [32]. For each particle 

position, a gate level datapath structure is created. Subsequently, proposed IP 

locking blocks are inserted in the gate level structure. Further, fitness and 

security (strength of obfuscation) of the obfuscated design for each particle’s 

position is evaluated. Based on the particle’s fitness PSO-DSE parameters are 

updated. This process is repeated till one of the PSO-DSE termination criteria 

is met. The solution thus generated is low-cost functionally obfuscated DSP IP 

core. The functionally obfuscated design thus obtained will be highly robust 

against reverse engineering based attacks. The particle swarm optimization-

based design space exploration (PSO-DSE) block is primarily responsible for 

exploring low-cost design solution.  

Input Blocks 

DFG 

application 
Module 

library 

IP core 

Locking 

blocks (8-bit 

key/data bit) 

PSO control 
parameters 

(ω,p,b) 

Initialize the particle swarm 
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Generate a random variable µ  

Generate the gate level structure based 

on particle position 

Insert ILBs at the output of each 

Functional unit (FU) based on µ 

Fig. 6.2. Details of proposed functional obfuscation methodology 

PSO-DSE 

IP functional locking 

Update local best and global best  

Update velocity and swarm position 
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The upcoming section describes our proposed IP locking blocks and discuss 

their properties responsible for enhancing strength of obfuscation.  

6.3.3. Proposed IP core locking blocks 

This section discusses properties of proposed ILBs shown in fig. 6.3. Each 

ILB provides same robustness against RE and key sensitization attacks. 

However, they activate for different key bits. Further, Each ILB has different 

structure that causes different implications on hardware power and delay. 

These implications are considered and incorporated in PSO-DSE framework 

with the help of modified particle encoding. The modified design space 

represents particle positions as Xi = {NR1, NR2, …, NRD, µ} for DFG 

applications and Xi = {NR1, NR2, …, NRD, UF, µ} for CDFG applications. 

Where µ is a random integer. The proposed methodology is applicable to both 

DFG as well as CDFG applications. However, to avoid confusion, the 

proposed approach will be presented in context of DFG applications. 

The proposed ILBs incorporate robust security features such as multi-pairwise 

security, prohibition of key gate isolation etc. These security features enhance 

robustness against reverse engineering and key sensitization attacks as 

discussed below: 

 Multi-pairwise security: This security feature is responsible for 

providing protection against key sensitization attack. Key sensitization 

is an attempt of an attacker to identify and apply input pattern 

combination that sensitizes key-bits to primary output pins [21, 22]. The 

attacker can identify single input pattern or a combination of input 

patterns for sensitizing key-bits and apply them to observe correct key 

bits at the output pins of functional IC. Key-bits K1 & K2 are said to be 

pairwise secure if an attacker cannot sensitize K1 without 

knowing/controlling key bit K2 and vice-versa [21]. Our proposed ILBs 

are multi-pairwise secured, i.e., any of the 8 key-bits cannot be 

sensitized without knowing/controlling other 7 key-bits. Therefore, an 

attacker must apply brute-force attack to determine the correct key. 

Thereby proposed ILB’s multi-pairwise security property enhances 

robustness of functional obfuscation methodology and increases 

complexity of reverse engineering in comparison to other locking units 

present in literature. 
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 Prohibiting key gate isolation: Isolated key gates can be easily 

sensitized using key sensitization attacks as shown in [21]. A key Kiso is 

said to isolated if there is no path between Kiso and remaining keys of 

the locked design and vice-versa. Hence, such keys are highly 

vulnerable to sensitization attacks and therefore must be avoided. The 

proposed ILBs have multiple path between key bits and none of the 

key-bits are isolated hence proposed ILBs have higher resiliency 

against key sensitization attack. 

 Protection against run of key gates: A few combinations of run-of key 

gates may reduce the effort of an attacker to identify correct key by 

increasing number of valid keys [21]. Further, an attacker could replace 

run of key gates with a single gate. This is not feasible in case of 

proposed ILBs as key gates of proposed ILBs are intertwined for 8-key 

bits. Hence, it is very difficult to identify run of key gates in the 

structure of proposed ILBs.  
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Fig. 6.3 Proposed IP core locking Blocks 
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 Non-mutable key gates: An attacker try to identify a ‘non-key’ primary 

input between the path connecting two key bits K1 and K2 such that by 

controlling this input, effect of K1 can be stopped from reaching K2 

and simultaneously K2 can be sensitized to primary output. Such a key 

gate K1 is termed as mutable key gate. The proposed ILBs have 

intertwined paths between its 8 key-bits. Hence, it is infeasible to 

sensitize a particular key bit without controlling remaining 7 key bits. 

Further, the effect of 7 key bits cannot be muted by controlling a single 

input. Thus, proposed ILBs are robust against muting based key 

sensitization attacks presented in [21]. 

6.3.4. Insertion technique of proposed ILBs 

As discussed earlier, the particle positions are encoded as Xi = {NR1, NR2, 

…, NRD, µ} where µ is a random number between 1 and TILB; where, µ 

symbolizes user specified repetition pattern of ILB insertion. TILB is the total 

number of different ILB structures available for selection. Once a gate level 

structure is generated with respect to each particle position, the proposed ILBs 

are inserted at the output of each functional unit (FU), each data output bit is 

locked using an ILB. The same ILB is inserted ‘µ’ times. After ‘µ’ repetitions 

new ILB is selected from TILB and inserted ‘µ’ times. The process is repeated 

till all the output bits of FUs are locked using proposed IP functional locking 

blocks (ILBs).  

An illustrative example of 4-bit FIR locked datapath generated for 

particle position {1A, 1M, µ=2} is shown in fig.6.3. Initially, a gate level 

structure of FIR benchmark is generated based on resource configuration 

(1Adder, 1Multiplier). Subsequently, as µ=2, the proposed ILB1 is inserted at 

first two output bits of adder functional unit. Further, after ‘µ=2’ repetitions, 

ILB2 is selected and inserted at next two output data bits. The process is 

repeated till all the output bits of each FU is locked. 

6.3.5. Security due to insertion of proposed ILBs 

The security enhancement due to insertion of proposed ILBs is given by 

following equation  

𝐾𝑆 =  2 ^ (𝑏 ∗ 𝑚 ∗ 𝑓) (6.1)    
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Where KS symbolizes the key-space (Strength of Obfuscation), b = key-bits 

per ILB, m = number of ILBs inserted per functional unit, f = number of 

functional unit in the datapath. For example, consider the security evaluation 

of 4-bit FIR benchmark shown in fig.6.3. The number of output bits of each 

FU is 4. Therefore, number of ILBs inserted per functional unit is (m=) 4. 

Further, as each ILB structure has 8 key-bit therefore b=8. Additionally, as the 

FIR datapath is generated for resource configuration (1 adder, 1 multiplier). 

Hence, number of functional units in the datapath is (f=) 2. Therefore, the 

strength of obfuscation of 4-bit FIR datapath is KS = 2 ^ (8*4*2) = 1.8 e+19.  

The upcoming section analyze security of proposed methodology from an 

attacker’s perspective. 

6.3.6. Security analysis of proposed methodology 

An attacker is assumed to have following tools/facilities to unlock the locked 

design: 

 Access to an advanced fabrication facility. 

 A locked gate-level netlist obtained through theft or reverse engineering 

the layout or mask of the locked design. 

 Functional IC bought from open market.  

An attacker who has access to these tools will try to determine the number of 

key bits through reverse engineering. Once an attacker determines the correct 

set of key-bits. He/she will try to apply key sensitization attack to determine 

the value of key-bit that matches with a valid key. As the proposed 

methodology is resilient to several state-of-art attacks (see section 6.3.3 and 

6.3.7). Hence, an attacker is forced to apply brute force attack to identify the 

valid key. For demonstrative example of FIR datapath having 64 key-bits, an 

attacker has to apply 2 ^ 64 different combination of key-bits to determine the 

correct key. Hence, if 1 billion combinations of key-bits could be applied in 1 

second [21], it would require 10^21 years to determine the valid key using 

brute force attack.  
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6.3.7. Resiliency of proposed methodology against various state-of-art 

attacks 

This section discuss the resiliency of proposed approach against key-

sensitization attack [21, 22], IP piracy attack [36, 37], and Trojan insertion 

attack [38]. 

(i) Key sensitization attack based on isolated key-bits: A isolated key bit 

can be easily sensitized. Hence, to avoid its sensitization isolation must 

be avoided. A key-bit k
iso

 is said to be isolated if there is no path 

between k
iso

 and any of the remaining key-bits utilized for locking the 

circuit. As discussed earlier, our proposed ILB are intertwined 

structure of 8 key-bits interdependent on each other. Hence, key 

sensitization due to isolated key-bits is not feasible in our proposed 

ILB structures.    

(ii) Key sensitization attack based on run of key-gates: A back-to back 

connection of key gates is termed as run of key gates [21]. The run of 

key gates can increase the valid (correct) key in the key space. 

Thereby, reducing the effort to identify a valid key through brute force 

attack. In run-of-key based attack, an attacker tries to identify and 

replace a run of key gates with a single key gate and identify the input 

value of replaced key gate. Based on this value, the correct key bits are 

determined.  The proposed ILBs are intertwined connection of gates 

among 8 key inputs. Hence, complexity to identify and replace run of 

key gates is increased compared to XOR/XNOR based run of key 

gates.  

(iii)Key sensitization attack based on mutable key-gates: An attacker 

attempts to mute the impact of a key bit (k
mutable

) from reaching another 

key-bit (k
sensitizable

), such that while k
mutable

 is muted, the key-bit 

k
sensitizable

 could be sensitized to the primary output. The muting is 

performed by controlling the path between two key bits by controlling 

few primary inputs. Such an attack is not feasible through our proposed 

ILB structures as the proposed ILBs doesn’t have any such controllable 

(by primary inputs) path between its 8 key bits. Furthermore, proposed 

ILB’s multi-pairwise security feature ensures a key bit cannot be 
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sensitized without controlling the remaining 7 key-bits. Hence, 

proposed ILBs are resilient to mutable key-gates based sensitization 

attacks.  

(iv) IP piracy and trojan insertion attacks: An attacker or a pirate must 

understand the correct functionality of the IP core, so that a pirate can 

identify the appropriate buyer for re-selling the IP core and market 

(explain) the IP properly. Further, an attacker targeting trojan insertion 

must understand the correct functionality so that the trojan(s) could be 

inserted at safe places. Thereby reducing chances of detection. The 

proposed functional obfuscation methodology based on ILBs, enhances 

the effort of an attacker to identify the correct key as it is resilient to 

many state-of-art attacks discussed above.    

6.4. Proposed PSO-DSE framework for generating low-cost 

functionally obfuscated DSP IP core. 

This section provides a detailed description of PSO-DSE framework. The 

PSO-DSE framework comprises of four major steps as follows: 

6.4.1 Particle encoding and swarm initialization 

The particles of the swarm (Pi) are encoded as Xi = {NR1, NR2, …, NRD, µ}, 

where Xi denotes position of i
th

 particle in the design space, NRD represents 

the number of resources of type RD in the D
th

 dimension of the design space, µ 

is a random integer between 1 and TILB (1 ≤ µ ≤ TILB). Each particle represents 

number of hardware resources (along with µ) utilized for generating 

functionally obfuscated IP cores. Subsequently, particles swarm is initialized. 

The first three particles (P1, P2 and P3) are initialized at positions: 

X1={min(R1), min(R2), … , min(RD), µ} 

X2={max(R1), max(R2), … , max(RD), µ} 

X3={[min(R1) + max(R1)]/2, … , [min(RD) + max(RD)]/2, µ}  

Representing minimum, maximum, and middle positions of the design space 

[32, 33]. Hence, ensuring good coverage of design space. Subsequently, the 

remaining particles (Pi) are initialized as: 

Xi={[min(R1) + max(R1)]/2 ± 𝛼, … , [min(RD) + max(RD)]/2  ± 𝛼,µ} 
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Where, min(RD) and max(RD) denotes minimum and maximum resource in 

D
th

 dimension respectively. 𝛼 is a random integer between minimum and 

maximum value of D
th 

dimensional resource. 

6.4.2 Fitness / cost evaluation 

For each particle’s position, a gate level structure is created based on the 

number of hardware resources in D
th

 dimension. Subsequently, ILBs are 

inserted based on µ. The fitness of the obfuscated IP core thus generated is 

evaluated using following cost/fitness function.  

𝐶𝑓(𝑋𝑖) = 𝜙1

𝑃𝑂𝐵

𝑃𝑚𝑎𝑥
𝑂𝐵 + 𝜙2

𝐷𝑂𝐵

𝐷𝑚𝑎𝑥
𝑂𝐵 (6.2) 

where Cf (Xi) represents the cost/fitness of the obfuscated IP core, based on the 

(resource configuration) particle position Xi. 1 and 2 are weightage of 

power and delay of obfuscated IP core respectively. P
OB

 and D
OB

 are the 

power and delay of the IP core based on particle position Xi. Pmax
OB

 and 

Dmax
OB

 are the maximum power and maximum delay of the functionally 

obfuscated IP core’s design space. 

6.4.3 Updating local best and global best 

The local best and global best are updated as explained in PSO-DSE 

framework of previous chapters as well as in [32, 33]. 

6.4.4 Updating Velocity and particle’s position 

The velocity and particle’s position are updated as explained in PSO-DSE 

framework of previous chapter. The PSO-DSE process generates low-cost, 

highly secure, functionally obfuscated design solution upon termination.  

6.5. Summary 

The proposed approach presents a novel methodology for generating a low-

cost highly secured functionally obfuscated DSP IP core. Further, the 

proposed methodology introduces a novel locking unit termed as IP locking 

block (ILB). This chapter presented the security enhancing properties of the 

ILB. Subsequently, the security of the proposed approach is evaluated and 

demonstrated with the help of an example of FIR benchmark. 

https://en.wikipedia.org/wiki/File:Greek_phi_Didot.svg
https://en.wikipedia.org/wiki/File:Greek_phi_Didot.svg
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Chapter 7 

Methodology for analyzing the aging effect of NBTI 

stress on performance of DSP IP core 

This chapter provides a detailed description of the proposed approach to 

analyze the impact of negative bias temperature instability (NBTI) stress on 

performance of DSP IP core. The given methodology can be utilized to detect 

presence of accelerated aging attack on an IP core. In the first section we will 

introduce the problem. In the second section we will present a brief overview 

of the proposed solution. The third section will describe the major blocks of 

the proposed solution with the help of a demonstrative example. The fourth 

will conclude the chapter. 

7.1. Introduction 

As discussed in previous chapters, technology scaling has raised several 

reliability and security concerns. One such reliability concern is negative bias 

temperature instability [39-42]. NBTI occurs when a negative bias is applied 

between gate and source terminal of a PMOS transistor at an elevated 

temperature resulting in instability of transistor’s parameters such as threshold 

voltage (Vth), transconductance(gm), etc. The continuous application of NBTI 

stress causes degradation in delay (performance) of the transistor. A malicious 

attacker may exploit this phenomenon to accelerate the aging process of a 

PMOS transistor due to NBTI stress [15]. Different input vector activates 

(stresses) different PMOS transistors in a circuit thereby degrading 

performance of different transistors [43, 44]. An attacker would like to 

determine the input vector causing maximum degradation of critical path of a 

circuit thereby causing maximum acceleration in performance degradation 

(aging) of the device. On the other hand, a designer would like to determine 

these input vectors and apply input vectors causing minimum performance 

degradation during the standby mode. The proposed approach presents a novel 

methodology for (a) estimating performance degradation of DSP IP cores 

subjected to NBTI stress (b) determine input vectors that causes 

minimum/maximum degradation. (c) presents hardware-based attack model 

for accelerated aging attack on DSP IP cores. 



74 

A large share of electronic products manufacturing companies focuses 

primarily on consumer electronic (CE) devices such as television, cameras, 

mobile phones etc. Majority of these electronic devices contains at least one 

digital signal processing (DSP) component. Further, due to arduous 

competition and stringent time-to-market deadlines, CE industry rely heavily 

on 3
rd

 party IP core to beat the competition. This dependency of CE industry 

on 3
rd

 party IP cores can be exploited by a malicious attacker in the IP design 

house or IP supply chain to perform several types of attacks such as trojan 

insertion, IP piracy, etc. One such attack is accelerated aging attack using 

NBTI stress [15]. In this type of attack, an attacker aims to modify the IP core 

such that the IP core remains under constant NBTI stress in the standby mode. 

The aim of the attacker is to ensure continuous performance degradation of the 

IP core (thereby of the device that integrates the compromised IP core), even 

when the device is not in active usage. The primary motive of the attacker is to 

cause device failure within warranty period [15]. Different input vectors cause 

different amount of NBTI stress on the circuit [43, 44]. Therefore, techniques 

are required to identify the impact of input vectors on DSP IP core.  

The proposed approach presents a novel methodology for ‘performing NBTI 

stress analysis of DSP IP core that can be utilized to identify the presence of 

accelerated aging attack on DSP IP cores’ 

7.2. Proposed approach 

This section provides a brief overview of our proposed methodology.  

7.2.1. Problem formulation 

Given a DSP application in the form of data flow graph (DFG) or control data 

flow graph (CDFG) along with module library, perform the NBTI stress 

analysis to determine the input vectors that causes maximum degradation due 

to continuous NBTI stress.  

7.2.2. Overview of proposed methodology 

The proposed work presents a novel methodology for analyzing the effect of 

NBTI stress on DSP IP cores. Based on the analysis the input vectors causing 

maximum degradation are determined and are utilized to identify the presence 



75 

of accelerated aging attack on the DSP IP core. As shown in fig.7.1, The first 

step of the proposed approach takes DSP application in the form of DFG or 

CDFG as input and performs high level synthesis (scheduling, allocation and 

binding) to generate a register transfer level (RTL) datapath. The RTL 

datapath thus obtained is converted into gate level structure. Subsequently, the 

critical path of the gate level structure is determined. Later, input vectors are 

applied on the gate level structure and degradation in performance parameter 

(threshold voltage) is evaluated. Subsequently, the degraded threshold voltage 

is utilized to calculate delay degradation. The process is repeated for all input 

vectors and the input vector(s) causing maximum degradation are identified. 

Further, the presence of accelerated aging attack in the device is identified by 

operating the device in the standby mode for a substantial amount of time (say 

15 days). If the device’s performance degrades with similar rate as that of 

maximum rate of degradation, then accelerated aging attack is said to be 

present in the device.  

The approach to evaluate the effect of NBTI stress on the DSP IP core is 

discussed in the upcoming section.  

7.2.3. Evaluating effect of NBTI stress on DSP IP core  

The various combinations of input vector are applied on the gate level 

structure of DSP IP core and the impact of NBTI stress on PMOS transistor’s 

DSP core in the form of Control/Data Flow Graph 

(CDFG or DFG) 

Binding 

Convert Register transfer level datapath in gate level 

module 

Identify the critical path 

Evaluate Degradation in threshold voltage due to NBTI 

stress using eq. (7.1) 

Evaluate delay Degradation using eq. (7.3) 

Apply input Vectors 

Repeat for all input 

Vectors 

Identify set of most degrading input Vectors 

Fig. 7.1 Proposed NBTI stress analysis methodology 

Allocation 

Scheduling 

High level Synthesis 

Register transfer 

level 



76 

parameters such as threshold voltage and delay are evaluated using equations 

7.1, 7.2 and 7.3. 

         𝛥𝑉th =  𝑏 ⋅ 𝑎𝑛𝑡𝑛                                                  (7.1) 

Where, ΔVth represents change in threshold voltage due to NBTI stress. b = 

3.9 x 10
-3

 V.s-1\6, n is time exponential constant=0.16, a = input signal 

probability, t = time in seconds. 

 𝑉𝑡ℎ
𝑛ⅇ𝑤 =  𝑉th +  𝛥𝑉th     (7.2) 

Where, 𝑉𝑡ℎ
𝑛ⅇ𝑤 represents new threshold voltage after PMOS transistor is 

stressed for ‘t’ amount of time. Vth represents threshold voltage= 0.365V for 

65nm technology scale [15]. Further, the new threshold voltage(𝑉𝑡ℎ
𝑛ⅇ𝑤) of 

pmos thus obtained is utilized in eq. 7.3  

 𝑇 =  𝐾
𝑉

(𝑉−𝑉𝑡ℎ
𝑛𝑒𝑤)𝛼       (7.3) 

Where, T= delay of pmos transistor, K is technology based proportionality 

constant, V = VDD. For 65nm technology scale, V= 1.2V is adopted from [15], 

and α=1.4, K=155 x 10
-6 

is adopted from [45]. 

Equation 7.1 represents change in threshold voltage, when a continuous NBTI 

stress is applied for a duration of ‘t’ seconds. The change in threshold voltage 

is added to original threshold voltage to obtain new threshold voltage using 

eq.7.2. Subsequently, the new threshold voltage is utilized to evaluate 

degraded delay of stressed PMOS transistor using eq. 7.3. Note that the delay 

of NMOS transistor is evaluated using original threshold voltage instead of 

new threshold voltage because NBTI stress does not affect NMOS transistors. 

A case-study of the proposed methodology on FIR benchmark is presented in 

the upcoming sub-section.  

7.2.4. Case-study  

The FIR application can be represented as a pseudocode shown in fig.7.2(a). 

In the initial step of proposed approach, application’s pseudocode is converted 

into data flow graph (DFG) and taken as input. Subsequently, high level 

synthesis is performed to obtain register level datapath [46]. HLS comprises of 

three sub-steps: Scheduling, allocation and binding. In the first sub-step, the 
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scheduling of FIR benchmark is performed based on resource configuration 

(1A, 1M). Subsequently, resources are allocated to each operation during 

allocation step of HLS. The scheduled and allocated FIR application is shown 

in fig.7.2(b). Subsequently, all the operations allocated to a particular 

hardware resources (say adder1 (A1)) are bonded together during binding step 

of HLS. The RTL datapath thus generated is subsequently converted into 

subsequent gate level modules (of NAND gates) and critical path is identified 

as shown by red colored line in fig.7.3. The critical path comprises of 11 gates 

(G1, …, G11) in the critical path of multiplier and 12 gates (G12, …, G23) in 

the critical path of adder sub-circuits. Subsequently, various combinations of 

input vector are applied to primary input of FIR datapath and correspondingly 

turned on PMOS/NMOS transistors of each gate of the critical path is 

tabulated. Table 7.1 shows the turned on PMOS/NMOS transistors on 

applying input vector 11101. The NBTI stress occurs on PMOS transistor of 

CMOS NAND gates when logic’0’ is applied at its input. The degraded delay 

of stressed PMOS transistors is evaluated using equations 7.1, 7.2 and 7.3. 
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 The process is repeated for each possible combination of input vectors. 

Finally, the input pattern causing maximum degradation is identified. Based 

on the identified vector, an attacker could launch an accelerated aging attack 

as discussed below.  

7.3. Accelerated aging attack: Modelling and detection 

This section presents attack model and detection mechanism of accelerated 

aging attack 

7.3.1 Attack model  

An attacker would exploit the natural aging of PMOS transistor due to NBTI 

stress to accelerate the aging process. To achieve acceleration, an attacker 

must keep PMOS transistor in stressed (turned on) state for as long as 

possible. To accomplish this goal, an attacker must devise an attack that apply 

continuous stress when the device is in standby mode (i.e., outside natural 

aging due to active usage). The attack could be launched through hardware as 

well as software modifications as discussed below 

 Hardware based attack model: As shown in fig.7.4(b), The attacker can 

devise a hardware modification such that the modified DSP IP core age 

naturally (functions correctly) when enable signal ‘EN’ is ‘1’. Moreover, 

aging is accelerated when ‘EN’ is ‘0’ (in standby mode) by applying most 

harmful vector 11101. 

En 

Fig.7.4(a) FIR IP core block Fig.7.4(b) Modified Hardware logic 

1.2V 

1      0
 

1       0
 

1      0
 

1     0
 

1     0
 

FIR block 

RegA 

Reg B 

Reg C 

Reg D 

RegE 

En 

FIR block 

Reg A 

Reg B 

Reg C 

Reg D 

RegE 



80 

 Software based attack model [15]: An attacker could also identify the 

correct working of DSP IP core by reverse engineering the device. 

Subsequently, a software modification is devised such that the hardware is 

in continuous stress in operating system mode.  

7.3.2 Detection of accelerated aging attack  

As discussed in previous section, an aging attack could be modelled as 

hardware or software based attack. However, the detection method of both 

type of attack is same. A tester should keep the device activated in the standby 

mode or operating system mode for a substantial amount of time (say fifteen 

days). After 15 days the tester can test the delay of the device, if the 

degradation of IP core occurs roughly at the same rate as the maximum rate 

(degradation due to input vector causing maximum degradation) then presence 

of accelerated aging attack is confirmed. Hence, if an attack is detected, the 

design house should check for and remove any malicious hardware or 

software modifications. 

7.4.  Summary 

The proposed approach presents a novel methodology to analyze the impact of 

aging due NBTI stress on DSP IP cores. The impact of NBTI stress is 

analyzed based on the following: (a) performance degradation of DSP IP cores 

subjected to NBTI stress (b) input vectors that causes minimum/maximum 

degradation. The proposed approach presents hardware-based attack model for 

accelerated aging attack on DSP IP cores. 
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Chapter 8 

Computational forensic engineering methodology for 

resolving ownership conflict of DSP IP core generated 

using high level synthesis 

This chapter provide a detailed description of the proposed approach to 

resolve false claim of ownership of reusable DSP IP core using computational 

forensic engineering (CFE). The first section introduces the problem. The 

second section presents a brief overview of the proposed solution. The third 

and fourth section describes the proposed methodology with the help of 

demonstrative examples. The fifth section concludes the chapter.  

8.1. Introduction 

As discussed in previous chapters, consumer electronic industries rely heavily 

on 3
rd

 party IP (3PIP) core to beat the competition. This is because 3PIP cores 

helps in achieving higher productivity and reducing deign development time. 

However, 3PIP core are vulnerable against several threats such as abuse of IP 

ownership, IP piracy, false claim of ownership, etc. [36-38, 47-48] Hence, 

protection mechanisms are required to provide protection against these threats. 

The proposed methodology provides protection against one such threat known 

as false claim of ownership. 

Although mechanisms such as patents, copyright, trademarks, etc. are 

provided by law to enjoy the legal ownership. However, these mechanisms are 

either incapable or inadequate in protecting reusable IP cores [13]. Further, in 

context of reusable IP cores, IP piracy is a major threat. A malicious attacker 

can obtain the IP by means of theft/fraud. By virtue of which he/she can also 

claim to be the rightful owner of the IP. In such a scenario, methodologies to 

resolve ownership conflict of reusable IP core is needed. One such approach is 

digital watermarking [13, 49]. In this approach, signature is inserted in the 

design without affecting the functionality of the design by the IP designer.  

Further, if someone else falsely claims the ownership of the IP, signature 

detection step is carried out to identify the rightful owner. Because signature 

will be known only to the rightful owner (although rarely, but an attacker can 
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recover signature through reverse engineering), if signature is detected in the 

IP core, ownership will be awarded to the rightful claimant. However, 

watermarking requires signature insertion while designing an IP core. In case 

if designer doesn’t forecast the possibility of the threat or does not take 

appropriate measures such as signature insertion (watermarking) during the 

design phase. Then, ownership claims will become very hard to resolve. 

Moreover, watermarking is vulnerable to signature tampering attacks. Hence, 

methodologies are required that can resolve the ownership without depending 

on proactive measures such as signature insertion. In this chapter, we will 

present a novel methodology that does not depend on such proactive measures. 

Further, there is no known attack on the generic CFE, which is the baseline 

framework used in our proposed approach. 

The proposed approach presents a novel computational forensic engineering 

based methodology to ‘protect reusable DSP IP cores generated using high 

level synthesis against false/fraudulent claim of ownership’ 

8.2. Computational Forensic Engineering Framework 

This section provides a brief description of generic CFE framework utilized in 

our proposed methodology.  

8.2.1. Generic CFE: Problem definition 

A typical CFE problem can be formulated as: given a solution ‘S’ to a problem 

‘P’ having a finite set of algorithms/tools AT_n (n is a non-zero positive 

integer) applicable to problem P, that can generate solution S, identify with a 

certain degree of confidence that the algorithm/tool AT_i has been applied to 

generate the solution S [50, 51]. 

8.2.2. Overview of generic CFE 

A generic CFE approach comprises of four stages: (a) feature and data 

collection (b) feature extraction (c) Algorithm clustering, and (d) Validation 

[50]. During the execution of the first stage, features are identified that can 

classify the data point in one of the categories during multi-category 

classification. Further, features are extracted from each solution of the various 

algorithms, during feature extraction stage of CFE. Once the features are 
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extracted, the data points (algorithms/tools) are classified (clustered) in several 

categories during algorithm clustering stage of CFE. Finally, during the 

validation phase, the accuracy of the classification is checked for. If the 

classification is sufficiently accurate (say ≥ 95% accuracy), then the CFE 

approach is said to be able to classify any other data point with the same 

accuracy. If the classification is not sufficiently accurate, then new features 

should be introduced for increasing accuracy. 

8.2.3. Comparison of proposed CFE vs generic CFE 

In our proposed methodology, we have adopted only three stages of generic 

CFE as (a) IP core feature and data collection, (b) IP core feature extraction, 

and (b) IP validation. Note that in our proposed approach we have not adopted 

algorithm clustering stage as our problem is loosely related to clustering. The 

proposed approach classifies the claimant in just two categories: ‘Rightful 

owner’ and ‘fraudulent claimants’. In practical scenarios, the number of IP 

vendors claiming to be the rightful owner of an IP core will be very few 

(typically 2 to 3) with only one rightful claimant. Hence, the ownership 

problem has very few data points and thus will create two clusters (classes) of 

size 1 and ‘n-1’ (typically 1 to 2) respectively. Therefore, our proposed 

approach does not require a separate clustering stage. Moreover, while 

resolving ownership conflicts, the resolution must be 100% accurate. Hence, 

our adoption of IP validation stage necessitates 100% accuracy. Therefore, our 

proposed methodology skips the optional algorithm clustering and identify the 

‘rightful claimant’ in the IP validation stage. 

8.3. Proposed approach 

This section describes the proposed methodology for resolving ownership of 

reusable IP cores generated using HLS. 

8.3.1 Key points about the proposed approach  

 The proposed CFE approach for IP ownership is applicable in scenarios 

where ‘n’ IP vendors are claiming to be the rightful owner of an IP core. 

Each IP vendor is assumed to have its own HLS tool to generate their 

respective IP designs. However, if two or more IP vendors uses a common 

third-party HLS tool then proposed approach is not applicable. 



84 

 The proposed approach does not require source code, packaging 

information of HLS tools, only an executable version of HLS tools of each 

IP claimant is required. 

 If any IP claimant refuses to provide an executable version of HLS tool or 

‘respectively generated RTL description in supervision of a legal entity’. 

Then, that specific claimant will be disqualified. As rightful owner will be 

willing to provide at least RTL description generated using its own HLS 

tool. 

 The proposed approach is applicable for HLS tools that targets generation 

of application specific IP core (processors) of digital signal processing 

applications. The HLS tools that targets generation of general purpose 

processors does not fall in the scope of the proposed work.   

8.3.2 Problem formulation 

Given the IP core whose ownership is to be identified (termed as IPID) along 

with IPs generated from HLS tools of IP claimants (termed as IPCT n, where ‘n’ 

signify the IP core generated using HLS tool of ‘n
th

’ claimant) identify the 

rightful owner of the IPID. 

8.3.3 Overview of proposed methodology 

As discussed earlier, the proposed CFE based approach comprises of three 

major steps (a) IP core feature and data collection (b) IP core feature 

extraction, and (c) IP core validation. In the first step of the proposed approach 

the HLS tools are collected from the competing IP vendors. Subsequently, 

HLS tools are executed to generate IP cores with respect to each vendor’s 

HLS tool (IPCT n). Once all the IP cores are generated, IPCT n are examined to 

identify features that can distinguish IP cores based on their originating HLS 

tool. A set of such features is termed as ‘feature set’. In the second step of the 

proposed step, feature extraction rules are devised. Based on these rules, 

features are extracted from IPCT n and IPID. In the third and final step of the 

proposed approach, the ownership of IPID is awarded to vendor whose IPCT’s 

feature set matches 100% with feature set of IPID. The upcoming section 

demonstrate the proposed approach with the help of a case-study  

8.4. Case study 
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In this case study we have considered a scenario where seven claimants are 

legally competing for the ownership of IPID in court of law and court must 

award IP ownership to the rightful claimant. (Note: we have used seven 

claimants to demonstrate the proposed approach effectively). The case study 

considers industrial as well as academics HLS tools [12, 13, 17, 33, 52- 54]. In 

the first step of the proposed approach, the HLS tools are obtained from the 

respective IP vendor’s company. Further, each tool is executed to generate a 

solution IPCT n, (n = 1, …, 7). Subsequently, each IPCT is studied to identify 

properties that can distinguish an IP core based on its parent HLS tool. 

In practical scenarios, each company has their own set of proprietary 

algorithms/techniques that are uniquely developed by that company to 

advance state-of-art. These, properties are unique to that particular company 

thus features based on such properties are termed as ‘unique feature’. Further, 

the proposed unique feature set include properties that are rarely found but can 

potentially be available in more than one advanced HLS tools. The unique 

features identified through our case study are: {reliability, trojan security, loop 

support, pipelining, chaining, multi-cycling, design objective}. Moreover, 

every HLS tool implements some common HLS framework. The framework 

can be implemented using different algorithms resulting in different properties 

of IP cores. These properties are examined to create a generic feature set: 

{Scheduling algorithm, resource type, bus width support}. A feature set 

comprising of both generic as well as unique features is created. Subsequently, 
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Vendor 1  

HLS tool of  
Vendor 2  

HLS tool of  
Vendor n  

Given IPID 

(RTL HDL) 

IPCT 1  
(RTL HDL) 

Automated portion 
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Actual vendor (owner) of IPID identified 

Inputs 

Fig 8.1 Process of resolving ownership conflict of a given IP 

core (IPID) using CFE 

IP core feature 
and data 
collection 

IP core feature 
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IP core 
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Proposed CFE for IP protection 

IPCT 2  
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in the second step of the proposed approach feature extraction rules are 

devised and features are extracted as discussed in upcoming sub-sections.  

8.4.1 Scheduling algorithm 

The feature extraction methodology to extract scheduling algorithm feature 

takes controller HDL file of IP core as input and identify the scheduling 

algorithm utilized during HLS of the IP core. The proposed technique 

classifies the scheduling algorithm as either ASAP scheduling, ALAP 

scheduling, or List scheduling (three most widely used scheduling algorithms 

[55-57]) (fig.8.2). The feature extraction rules to identify the scheduling 

algorithm used are:  

 ASAP scheduling: A scheduling algorithm satisfying both the conditions 

(a) and (b) is ASAP scheduling.  

(a) All functional units of independent operations should be activated in the 

first control step. 

(b) All dependent operations and its successors should be placed in the 

consecutive control step based on their dependencies. 

 ALAP scheduling: A scheduling algorithm satisfying both the conditions 

(c) and (d) is ALAP scheduling.  

(c) All functional units having primary outputs should be activated in the last 

control step. 

ASAP: both rule a & b conditions should satisfy 
simultaneously 

 
a) All Functional Units (FUs) of independent 

operations are activated in first control Step (first 
clock cycle) 

b) All dependent operations and its successors 
should be placed in consecutive control steps 

based on their dependencies. 

Check for scheduling algorithm 

ALAP: both rule a & b conditions should satisfy 
simultaneously 

 
a) All Functional Units having Primary Outputs 

should be activated in last control step 
b) All parent operations and its predecessors should 
be placed in consecutive control steps based on their 

dependencies. 

LIST: Rule a or b must satisfy simultaneously 
with either c or d for scheduling to be 
identified as list algorithm: 
a) All functional units of independent 
operations should not be activated in the first 
control step. 
b) All dependent operations and its 
successors should not be placed in 
consecutive control step based on their 
dependencies.  
c) All functional units having primary outputs 
should not be activated in last control step. 
d) All parent operations and its predecessors 
should be placed in consecutive control steps.  

ASAP/ALAP/LIST  

ASAP/ ALAP/ 

LIST 

Fig. 8.2 Flow graph representing the feature extraction methodology for scheduling algorithm 

feature 
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(d) All parent operations and its predecessors should be placed in the 

consecutive control steps. 

 LIST scheduling: A scheduling algorithm that satisfies conditions (e) or (f) 

along with either (g) or (h), then the scheduling algorithm is list 

scheduling.  

(e) All functional units of independent operations should not be activated in 

the first control step. 

(f) All dependent operations and its successors should not be placed in the 

consecutive control step based on their dependencies. 

(g) All functional units having primary outputs should not be activated in the 

last control step. 

(h) All parent operations and its predecessors should not be placed in the 

consecutive control steps. 

This feature distinguishes (HLS tools utilized for creating) IPID and IPCTn. If 

IPID utilizes different scheduling algorithm than IPCTn, then HLS tool that 

generates IPCTn cannot be the rightful owner. 

8.4.2  Resource configuration type 

The resource configuration type feature extraction methodology takes datapath 

HDL file of IP core as input. Further, HDL file is examined to identify the 

different type of resources (functional units) utilized in the RTL datapath of 
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the IP core. For instance, if an IP core have adder, subtractor and multiplier 

resources, the resource config type feature is represented as: A, S, M. 

component Adder 

   port (enable_R1 : in    std_logic;  

         Data_out7 : in    std_logic_vector (15 downto 0);  

         Data_out8 : in    std_logic_vector (15 downto 0);  

         Data_in9  : out   std_logic_vector (15 downto 0)); 

   end component; 

  

8.4.3 Chaining 

Chaining is an optimization technique that targets reduction of schedule delay. 

The concept of chaining can be understood with the help of an exemplary 

schedule shown in fig.8.3. In this example, two addition operations (1 & 2) are 

scheduled during a single execution of multiplication operation (3). If there 

was no chaining, operation 2 would have been scheduled at control step 41. 

Hence, overall delay of without chaining would be 41 control steps. The rule 

to identify the presence of chaining feature can be stated as: if more than one 

operation of functional unit of type ‘i’ (FUi), is executed within a single 

execution of FUj; then, chaining feature is present in the IP core. The 

chaining feature extraction rule is algorithmically represented in fig.8.4.  

The chaining feature extraction algorithm takes controller HDL file of IP core 

as input and identifies the presence or absence of chaining feature in the given 

IP core. In Fig.8.4, ‘n’ represents the total number of functional units presents 

in the IP core. CSS(FUi) and CSE(FUi) represents the starting and ending 

control steps of i
th

 functional unit respectively. The starting and ending control 

steps of a FU can be determined from the controller HDL file. For instance, 

consider the controller shown in fig.8.5, the first multiplication operation starts 

its execution in control step 1 (MUL_EN_1<=‘1’) and ends in control step 40 

(MUL_EN_1<=‘0’).Hence, CSS(multiplier) = 1 and CSE(multiplier) = 40. As 

shown in fig. 8.4, ‘i’ and ‘j’ are loop variables. The first loop runs for all FUs. 

The second loop allow all the FUi such that i ≠ j. Further, the first if allows 

comparison of i
th

 FU with only those j
th

 FUs that have started their execution 

after execution of i
th

 FU is started and FUs that have ended their execution 

before execution of i
th

 FU is ended. If the number of all such FUs is ≥ 2 then 

chaining feature is present in the IP core.  

8.4.4 Bus width support 
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The Bus width support feature extraction algorithm takes datapath HDL file of 

IP core as input. Subsequently, top level entity HDL code is examined to 

identify the bus width of register components. A portion of HDL code is 

shown below: 

component registerTp 

      port ( tp   : in    std_logic_vector (7 downto 0);  

             regtp: out   std_logic_vector (7 downto 0);  

             strobe: in    std_logic); 

   end component; 

 

As shown in the HDL code, register components are identified with the help of 

component’s name. Further, the size of register components is determined as 

the highest size of the variable using statements such as std_logic_vector (7 

downto 0). Where, 7 down to 0 indicates variable size as 8 bits. Similarly, 

size of all the variables is evaluated and the largest variable’s size is taken as 

size of the register. Similarly, largest size among all the register components 

present in an IP is taken as the bus width supported by the architecture of an IP 

core. 

8.4.5 Data pipelining 

The pipelining technique intends to reduce the delay of the overall design of 

the IP core. The data pipelining feature extraction algorithm takes datapath 

HDL file of IP core as input and identify the presence of pipelining feature as 

per the following equation: 

Algorithm (Input: controller HDL of IP: Output: detection of 

chaining) 

 

for ( i=1 to n) 

{ 

      for ( j=1 to n &&  j != i ) 

     { 

     if (CSS(FUi) ≤  CSS(FUj) && CSE(FUi)  ≥  CSE(FUj)) 

  {    

if ( CSE(FUi) – CSS(FUi) ≥  (CSE(FUj) – CSS(FUj))1 + ( 

CSE(FUj) – CSS(FUj))2 + …. + (CSE(FUj) – CSS(FUj))m  

  ) 

           { 

Chaining feature detected in IP core! 

            } 

    } 

      } 

} 

Fig. 8.4 Proposed algorithm to detect chaining in an IP  
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(CSE(N)1 - CSS(N)1 +1) > (CSE(N)2 – CSE(N)1 +1)           (8.1) 

Where, CSE(N)1 and CSE(N)2 denotes the ending control steps of data set 1 and 

2. Similarly, CSS(N)1 denotes starting control step od data set 1. Further, 

(CSE(N)1 - CSS(N)1 +1) represents the execution time of data set 1. Likewise, 

(CSE(N)2 – CSE(N)1 +1) represents time difference between ending control 

step of data set 1 and ending control step of data set 2. Hence, in case when IP 

core does not incorporate pipelining feature. Both the right-hand side and left-

hand side of eq. (8.1) will be equal. However, if pipelining is present in the IP 

core eq. (8.1) will be satisfied. For instance, consider schedule of an IP core 

shown in fig.8.6. The output of data set 1 and data set 2 are available in 

register Y at control step 42 and 82 respectively. Hence, The L.H.S of eq. 1 

can be written as (42-1+1) = 42. Similarly, R.H.S. can be written as (82-42+1) 

= 41. Hence, eq. (8.1) is satisfied when pipelining is present in an IP core.  

8.4.6 Multi-cycling 

The multi-cycling feature extraction algorithm takes controller HDL file of IP 

core as input. Subsequently, on examining HDL code if there is a functional 

entity control_unit is 

port( 

     clock, reset: in std_logic; 

   : 

   : 

   : 

   ADD_EN_1, ADD_EN_2, MUL_EN_1 : out 

std_logic;  

   REG_Y : out std_logic; 

   : 

   : 

   : 

   ); 

end control_unit; 

 

architecture Behavioral of control_unit is 

signal CS: INTEGER RANGE 0 TO 19; 

signal count: INTEGER RANGE 0 TO 10; 

signal busy : std_logic; 

 begin 

  process(clock,reset) 

   begin 

 

if (clock'event and clock='1') then 

    if(reset='0')then 

      if CS =0 then 

     clk<='1'; 

   REG_IP_A_EN <='1'; 

   REG_IP_B_EN <='1'; 

   REG_IP_C_EN <='1'; 

   REG_IP_D_EN <='1'; 

REG_IP_E_EN <='1'; 

      end if; 

 
Fig. 8.5(a) Portion of a HDL code  
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unit whose execution time span more than 1 control step, then multi-cycling 

feature is said to be present in the IP core. In other words, if a functional unit’s 

operation ends at control step greater than the starting control step (eq.8.2), 

then multi- 
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  CS <= CS +1; 

   end if; 

  

---------------------------------CONTROL STEP 1--------------------------- 

if CS=1 then 

 if count=first_count 

   ADD_EN_1<='1'; 
   MUL_EN_1<='1'; //start 
of multiplication operation// 
   count <= count+1;  

     end if; 

 : 

 :   

 If count = last_count 

   ADD_EN_1 <= '0'; 
   count <= '0'; 

 end if; 

   CS <= CS+1; 

end if; 

 

---------------------------------CONTROL STEP 2--------------------------- 

if CS=2 then 

 if count= first_count 

   ADD_EN_1<='1'; 

   count <= count+1;  

     end if; 

 : 

 :   

 : 

 If count = last_count 

   ADD_EN_1 <= '0'; 

   count <= '0'; 

 end if; 

   CS <= CS+1; 

end if; 

: 

---------------------------------CONTROL STEP 40-------------------------- 

if CS=40 then 

 if count= first_count 
   count <= count+1;  

   REG_IP_A_EN <='0'; 

   REG_IP_B_EN <='0'; 

   REG_IP_C_EN <='0'; 

   REG_IP_D_EN <='0'; 

   REG_IP_E_EN <='0'; 

     end if; 

 : 

 :   

 : 

 If count = last_count 
   MUL_EN_1 <= '0'; //end 
of multiplication operation// 

REG_IP_A_EN <='1'; 

   REG_IP_B_EN <='1'; 

   REG_IP_C_EN <='1'; 

   REG_IP_D_EN <='1'; 

   REG_IP_E_EN <='1'; 

   count <= '0'; 

 end if; 

   CS <= CS+1; 

end if; 

 

---------------------------------CONTROL STEP 41-------------------------- 

if CS=41 then 

 if count= first_count 

   count <= count+1; 

   ADD_EN_1 <= '1'; 

   ADD_EN_2 <= '1'; 
MUL_EN_1 <= '1'; 

Fig. 8.5(b) Portion of a HDL code  

   REG_Y <='0'; 

     end if; 

 : 

 :   

 : 

 If count = last_count 

   ADD_EN_1 <= '0'; 

   ADD_EN_2 <= '0'; 

   count <= '0'; 

 end if; 

   CS <= CS+1; 

end if; 

 

-----------------------------CONTROL STEP 42--------------------------- 

if CS=42 then 

 if count= first_count 
   REG_Y <='1';//output of 
data set 1 available// 
   count <= count+1; 

   ADD_EN_1 <= '1'; 

     end if; 
 : 

 :   

 : 

 If count = last_count 

   ADD_EN_1 <= '0'; 

   count <= '0'; 

 end if; 

   CS<=CS+1; 

end if; 

 

-----------------------------CONTROL STEP 80--------------------------- 

if CS=80 then 

 if count= first_count 

   count <= count+1;  

   REG_IP_A_EN <='0'; 

   REG_IP_B_EN <='0'; 

   REG_IP_C_EN <='0'; 

   REG_IP_D_EN <='0'; 

   REG_IP_E_EN <='0'; 

     end if; 

 : 

 :   

 : 

 If count = last_count 

   MUL_EN_1 <= '0'; 

REG_IP_A_EN <='1'; 

   REG_IP_B_EN <='1'; 

   REG_IP_C_EN <='1'; 
   REG_IP_D_EN <='1'; 

   REG_IP_E_EN <='1'; 

   count <= '0'; 

 end if; 

   CS<=CS+1; 

end if; 

 

-----------------------------CONTROL STEP 81--------------------------- 

if CS=81 then 

 if count= first_count 

   count <= count+1; 

   ADD_EN_1 <= '1'; 

   ADD_EN_2 <= '1'; 

   MUL_EN_1 <= '1'; 

   REG_Y <='0'; 

     end if; 

 : 

 :   

 : 

 If count = last_count 

   ADD_EN_1 <= '0'; 

   ADD_EN_2 <= '0'; 

      count <= '0'; 

Fig. 8.5(c) Portion of a HDL code  
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cycling is present in the IP core: 

CSE(FUi)  >  CSS(FUi)    (8.2) 

8.4.7 Design Objective 

The design objective feature extraction methodology takes executable HLS 

tool’s interface as input. By examining the user interface, various design 

objectives / constraints supported by that particular HLS tool such as area, 

power, delay, etc. can be identified. 

8.4.8 Reliability 

Reliability is an advanced feature and typically found in sophisticated HLS 

tools. Reliability can be incorporated in the IP core in various ways such as 

security/tolerance against permanent faults [58], intermittent fault [59], or 

transient fault [60], etc. In our proposed approach, we have considered recent 

reliability handling techniques that uses dual modular redundancy (DMR) 

such as [17], [54]. Note, there are other techniques to generate reliable IP core 

end if; 

   CS <= CS+1; 
end if; 

 
---------------------------------CONTROL STEP 82--------------------------- 
if CS=82 then 

 if count= first_count 
   REG_Y <='1';//output of dataset 2 

available// 

   count <= count+1; 
   ADD_EN_1 <= '1'; 

     end if; 

 : 
 :   

 : 

  
 If count = last_count 

   ADD_EN_1 <= '0'; 
   count <= '0'; 

 end if; 

   CS<=CS+1; 
end if; 

 
: 
: 
-----------------------CONTROL STEP 4001(for 100 data set) ------- 
--if (clock'event and clock='1') then  
    elsif(reset='1')then 

   count<=0; 

 end if;   
end if; 

--end if; 

end process;   

--count1 <=count; 

end Behavioral; 
 

Fig. 8.5(d) Portion of a HDL code  
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using HLS. However, the proposed approach has considered only recent DMR 

based techniques. 

The reliability feature extraction methodology takes datapath HDL (RTL 

code) of IP core as input. Subsequently, the top level entity HDL code of the 

IP core is examined to identify the presence of DMR. If a top level entity HDL 

contains a comparator component that takes two input signals coming from 

output register of module 1 (output register signal 1), and output register of 

module 2 (output register signal 2), and its output signal is the final output of 

the IP core. Then such a comparator component indicates the presence of 

DMR structure, thereby indicating presence of reliability feature in the IP 

core. An exemplary comparator’s port map is: port map (output register signal 

1, output register signal 2, comparator output signal). 

8.4.9 Loop support 

The loop support feature extraction methodology takes input application file of 

the executable HLS tool as input. The input file considered in this case-study 

can be a control intensive application (in the form of control data graph 

(CDFG)) or a data intensive application (in the form of data flow graph). The 

CDFG application typically contains the maximum iterations value. However, 

as DFG applications doesn’t contain any iteration information. Hence, this 

property of input application can help distinguish HLS tools that supports 

CDFG application from those who don’t. The feature is termed as loop 

support feature. This feature tries to remove HLS tools that does not support 

loop based CDFG applications. For instance, if IPID is generated for some 

CDFG application such as FIR, then all the HLS tools that does not support 

loop based CDFGs will be eliminated. 

8.4.10 Trojan security 

Similar to the reliability, trojan security is also one of the advanced features 

used in highly sophisticated HLS tools. Trojan security can be understood as 

detection of hardware trojans in an IP core. The typical approach to identify 

hardware trojans utilizes hardware resources from at least two different 

vendors and a DMR system is designed [53]. 
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The trojan security feature extraction methodology takes datapath HDL file 

and module library as input. Subsequently, the top level entity datapath is 

examined to identify a comparator component that takes two inputs, one each 

from the primary output of module 1 (as output signal 1) and module 2 (as 

output signal 2). Moreover, the final output of the IP core is the output of the 

comparator (comparator output signal) then dual modular redundancy is 

detected. Additionally, input module library of the HLS tool is examined to 

identify whether modules from more than 1 (at least 2) vendors are present or 

not? If, DMR as well as presence of hardware resources from multiple vendors 

are detected then, HLS tool supports trojan security feature. 

The upcoming subsection describes the third and the final step of the proposed 

methodology. 

IP validation: Once all the features are extracted, the feature set of IPID is 

compared with feature set of every competing HLS tool and ownership is 

awarded to the IP vendor whose feature set matches exactly (100%) with the 

feature set of the IPID. The following equation is utilized to evaluate the match 

percentage (m) between feature sets of IPID and IPCTn  

m= 
𝑁𝑢𝑚𝑏ⅇ𝑟 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑓ⅇ𝑎𝑡𝑢𝑟ⅇ𝑠

𝑇𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏ⅇ𝑟 𝑜𝑓 𝑓ⅇ𝑎𝑡𝑢𝑟ⅇ𝑠 𝑖𝑛 𝑓ⅇ𝑎𝑡𝑢𝑟ⅇ 𝑠ⅇ𝑡
∗ 100       (8.3) 

In a very rare case, the feature set of more than one HLS tool will match 

exactly with feature set of IPID. In such a scenario, number of features can be 

increased for achieving better results. However, note that such a case is very 

rare, as proposed methodology incorporates unique features along with 

generic features. Further, in case if none of the competing HLS tool’s feature 

set matches 100% with feature set of IPID then ownership will not be awarded 

to any of the competing vendors.  

8.5. Summary 

The proposed approach presents a novel computational forensic engineering 

based methodology for resolving false claim of ownership of DSP IP cores. 

Further, the proposed methodology introduces a novel feature-set comprising 

of ten features. Feature extraction rules for extracting these features were 

presented. Based on these rules, feature-sets of IPID and IPCTn were obtained 
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and matched. Finally, the IP ownership was award to the claimant whose 

IPCT’s feature-set matches exactly with the feature set of IPID. 

The proposed approach is compared with watermarking based approaches for 

resolving ownership conflicts. The proposed approach is found to be more 

reliable as it incurs zero-overhead (due to lack of signature-insertion step) and 

has no known attack in comparison with watermarking based approaches (as 

they vulnerable to reverse engineering based attack such as signature 

tampering) [5].  
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Chapter 9 

Experimental Results and Analysis 

This chapter discusses the experimental results and analyses of the proposed 

methodologies presented in this thesis.  

9.1. Results and analysis: Methodology for generating a DSP IP core 

that is simultaneously secure/resilient against multi-cycle temporal 

and multi-unit spatial effect of transient fault. 

This section discusses the experimental results of the proposed methodology 

presented in chapter 3 of this thesis. The proposed approach is implemented in 

java and executed on Intel core i5 3210M processor with 3MB cache, 4GB 

DDR3 primary memory and frequency of 2.5GHz. The proposed methodology 

is applied on DSP IP benchmarks of [61]. Note that the proposed approach is 

the first work in the literature which simultaneously provides resiliency 

against multi-cycle (kc) and multi-unit (km) transient fault affected due to 

single radiation strike at behavioral/architecture level. The proposed approach 

simultaneously achieves temporal and spatial resiliency through a novel 

unification of high level synthesis and physical level design. All prior work 

that handled multiple transient fault were at lower levels such as gate-level or 

transistor level. Nevertheless, comparisons to baseline duplication (non-

security DMR designs) and normal designs (no duplication & security 

constraints) for chip area, delay and power has been reported in Tables 9.1, 

9.2, and 9.3. The results are compared on the basis of following design metrics 

a) Chip area of the multi-unit (km) transient fault resilient floorplan. 

b) Delay of the multi-cycle (kc) transient fault resilient DMR schedule. 

c) Power of the transient fault resilient design. 

9.1.1 Area comparison 

Table 9.1 shows the area comparison of proposed fault resilient design with 

non-resilient design. It is easily evident that the proposed approach incurs a 

modest area overhead in comparison with non-resilient design. This is because 

imposing km-unit MTF resiliency constraint affects the placement of modules 

within the floorplan. For example consider DCT benchmark with resource 
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constraint Xi = (7M, 4A), the floorplan which does not follow our km-unit 

MTF resiliency constraint, results in a chip area of 556 sq.units. On the 

contrary, the floorplan which abides by our km-unit MTF resiliency constraint 

results in a chip area of 590.75sq.units. Thus, an area overhead of 34.75 sq. 

units due to imposing resiliency constraint is visible. The results are compared 

for large value of kc (=10) and km (=4), as large values are likely to produce 

high overhead. However, as evident from the results, the proposed approach 

incurs a nominal overhead even for significantly large strength of transient 

fault. 

9.1.2 Delay comparison 

The delay comparison of the proposed approach with non-resilient design is 

reported in table 9.2. The designs generated for large kc-cycle transient fault 

resiliency constraint (such as kc = 10) results in delay overhead compared to 

both non-transient fault resilient schedules (with and without duplication). 

This is because large resiliency constraint value creates more chances of 

hardware conflicts, therefore to avoid transient fault hazards operations must 

be pushed in lower control step (thereby increasing delay overhead). 

9.1.3 Power comparison 
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The power comparison of the proposed approach with non-resilient design is 

reported in table 9.3. A small overhead is observed for some designs of the 

proposed approach due to imposing of simultaneous multi-cycle & multi-fault 

resiliency constraints. This is because, imposing the constraints may cause 

increase in register /multiplexer count (due to possibility of a different 

schedule/binding) in some cases, resulting in slightly higher power magnitude. 

The power value reported includes total power due to functional units 

(hardware), steering logic (multiplexer, demultiplexer, interconnects) and 

storage elements. The results shows that with minimal power overhead 

 

Benchmark 

User 

Resource 

Constraint 

Delay in ns 

(Non-transient 

fault resilient  

design) 

Delay in 

ns 

(10-cycle 

transient 

fault 

resilient 

DMR 

design) 

Delay overhead 

in ns 

 

Chip area 

in sq. units 

(Non-

transient 

fault 

resilient 

DMR 

design) 

Chip area 

in sq. 

units 

(4-unit 

transient 

fault 

resilient 

DMR 

design) 

 

 

Chip area 

overhead 

in 

sq.units 
Non-  

DMR 
DMR 

Non-  

DMR 
DMR 

 

BPF 

3A, 4M 0.522 0.914 0.916 0.38 0.002 556 556 0.00 

3A, 3M 0.522 0.914 0.980 0.38 0.066 316 428 112 

3A, 2M 0.524 0.918  0.984 0.38 0.066 401.25 428 26.75 

     

DCT 

8A, 4M 0.522 0.720 0.720 0.20 0.000 590.75 695 104.25 

7A,4M 0.524 0.722 0.786 0.20 0.198 556 695 139 

6A,4M 0.58 0.788 0.788 0.20 0.000 516 625.5 109.5 

        

EWF 

4A,2M 0.90 1.172 1.172 0.27 0.000 607.25 748 47.5 

3A,2M 0.97 1.364 1.366 0.39 0.002 465 654.5 189.5 

2A,2M 1.03 1.752 1.944 0.72 0.192 465 561 96 

        

FFT 

8A,4M 0.39 0.46 0.46 0.07 0.000 396 562.5 49.5 

8A,3M 0.46 0.65 0.658 0.19 0.008 376 454.75 47 

8A,2M 0.46 0.85 0.856 0.39 0.006 262.5 428 112 

        

FIR 

8A,8M 0.57 0.64 0.644 0.07 0.004 556 764.5 0.00 

7A,7M 0.58 0.64 0.646 0.06 0.006 516 625.5 40 

6A,6M 0.58 0.64 0.646 0.06 0.006 516 625.5 40 

        

JPEG 

IDCT 

24A,24M 0.520 0.59 0.916 0.396 0.326 1816 1972 156 

20A,20M 0.522 0.654 0.98 0.458 0.326 1560 1880 320 

 

 

Table 9.2. Results comparison of proposed 10-cycles, 4-units transient fault 

resilient designs with non-transient fault resilient in terms of chip area and 

corresponding overhead 
 

 

Benchmark 

User 

Resource 

Constraint 

Chip area in sq. 

units 

(Non-transient 

fault resilient 

DMR design) 

Chip area in 

sq. units 

(km-unit 

transient 

fault 

resilient 

design) 

Chip area 

overhead 

in sq.units  

Benchmark 

User 

Resource 

Constraint 

Chip area 

in sq. units 

(Non-

transient 

fault 

resilient 

DMR 

design) 

Chip area 

in sq. 

units 

 (km-unit 

transient 

fault 

resilient 

design) 

Chip area 

overhea

d in sq. 

units 

ARF 
4A, 4M 556 556 0.00 

EWF 
4A,2M 607.25 654.75 47.5 

3A, 3M 428 556 128 3A,2M 465 654.5 189.5 

2A, 2M 321 321 0.00 2A,2M 465 561 96 

     

BPF 
3A, 4M 556 556 0.00 

FFT 
8A,4M 396 445.5 49.5 

3A, 3M 316 428 112 8A,3M 376 423 47 

3A, 2M 401.25 428 26.75 8A,2M 262.5 374.5 112 

     

DCT 
8A, 4M 590.75 695 104.25 

FIR 
8A,8M 556 556 0.00 

7A,4M 556 590.75 34.75 7A,7M 516 556 40 

6A,4M 516 556 40 6A,6M 516 556 40 

 

Table 9.1. Results comparison of proposed 2-cycle, 2-unit transient fault resilient design with non-

transient fault resilient in terms of chip area and corresponding overhead 
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sometimes (while no power overhead for most cases), the proposed approach 

generates DSP IP cores that are simultaneous resilient against multi-cycle and 

multi-unit transient fault.  

  

 

Benchmark 

User 

Resource 

Constraint 

Power in µW 

(Non-transient 

fault resilient  

design) 

Power in µW 

 (10-cycle, 4-

unit 

transient 

fault resilient 

DMR design) 

Power overhead in 

µW 

 

 

ARF 
2A 2M 9.605 10.117 0.512 

3A 3M 9.022 9.278 0.256 

4A 4M 8.840 8.840 0.00 

 

BPF 
3A 2M 8.110 8.110 0.00 

3A 3M 8.162 9.058 0.896 

3A 4M 8.572 8.956 0.384 

  

DCT 
6A 4M 14.598 14.598 0.00 

7A 4M 13.821 14.077 0.256 

8A 4M 12.579 12.579 0.00 

     

EWF 
2A 2M 9.394 9.522 0.128 

3A 2M 11.109 11.493 0.384 

4A 2M 10.911 10.911 0.00 

     

FFT 
8A 2M 8.486 8.486 0.00 

8A 3M 10.308 10.308 0.00 

8A 4M 9.511 9.511 0.00 

     

FIR 
6A 6M 8.322 8.322 0.00 

7A 7M 8.478 8.478 0.00 

8A 8M 8.928 8.928 0.00 

     

JPEG 

IDCT 

20A 20M 39.398 39.398 0.00 

24A 24M 36.875 36.875 0.00 

 

 

Table 9.3. Power comparison results of proposed 10-cycle, 

4-unit multiple transient fault resilient designs and non-

transient fault resilient DMR designs 
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9.2. Results and analysis: Methodology for generating a DSP IP core 

that is simultaneously tolerant against multi-cycle temporal and 

multi-unit spatial effect of transient fault. 

The methodologies for generating DSP IP core tolerant against multi-cycle 

and multi-unit transient fault has been discussed in chapter 4 for data intensive 

applications and in chapter 5 for loop based control intensive applications. 

This section presents results and analysis of both these methodologies. The 

proposed methodologies are implemented in java and executed on Intel core i5 

3210M processor with 3MB cache, 4GB DDR3 primary memory and 

frequency of 2.5GHz. The proposed methodologies are implemented on data 

intensive applications such as BPF, DCT, DWT as well as loop-based control 

intensive applications such as Differential equations, FFT, FIR, and Test_case 

of express benchmark suite [61]. The experimental results thus obtained are 

analyzed based on following metrics 

a) Fitness/cost of the explored kc-cycles, km-units tolerant design 

solution. 

b) Power consumption of the explored kc-cycles, km-units tolerant design 

solution. 

c) Rectangular chip area of the km-units fault tolerant floorplan. 

d) Delay of the kc-cycles fault tolerant scheduled C/DFG TMR 

As discussed earlier in the chapter 2, there is no work in the literature that 

simultaneously provide tolerance against multi-cycle and multi-unit transient 

fault. A prior work that closely relates to the proposed approaches is [12]. The 

results of comparison of proposed approach with [12] are tabulated in table 

9.4, 9.5, 9.6 and 9.7 respectively. The comparison of the proposed approach 

with [12] is performed for multi-cycle kc=4 (equivalent to 400ps) [12,24] & 

multi-unit km=4 (equivalent to 3072nm) [62,63,64] transient fault impact. 

However, note that the proposed methodologies are applicable for any value of 

kc and km.  

As reported in table 9.4, the proposed approach always generates low cost 

(better fitness) tolerant design solution compared to [12]. This is due to 

integrated PSO-DSE framework that explores low-cost transient fault tolerant 
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design. On the other hand, [12] is not capable to obtain a low-cost design 

solution due to lack of optimization framework in the tolerance algorithm, 

besides being deficient in providing tolerance against spatial effects of 

transient fault. Additrionally, [12] is not capable of performing pre-processing 

of unrolling factor (especially filters UF with large sequential loops) and 

exploring a combination of loop UF for control intensive applications. Thus 

[12] provides tolerance without appropriate unrolling and produces expensive 

fault tolerant solution. Further, due to lack of design space exploration 

framework, the design solution of [12] never produces low cost results. For 

comparison purpose, the design solution for [12] is based on the particle 

encoding with mid-hardware configuration. For example, as shown in table 

9.4, for DCT benchmark, the proposed approach has explored an low cost 

solution having design cost of 0.37, while [12] yielded a high-cost solution 

with a design cost of 0.49. Thus, relative cost improvement of 0.12 is 

achieved. Similarly, cost improvements for other benchmarks are reported in 

table 9.4. An average cost reduction of ~30 % is achieved for benchmarks 

tabulated in table 9.4. 

As evident from table 9.5, a significant reduction in power consumption of 

proposed approach has been obtained with respect to [12]. The power reported 

in table 9.5 is evaluated based on the following power model. 

Power Model: For a given functional resource, the power consumption 

(adopted from [17]) can be given as: 

))()((
1

i

Max

i

i

TMRFT

T FUpFUKP 




  (9.1) 

Where, p(FUi)  is the power consumed by FUi (as per 15nm technology scale 

open cell NanGate Library [31]);  K(FUi) is the number of instances of FUi 

used in the FT-TMR design and ‘Max’ indicates the index of the last FU type 

used in the FT-TMR design. 

The proposed approach implements PSO based DSE for generating fault 

tolerant solution based on appropriate combination of loop unrolling factor 

and hardware resources compared to [12] which does not perform any 

optimization to handle overhead. Thus, proposed approach results in 
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significantly lesser power consumption. For example, as shown in table 9.5, 

for DCT benchmark, the proposed approach has explored a fittest design 

solution having power of 2.49 uW, while [12] yielded a design cost 5.05uW. 

Thus, relative power reduction of 2.56uW is achieved. Similarly, power 

reductions for other benchmarks are reported in table 9.5. An average power 

reduction of ~57 % is achieved for benchmarks tabulated in table 9.5.  

Table 9.6 and 9.7 shows the area and delay value of the obtained design 

solutions for the standard benchmarks. As represented in table 9.6, area of 

proposed approaches is lesser than the area of [12] (for all the benchmarks) as 

design solution explored through proposed approach obtains lesser number of 

hardware resources and unrolling factor compared to [12], which does not 

explore appropriate combination of unrolling factor and hardware as well as 

does not perform preprocessing of unfit unrolling factors. Further, as shown in 

table 9.7 significantly larger number of resources are utilized in [12], hence 

due to higher parallelization, delay of [12] may sometimes be lesser compared 

to proposed approach. Nonetheless, the overall design cost and power of [12] 

is significantly higher than proposed approach due to lack of provision of 

optimization technique during tolerance design. 
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Table 9.4. Cost comparison of proposed method with [12] for kc=4 & km=4 

Benchmark 
Design 

Solution 
of [12] 

Design 
Cost 

of [12] 

Design 
Solution 

of 
proposed 
approach 

Design 
Cost of 

proposed 
approach 

Reduction 
in Design 

Cost % 
Benchmark 

Design 
Solution 
of [12] 

Cost 
of 

[12] 

Design 
Solution 

of 
proposed 
approach 

Design 
Cost of 

proposed 
approach 

Reduction 
in cost % 

BPF 5A, 6M 0.53 3A, 2M 0.37 30.18 % DIFF_EQ 
12A, 12S, 
36M, 2C, 

UF=8 
0.30 

2A, 2S, 
6M, 2C, 

UF=4 
0.18 40 % 

DCT 12A,6M 0.49 5A, 3M 0.37 24.48 % FFT 
26A,12S, 
24M,2C, 

UF=8 
0.32 

4A, 5S, 
4M, 2C, 

UF=4 
0.20 37.5 % 

DWT 6A, 8M 0.57 3A, 2M 0.42 26.31 % FIR 
2A, 12M, 
2C, UF=8 

0.41 
2A, 3M, 
2C, UF=4 

0.28 31.7 % 

      TEST_CASE 
14A,12M, 
2C, UF=8 

0.38 
4A, 5M, 
2C, UF=4 

0.30 21 % 

 
Table 9.5. Comparison of power of proposed method with [12] for kc=4 & km=4 

Benchmark 
Design 

Solution 
of [12] 

Power 
of 

[12] 
(in 

µW) 

Design 
Solution 

of 
proposed 
approach 

Proposed 
power 
(in µW) 

Reduction 
in power 

% 
Benchmark 

Design 
Solution 
of [12] 

Power 
of 

[12] 
(in 

µW) 

Design 
Solution 

of 
proposed 
approach 

Proposed 
power 
(in µW) 

Reduction 
in power 

% 

BPF 5A, 6M 4.84 3A, 2M 2.95 39.04 % DIFF_EQ 
12A, 12S, 
36M, 2C, 

UF=8 
23.60 

2A, 2S, 
6M, 2C, 

UF=4 
4.20 82. 20 % 

DCT 12A,6M 5.05 5A, 3M 2.49 50.69 % FFT 
26A, 12S, 
24M, 2C, 

UF=8 
19.37 

4A, 5S, 
4M, 2C, 

UF=4 
4.38 77.38 % 

DWT 6A, 8M 4.86 3A, 2M 1.97 59.46 % FIR 
2A, 12M, 
2C, UF=8 

6.92 
2A, 3M, 
2C, UF=4 

2.72 60.69 % 

      TEST_CASE 
14A,12M, 
2C, UF=8 

8.22 
4A, 5M, 
2C, UF=4 

5.61 31.75 % 

 
Table 9.6. Comparison of area of proposed method with [12] for kc=4 & km=4 (Note : 1 unit = 768nm) 

 

Benchmark 
Design 

Solution 
of [12] 

Area of 
[12] (in 

Sq. 
units) 

Design 
Solution of 
proposed 
approach 

Area of 
proposed 
approach 

(in Sq. 
units) 

Benchmark 
Design 

Solution of 
[12] 

Area of 
[12] (in 

Sq. 
units) 

Design 
Solution of 
proposed 
approach 

Area of 
proposed 
approach 

(in Sq. 
units) 

BPF 5A, 6M 500.0 3A, 2M 406.25 DIFF_EQ 
12A, 12S, 
36M, 2C, 

UF=8 
1640.5 

2A, 2S, 6M, 
2C, UF=4 

593.75 

DCT 12A, 6M 531.25 5A, 3M 437.5 FFT 
26A, 12S, 
24M, 2C, 

UF=8 
1247.75 

4A, 5S, 4M, 
2C, UF=4 

593.75 

DWT 6A, 8M 531.25 3A, 2M 406.25 FIR 
2A, 12M, 
2C, UF=8 

625.0 
2A, 3M, 2C, 

UF=4 
468.75 

     TEST_CASE 
14A, 12M, 
2C, UF=8 

687.5 
4A, 5M, 2C, 

UF=4 
593.75 

 
Table 9.7. Comparison of delay of proposed method with [12] for kc=4 & km=4  

 

Benchmark 
Design 

Solution 
of [12] 

Delay 
of [12] 
(in ns) 

Design 
Solution 

of 
proposed 
approach 

Delay of 
proposed 
approach 

(in ns) 

Benchmark 
Design 

Solution of 
[12] 

Delay 
of [12] 
(in ns) 

Design 
Solution of 
proposed 
approach 

Delay of 
proposed 
approach 

(in ns) 

BPF 5A, 6M 2.1 3A, 2M 3.1 DIFF_EQ 
12A, 12S, 

36M, 2C, UF=8 
1.7 

2A, 2S, 6M, 
2C, UF=4 

5.8 

DCT 12A, 6M 1.9 5A, 3M 3.0 FFT 
26A, 12S, 

24M, 2C, UF=8 
4.1 

4A, 5S, 4M, 
2C, UF=4 

8.7 

DWT 6A, 8M 1.6 3A, 2M 2.5 FIR 
2A, 12M, 2C, 

UF=8 
2.5 

2A, 3M, 2C, 
UF=4 

3.8 

     TEST_CASE 
14A, 12M, 2C, 

UF=8 
1.8 

4A, 5M, 2C, 
UF=4 

3.8 
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9.3. Results and analysis: Methodology for generating a low-cost, highly 

secure, functionally obfuscated DSP IP core 

This section discusses the experimental results of the proposed methodology 

presented in chapter 6 of this thesis. The proposed approach and methodology 

presented in [21] have been implemented in java and executed on Intel Core i5 

3210M CPU with 4GB DDR3 primary memory and processor frequency of 

2.5 GHz. The proposed methodology generates a low-cost, low-power, highly 

secured functionally obfuscated IP core. The power and delay values are based 

on 15 nm NanGate library [31]. The proposed approach and [21] are tested on 

Express Benchmark suite [61]. The results obtained are analyzed based in 

terms of the following parameters: 

a. Comparison of strength of obfuscation of proposed approach with [21] 

from an attacker’s perspective.  

b. Power comparison of proposed approach with [21]. 

The strength of obfuscation parameter represents the complexity for an 

attacker to reverse engineer the design netlist. The strength of obfuscation of 

the proposed approach and [21] are reported in table 9.8. This is an optimistic 

estimate, since for each key guess input output pattern of the circuit is also 

verified. For [21] since each key gate is encoded with 1 bit, therefore number 

of key gates is equal to number of encoded key bits. For example as shown in 

table 9.8, the number of key bits for JPEG IDCT is 432, therefore, number of 

key gates added is 432. The proposed approach is able to provide an 

enhancement in the strength of obfuscation compared to [21]. For example, in 

case of JPEG IDCT benchmark, the attacker has to apply 3.83 e+404 brute-

force input combinations to decipher the netlist. Similarly, for [21] the brute-

force effort is 1.1 e+130. The strength of obfuscation enhancement through 

proposed approach is 3.46 e+274 times of [21].  

As reported in table 9.9, the leakage power consumption of the proposed 

obfuscation approach is less than the [21]. This is because proposed 

obfuscation technique integrates PSO-DSE framework for exploration of low-

cost obfuscated design solution. Therefore, the design solution explored by the 

proposed approach consumes less power compared to [21]. An average 
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reduction of 9.94 % in static power consumption of proposed approach is 

observed compared to [21]. The obfuscated cost of the proposed approach and 

[21] are reported in table 9.10. An average cost reduction of 6.35% is obtained 

through proposed obfuscation approach. As discussed earlier, the low-cost 

solution is obtained since the proposed approach integrates PSO-DSE 

framework. Thus, even though there is marginal delay overhead due to ILBs, 

however it gets optimized during overall design delay reduction through PSO-

DSE. Altogether, the proposed approach on comparison with [21] yielded a 

power reduction of ~ 10 %, design cost reduction of ~ 6.5 % and security 

enhancement (strength of obfuscation) of at least 4.29 e+9 times. 
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DSP Core Benchmarks [19] No. of key-

bits  

encoded for 

proposed 

obfuscation 

(r) 

Strength of  

obfuscation 

of proposed 

approach  

 

No. of 

key-bits  

encoded 

for [21] 

(r) 

Strength of  

obfuscation 

of [21] 

Strength of 

obfuscation 

enhancement 

of proposed 

approach (by 

factor of) 

Name Size 

IIR 9919 192 6.28 e+57 96 7.92 e+28 7.92 e+28 

Mesa Horner 10842 192 6.28 e+57 80 1.2 e+24 5.19 e+33 

DWT 10958 128 3.40 e+38 96 7.92 e+28 4.29 e+ 9 

ARF 14833 256 1.15 e+77 112 5.19 e+33 2.23 e+43 

FIR 16047 320 2.13 e+96 144 2.23 e+43 9.57 e+52 

JPEG IDCT 42710 1344  3.83 e+404 432 1.10 e+130 3.46 e+274 

Mesa Interpolate 48853 832 2.86 e+250 464 4.76 e+139 6.01 e+110 

 

Table 9.8. Strength of obfuscation comparison of proposed 

functionally obfuscated approach w.r.t. [21] 

Benchmark 

Explored 

proposed 

functionally 

obfuscated 

Design 

Solution 

Gate 

count of 

netlist 

(proposed 

approach) 

Power of 

proposed 

approach 

(in µW) 

Design 

Solution 

of [21] 

Gate 

count 

of 

netlist 

[21] 

Power 

of [21] 

(in 

µW) 

Gate 

Reduction 

(in %) 

Power 

Reduction 

(in %) 

IIR 1A, 2M, µ=4 6444 20.146 2A, 4M 7649 24.850 15.75 % 18.92 % 

Mesa Horner 1A, 2M, µ=4 6641 26.080 2A, 4M 7780 28.986 14.64 % 10.02 % 

DWT 1A, 1M, µ=1 5745 25.586 3A, 3M 7324 31.365 21.55 % 18.42 % 

ARF 2A, 2M, µ=3 7741 39.234 3A, 4M 8495 43.967 8.87 % 10.76 % 

FIR 3A, 2M, µ=4 8112 41.864 4A, 5M 9436 45.274 14.03 % 7.53 % 

JPEG IDCT 11A,10M,µ=2 23370 172.523 12A,15M 23998 178.843 2.61 % 3.53 % 

Mesa Interpolate 8A, 5M, µ=4 18061 132.924 13A,16M 24932 155.673 27.55 % 14.61 % 

 

Table 9.9. Power comparison of proposed functionally obfuscated approach w.r.t. [21] 

Benchmark 

Proposed 

functionally 

obfuscated 

Design 

Solution 

Cost of 

proposed 

approach 

Design 

Solution 

of [21] 

Cost 

of [21] 

Cost 

Reduction 

(in %) 

IIR 1A, 2M, µ=4 0.6810 2A, 4M 0.7427 8.30 % 

Mesa Horner 1A, 2M, µ=4 0.6526 2A, 4M 0.6820 4.31 % 

DWT 1A, 1M, µ=1 0.7549 3A, 3M 0.7708 2.06 % 

ARF 2A, 2M, µ=3 0.5259 3A, 4M 0.5281  0.41 % 

FIR 3A, 2M, µ=4 0.5638 4A, 5M 0.5853 3.67 % 

JPEG IDCT 11A,10M,µ=2 0.3629 12A,15M 0.4455 18.54 % 

Mesa Interpolate 8A, 5M, µ=4 0.3093 13A,16M 0.3573 13.43 % 

 

Table 9.10 Cost comparison of proposed functionally 

obfuscated approach w.r.t. [21] 
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9.4. Results and analysis: Methodology for analyzing the aging effect of 

NBTI stress on performance of DSP IP core 

This section discusses the experimental results of the proposed methodology 

presented in chapter 7 of this thesis. The proposed investigation is performed 

on Altera cyclone II FPGA board EP2C20F484C7. The respective software 

program Quartus II version 7.2 run on Intel® Xeon® CPU with 4GB RAM at 

3.10 GHz. Fig. 9.1 shows the datapath diagram of Nand based gate level 

implementation with its respective pin assignments. The gate level 

implementations have been analyzed based on following criteria  

a) Change in Threshold Voltage Vs. Stress Time 

b) Delay Degradation Vs. Stress Time 

c) Delay degradation due to NBTI Stress and No-Stress for most threatful 

input vector. 

d) Delay degradation due to NBTI Stress and No-Stress for different samples 

of input vector. 

9.4.1. Change in Threshold Voltage Vs. Stress Time 

NBTI stress affects several parameters of a device including threshold voltage, 

drain current, transconductance etc. In our experiments we have focused on 

the effect of NBTI stress on threshold voltage of the pmos. More the NBTI 

stress time, more is the increase in threshold voltage (as discussed in eqn. (7.1) 

& (7.2)). This has been shown by varying the stress time for evaluating the 

effect on threshold voltage. Fig. 9.2(a) shows the change in threshold voltage 

observed after applying NBTI stress for 1, 2 & 3 years respectively on ARF IP 

core for distinct values of stress probability. Stress probability as defined in 

[65] is the fraction of the time the pmos transistor is under stress (it represents 

the workload of the device). The value of stress probability is considered as 

number of control steps in which a gate is under NBTI stress out of total 

number of control steps.  

9.4.2. Delay degradation Vs. Stress Time 

Delay of the gate gets affected with change in threshold voltage (as shown in 

eqn. (7.3)). Thus, when threshold voltage of the pmos increases due to NBTI 
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stress, delay of the gate (corresponding to that pmos) also increases. This 

causes performance degradation of the entire datapath. However, it also 

depends on the input vector applied at the gates. This is because not all input 

vectors are capable of turning ON all (or majority of) the pmos in the critical 

path. Depending on the input applied, the number of pmos turned ON in the 

critical path changes. Thus, it is important to analyze the effect of each input 

vector on the critical path of the datapath, as critical path determines the delay 

of the circuit. Following process is performed to evaluate the delay of the gate 

level datapath for each input vector. First, for a specific test vector, the number 

of pmos in the critical path being turned ON is determined, followed by 

determination of ΔVTh corresponding to a specific stress time (t). Once ΔVTh is 

calculated, then the new threshold voltage (VTh
New

) corresponding to the pmos 

is calculated (using eqn. (7.2)). Subsequently, the VTh
New

 is used to evaluate its 

gate delay (using eqn. (7.3)). In case a test vector is applied that does not turn 

a pmos of a gate ON, then the original threshold voltage corresponding to the 

nmos is used to evaluate delay of the gate. If a test vector affects both pmos 

and nmos of a gate, then the delay corresponding to the pmos is considered (as 

it is larger). Note: On applying a test vector if number of nmos being turned 

ON increases then total delay increases. This is because nmos transistors are in 

series in NAND gate representation. However, if number of pmos transistor 

being turned increases then delay doesn't increase as significantly as pmos 

transistors are connected in parallel in NAND gate representation. Fig. 9.2 (b) 

shows delay of the gate level datapath corresponding to each test (input) 

vector applied. As observed, the red colored ones (1010,1000,0010,0000) are 

most threatful as they all incur same maximum performance degradation. The 

green colored ones (0011,1011,0111) produces least delay degradation. 

Similar results were observed for other benchmarks. Table 9.11 shows delay 

after 1 year of continuous NBTI stress is applied on IIR core through each of 

the possible input vector combination. Similarly, the delay of ARF IP core is 

reported in table 9.12. 

9.4.3. Delay degradation due to NBTI Stress and No-Stress for most 

threatful input vector (for varying Stress time) 
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Fig. 9.2(c) shows the delay of the gate level datapath of ARF under NBTI 

stress and no-stress for most threatful input vector say ‘0000’ (i.e., the input 

vector which causes maximum delay degradation as obtained in previous 

section). In other words, we analyze in this section how much degradation 

occurs when NBTI stress is applied due to specific input vector in contrast to 

when no-NBTI stress occurs. No-stress here indicates a theoretical condition 

when NBTI stress does not affect the pmos of the gate (i.e. its threshold 

voltage and corresponding delay). Three possible cases have been investigated 

for stress time (1 year, 2 year and 3 year) on datapath. As expected, with 

increase in stress time, the delay of the datapath has increased (due to increase 

in threshold voltage of corresponding pmos of the gate). However, there is no 

effect on delay when no NBTI stress is considered as threshold voltage 

remains same. This trend of Fig.9.2(c) is likely to remain same as increase in 

stress time will always increase the threshold voltage. 

9.4.4. Delay degradation due to NBTI Stress and No-Stress for most 

threatful input vector (for varying Stress time) 

In this section we investigate the effect of different samples of input vector on 

the delay of the datapath for both NBTI stress and no-NBTI stress condition. 

We have selected three samples viz. 0000(causing maximum delay 

degradation), 0011 (causing minimum delay degradation) and 1101 (causing 

median delay degradation) for this analysis. Fig. 9.2(d) shows the impact on 

delay of the datapath for the chosen sample vectors for NBTI stress and no-

stress condition. Similar trends are observed for all the tested benchmarks. 
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Input 
Vectors 

Individual Control Steps Total 
Delay CS 1 CS 2 CS 3 CS 4 CS 5 CS 6 

0000 4731.9 4201.7 5993.8 6427.6 6427.6 6427.6 34210.2 

0001 4731.9 4201.7 5993.8 6427.6 6427.6 6427.6 34210.2 

0010 4729.6 3980.9 5993.8 6427.6 6427.6 6427.6 33987.1 

0011 4725.1 3973.2 5756.4 6192.8 6413.9 6415.6 33477.0 

0100 4731.9 4201.7 5993.8 6427.6 6427.6 6427.6 34210.2 

0101 4731.9 4201.7 5993.8 6427.6 6427.6 6427.6 34210.2 

0110 4729.6 3980.9 5993.8 6427.6 6427.6 6427.6 33987.1 

0111 4725.1 3973.2 5756.4 6192.8 6413.9 6415.6 33477.0 

1000 4727.4 4194.0 5993.8 6427.6 6427.6 6427.6 34198.0 

1001 4727.4 4194.0 5993.8 6427.6 6427.6 6427.6 34198.0 

1010 4731.9 3984.8 5993.8 6427.6 6427.6 6427.6 33998.3 

1011 4727.4 3973.2 5756.4 6192.8 6413.9 6415.6 33479.3 

1100 4713.4 4182.4 5967.2 6411.0 6412.7 6195.7 33882.4 

1101 4713.4 4182.4 5967.2 6411.0 6412.7 6195.7 33882.4 

1110 4713.4 3979.9 5967.2 6411.0 6412.7 6195.7 33679.9 

1111 4726.5 3980.9 6193.7 6203.2 6420.1 6203.1 33727.5 

 

Table 9.11 Delay after applying 1 year of continuous NBTI stress of IIR Benchmark 

Input 

Vector 

CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 CS9 CS10 CS11 CS12 CS13 CS14 CS15 CS16 CS17 CS18 C19 TOTAL 

0000 8446 7925 8446 9390 8655 9390 9390 7925 9390 8659 7925 9390 9390 8659 7925 9390 9390 8655 8655 167004 

0001 8429 7689 8429 8911 8176 8911 8176 7689 8911 8436 7918 8911 8911 8436 7918 8911 8911 8176 8176 160034 

0010 8446 7925 8446 9390 8655 9390 9390 7925 9390 8659 7925 9390 9390 8659 7925 9390 9390 8655 8655 167004 

0011 8429 7666 8429 8670 7937 8671 8671 7666 8675 8432 7913 8889 8889 8432 7913 8889 8889 7677 7677 158425 

0100 8419 7438 8419 9390 8655 9390 9390 7438 9390 8173 7912 9390 9390 8173 7438 9390 9390 8655 8655 164502 

0101 8428 7696 8428 8911 8176 8911 8911 7696 8911 8427 7911 8911 8688 8427 8123 8911 8911 8176 8176 160739 

0110 8419 7438 8419 9390 8655 9390 9390 7438 9390 8173 7912 9390 9390 8173 7438 9390 9390 8655 8655 164502 

0111 8418 7675 8418 8887 7930 8890 8663 7675 8668 8424 7903 8676 8453 8424 7903 8676 8676 8204 8204 158776 

1000 8446 7925 8446 9390 8655 9390 9390 7925 9390 8659 7925 9390 9390 8659 7925 9390 9390 8655 8655 167004 

1001 8429 7689 8429 8911 8176 8911 8176 7689 8911 8436 7918 8911 8911 8436 7918 8911 8911 8176 8176 160034 

1010 8446 7925 8446 9390 8655 9390 9390 7925 9390 8659 7925 9390 9390 8659 7925 9390 9390 8655 8655 167004 

1011 8429 7666 8429 8670 7937 8671 8671 7666 8675 8432 7913 8889 8889 8432 7913 8889 8889 7677 7677 158425 

1100 8390 7911 8390 9350 8423 9350 9157 7911 9157 8646 7905 9378 9378 8646 7911 9378 9378 8419 8419 165504 

1101 8409 7426 8409 8952 8217 9335 8952 8952 8952 8414 8414 8952 8952 8414 8107 8952 8952 8217 8217 163205 

1110 8390 7911 8390 9350 8423 9350 9157 7911 9157 8646 7905 9378 9378 8646 7911 9378 9378 8419 8419 165504 

1111 8415. 7683 8415 9367 8631 9367 9365 7899 9367 8411 7898 9367 9367 8411 8108 9367 9367 8632 8632 166079 

 

Table 9.12 Delay after applying 1 year of continuous NBTI stress on ARF benchmark 
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Fig.9.1 Nand based gate level implementation of FIR datapath on FPGA board 
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Fig. 9.2 Effect of NBTI stress on ARF Benchmark 

(a) Change in threshold voltage with stress time,(b) Delay of the datapath corresponding to each 

input vector applied, (c) Stress Vs No-Stress for 0000, (d) Delay wrt Stress Vs. no-Stress 
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9.5. Results and analysis: Computational forensic engineering for 

resolving ownership conflict of DSP IP core generated using high 

level synthesis 

The proposed approach and [13] were both implemented in java and run on 

Intel Core-i5-460M CPU with 3MB L3 cache memory; 4GB DDR3 memory 

at 2.5 GHz. The proposed approach containing 10 unique highly specialized 

design features in the ‘feature set’ (encompassing feature types of objectives, 

application type, data bit type, performance and datapath structure) have been 

investigated and tested on three major types of digital application specific IP 

cores. For example, benchmarks ARF, BPF & DCT are data intensive type 

application specific IPs; FFT & FIR are control intensive (loop based) type 

application specific IPs and JPEG IDCT is condition based data intensive type 

application specific IP cores [61]. Therefore the ‘feature set’ of the proposed 

approach is enough and applicable on all type of digital application specific IP 

cores. However, as mentioned in chapter 8, the proposed approach does not 

apply to IP cores of general purpose applications. It is only applicable for any 

type of application specific IP cores such as from signal processing and 

multimedia. The HLS tools selected for generating results for the proposed 

approach, are diverse in nature. For comprehensive analysis we have chosen 

seven academic/industrial tools (i.e. n = 7, from IPCT 1 to IPCT 7) with 

varying design objectives, varying DSE frameworks and varying properties as 

listed below: 

1. Hybrid PSO-GA based HLS tool [52]. 

2. Fault tolerant based HLS tool [12]. 

3. Fault secure based HLS tool [17]. 

4. Watermarking based HLS tool [13]. 

5. Trojan security based HLS tool [53]. 

6. PSO based HLS tool [33]. 

7. BFOA based HLS tool [54]. 
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Fig. 8.6 Pipelining feature in IP with resource configuration (2A, 1M) 
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Testing proposed CFE for ownership resolution for n = 7 is sufficient as the 

seven HLS tools are quite diverse and unique in nature. The same HLS tools 

are suitable for different IP cores as long as they are digital application 

specific IP by nature. Other HLS tools available in the literature mostly 

contain similar properties, frameworks or design objectives. Thus, addition of 

more HLS tools for testing may incur redundancy. However, the current seven 

HLS tools chosen for testing also comprises of HLS tools of similar 

characteristics. For example, HLS tool 1 (IPCT 1), HLS tool 5 (IPCT 5) and 

HLS tool 7 (IPCT 7) have several characteristics common in them. As shown 

in Table 9.13 for ARF benchmark, these three tools share eight common 

characteristics, but still the proposed approach was capable of identifying the 

legal owner successfully. Table 9.13 shows that HLS tool 5 (IPCT 5) has 100 

% matching with given IPID. Additionally, as our results confirm that ten 

features in the feature set is sufficient to resolve IP ownership conflict for HLS 

tools. This is because all ten features in the set are unique though diverse and 

cover all the key aspects of HLS tools ranging from objectives (area, delay, 

power, Trojan security, fault reliability), application type (loop based/non-loop 

based), data bit type (data width), performance (scheduling type, chaining, 

multi-cycling, pipelining) and datapath structure (resource type used). Tables 

9.13 to 9.16 shows the feature-set of proposed CFE approach generated with 

respect to each competing HLS tool for various benchmarks. The results 

indicate the matching percentage of feature-set of each competing HLS tools 

(corresponding to each IP vendor) with feature-set of IPID. The HLS tool 

whose IP feature-set matches 100 % with the feature-set of IPID is considered 

as the rightful owner. For example in table 9.13, the feature set decided for 

both IP to be identified (IPID) and competing IP tool vendors (IPCT n) are: 

(scheduling algorithm, resource type, chaining, bus width support, pipelining, 

multi-cycling, design objective, reliability, Trojan security, loop support).  The 

proposed feature extraction step determines the details of features for IPID & 

IPCT1… IPCT7. For ARF benchmark in table 9.13, for instance in IPID, the 

presence of ‘chaining’ feature was detected (thus denoted as ‘Yes’) and 

information of scheduling algorithm is indicated as ‘LIST’. Similarly, details 

of remaining features after extraction is also indicated. As evident the feature 

extraction of all IP core from each competing HLS tool is extracted. However, 
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feature set of only IP core generated by HLS tool 5 (IPCT5) matches 

completely with IPID. Similarly, results for other benchmarks have been shown 

in table 9.13 to 9.16. Table 9.15 shows a case in which the IPID’s feature-set 

doesn’t match with any of the feature-set of the competing IP tools i.e. 

matching percentage is less than 100%. Therefore, in such a scenario the legal 

ownership of the IPID cannot be awarded to any of the claimants. Further, there 

is possibility more than one competing IP vendor tool to have 100 % matching 

percentage. However, in our experiment we didn’t encounter a scenario. 

Nevertheless, in such a scenario, further analysis through CFE is needed 

through addition of more features in the current feature-set (i.e. beyond the 

features in the current set). Table 9.17 shows the feature extraction time of 

each of the features of the feature set by proposed CFE approach. In other 

words, the features of the feature set are illustrated in increasing order of time 

complexity. This shows that the extraction time taken for ‘loop support’ is 

least, while for ‘scheduling algorithm’ is highest. Further, this also shows that 

all the ten features of the feature set are extracted within acceptable runtime 

(in order of only few milli-seconds). 

Additionally, the possibility of false positive and false negative does not arise 

in the proposed results as the rightful IP owner is systematically determined 

through several digital forensic evidences acquired during/after high level 

synthesis design process. This is an inherent property of computational 

forensic engineering performed on high level synthesis based IP cores. 

Table 9.18 shows the advantages of proposed CFE approach for IP core 

protection over watermarking based IP protection approach [13] in terms of 

storage overhead (i.e. number of registers required in final design). As evident 

from table 9.18, for watermarking approach [13], significant storage registers 

are required in final IP design. This is because signature insertion is done at 

the register allocation step of architectural synthesis. The presence of this 

signature is evaluated during signature detection stage for IP protection (by 

resolving false claim of vendor ownership). On the contrary, the proposed 

approach as shown in table 9.18 does not require embedding any vendor 

signature thus resulting into zero register during implementation (i.e. no 

design hardware overhead). The proposed CFE approach provides 
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greater/stronger reliability and protection as it is almost non-vulnerable to any 

threats due to no existence of reverse engineering step as well as vendor 

signature like in case of watermark based approaches. 

 

 

  

Benchmark: ARF (28 nodes) 

IP features 
Schedule 
algorithm 

Resource 
type 

chaining 
Bus 

width 
support 

Data 
pipelining 

Multi-
cycling 

Design 
objective 

Fault 
Reliability 

Loop 
support 

Trojan 
Security 

Match 
percent 

IPID LIST A, M Yes 32 bit No Yes 

Area - 
Execution 

time / Power- 
Execution 

time 

No DFG No NA 

IPCT 1 
(Hybrid PSO-
GA HLS [52]) 

LIST A, M Yes 16 bit No Yes 
Area-Power-

Latency 
No DFG No 80 

IPCT 2 
[Fault secure 

HLS [17]) 
LIST A, M, C No 16 bit No Yes 

Area - 
Execution 

time / Power- 
Execution 

time 

Yes DFG No 60 

IPCT 3 
(Watermark-

HLS [13]) 
LIST A, M, C, S No 32 bit No No 

Area - 
Execution 

time / Power- 
Execution 

time 

No DFG No 70 

IPCT 4 
(Trojan 

Secure-HLS 
[53]) 

LIST A, M, C, S No 16 bit No No 

Area - 
Execution 

time / Power- 
Execution 

time 

No DFG Yes 50 

IPCT 5 
(BFOA-HLS 

[54]) 
LIST A, M Yes 32 bit No Yes 

Area - 
Execution 

time / Power- 
Execution 

time 

No DFG No 100 

IPCT 6 
(Fault 

Tolerant-HLS 
[12]) 

LIST A, M, C, S No 16 bit No No 
Area - 

Latency 
Yes DFG No 40 

IPCT 7 
(PSO-HLS 

[33]) 
LIST A, M Yes 8 bit Yes Yes 

Area - 
Execution 

time / Power- 
Execution 

time 

No DFG No 80 

 

 

 

Table 9.13. Feature-set of IPID and IPCT for ARF benchmark  

(Note: IPCT n = IP core generated by competing HLS tool by vendor ‘n’) 

 



118 

 

  

Benchmark: FFT (36 nodes) 

IP features 
Scheduling 

algorithm 

Resource 

type 
chaining 

Bus 

width 

support 

Data 

pipelining 

Multi-

cycling 

Design 

objective 

Fault 

Reliability 

Loop 

support 

Trojan 

Security 

Match 

percent 

IPID 
LIST A, M, C No 16 bit No Yes 

Area - 

Execution time 

/ Power- 

Execution time 

Yes 

Yes 

(CDFG 

& DFG) 

No NA 

IPCT 1 
(Hybrid PSO-
GA HLS [52]) 

LIST A, M Yes 16 bit No Yes 
Area-Power-

Latency 
No 

No 

(DFG 

ONLY) 

No 50 

IPCT 2 
[Fault secure 

HLS [17]) 

LIST A, M, C No 16 bit No Yes 

Area - 

Execution time 

/ Power- 

Execution time 

Yes 

Yes 

(CDFG 

& DFG) 

No 100 

IPCT 3 
(Watermark-

HLS [13]) 

LIST A, M, C, S No 32 bit No No 

Area - 

Execution time 

/ Power- 

Execution time 

No 

Yes 

(CDFG 

& DFG) 

No 60 

IPCT 4 
(Trojan 

Secure-HLS 
[53]) 

LIST A, M, C, S No 16 bit No No 

Area - 

Execution time 

/ Power- 

Execution time 

No 

Yes 

(CDFG 

& DFG) 

Yes 60 

IPCT 5 
(BFOA-HLS 

[54]) 

LIST A, M Yes 32 bit No Yes 

Area - 

Execution time 

/ Power- 

Execution time 

No 

No 

(DFG 

ONLY) 

No 50 

IPCT 6 
(Fault 

Tolerant-HLS 
[12]) 

LIST A, M, C, S No 16 bit No No Area - Latency Yes 

No 

(DFG 

ONLY) 

No 60 

IPCT 7 
(PSO-HLS 

[33]) 

LIST A, M, C Yes 8 bit Yes Yes 

Area - 

Execution time 

/ Power- 

Execution time 

No 

Yes 

(CDFG 

& DFG) 

No 60 

 

 

 

Table 9.14. Feature-set of IPID and IPCT for FFT benchmark  
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Benchmark: FIR (23 nodes) 

IP features 
Scheduling 

algorithm 

Resourc

e type 
chaining 

Bus 

width 

suppor

t 

Data 

pipelining 

Multi-

cycling 

 

Design 

objective 
Reliability 

Loop 

support 

 

Trojan 

Security 

Match 

percent 

IPID 
LIST A, M,C Yes 8 bit No Yes 

Area - Execution 

time / Power- 

Execution time 

No 

Yes 

(CDFG 

& DFG) 

Yes NA 

IPCT 1 
(Hybrid PSO-
GA HLS [52]) 

LIST A, M Yes 16 bit No Yes 
Area-Power-

Latency 
No 

No 

(DFG 

ONLY) 

No 50 

IPCT 2 
[Fault secure 

HLS [17]) 

LIST A, M, C No 16 bit No Yes 

Area - Execution 

time / Power- 

Execution time 

Yes 

Yes 

(CDFG 

& DFG) 

No 60 

IPCT 3 
(Watermark-

HLS [13]) 

LIST 
A, M, C, 

S 
No 32 bit No No 

Area - Execution 

time / Power- 

Execution time 

No 

Yes 

(CDFG 

& DFG) 

No 50 

IPCT 4 
(Trojan 

Secure-HLS 
[53]) 

LIST 
A, M, C, 

S 
No 16 bit No No 

Area - Execution 

time / Power- 

Execution time 

No 

Yes 

(CDFG 

& DFG) 

Yes 60 

IPCT 5 
(BFOA-HLS 

[54]) 

LIST A, M Yes 32 bit No Yes 

Area - Execution 

time / Power- 

Execution time 

No 

No 

(DFG 

ONLY) 

No 60 

IPCT 6 
(Fault 

Tolerant-HLS 
[12]) 

LIST 
A, M, C, 

S 
No 16 bit No No Area - Latency Yes 

No 

(DFG 

ONLY) 

No 20 

IPCT 7 
(PSO-HLS 

[33]) 

LIST A, M, C Yes 8 bit No Yes 

Area - Execution 

time / Power- 

Execution time 

No 

Yes 

(CDFG 

& DFG) 

No 90 

 

 

 

Table 9.15. feature-set of IPID and IPCT for FIR benchmark  
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Benchmark: JPEG_IDCT (112 nodes) 

IP features 
Schedule 

algorithm 

Resourc

e type 
chaining 

Bus 

width 

support 

Data 

pipelin

e 

Multi-

cycling 

 

Design objective Reliability 
Loop 

support 

Trojan 

Security 

Match 

percent 

IPID 
LIST A, M Yes 8 bit Yes Yes 

Area - Execution 

time / Power- 

Execution time 

No DFG No NA 

IPCT 1 
(Hybrid PSO-GA HLS 

[52]) 

LIST A, M Yes 16 bit No Yes 
Area-Power-

Latency 
No DFG No 70 

IPCT 2 
[Fault secure HLS 

[17]) 

LIST A, M, C No 16 bit No Yes 

Area - Execution 

time / Power- 

Execution time 

Yes DFG No 50 

IPCT 3 
(Watermark-HLS 

[13]) 

LIST 
A, M, C, 

S 
No 32 bit No No 

Area - Execution 

time / Power- 

Execution time 

No DFG No 50 

IPCT 4 
(Trojan Secure-HLS 

[53]) 

LIST 
A, M, C, 

S 
No 16 bit No No 

Area - Execution 

time / Power- 

Execution time 

No DFG Yes 40 

IPCT 5 
(BFOA-HLS [54]) 

LIST A, M Yes 32 bit No Yes 

Area - Execution 

time / Power- 

Execution time 

No DFG No 80 

IPCT 6 
(Fault Tolerant-HLS 

[12]) 

LIST 
A, M, C, 

S 
No 16 bit No No Area - Latency Yes DFG No 30 

IPCT 7 
(PSO-HLS 

[33]) 

LIST A, M Yes 8 bit Yes Yes 

Area - Execution 

time / Power- 

Execution time 

No DFG No 100 

 

 

 

Table 9.16. feature-set of IPID and IPCT for JPEG_IDCT benchmark  
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Table 9.17. Average time consumed (ms) for feature extraction through proposed CFE approach 

Benchmarks 
Loop 

support 

Design 

objective 

Resource 

type 

Bus 

width 

support 

Multi-

cycling 

Fault 

Reliability 

Trojan 

Security 
chaining 

Data 

pipelining 

Scheduling 

algorithm 

ARF 0.3 1.2 3.1 7.2 23.5 46.3 48.7 80.5 74.6 374.5 

BPF 0.7 1.5 4.9 9.3 19.1 52.2 51.3 70.2 54.8 256.7 

DCT 0.8 2.4 5.7 12.8 19.6 49.8 57.8 68.7 88.5 231.1 

FFT 0.9 2.8 4.7 10.3 28.5 68.1 52.0 89.5 88.8 407.0 

FIR 0.6 4.7 5.9 10.7 13.6 35.9 72.9 76.8 69.2 240.1 

JPEG_IDCT 1.3 10.9 18.3 48.7 89.5 153.3 203.7 283.8 452.3 1903.0 

 

Benchmark 

Watermarking IP 

protection HLS 

approach [13] 

Proposed CFE based 

IP protection HLS 

approach 

Storage registers Storage registers 

ARF 11 0 

BPF 11 0 

DCT 11 0 

FFT 10 0 

FIR 11 0 

JPEG_IDCT 25 0 

 

Table 9.18. Advantages of proposed CFE approach over 

watermarking [13] for IP protection during HLS 
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Chapter 10 

Conclusion and Future work 

 

10.1. Conclusion 

This thesis has presented novel methodologies for generating reliable and 

secure IP cores. The following objectives were accomplished  

 Proposed a methodology that integrates ‘high level synthesis’ 

framework with ‘physical design’ framework for generating a DSP IP 

core that is simultaneously secure/resilient against multi-cycle 

temporal and multi-unit spatial effect of transient fault. The transient 

fault resiliency is achieved with a nominal design overhead. 

 Proposed a methodology for generating a DSP IP core that is 

simultaneously tolerant against multi-cycle temporal and multi-unit 

spatial effect of transient fault for data intensive applications. The 

proposed approach is the first technique in the literature that considers 

simultaneous tolerance against temporal and spatial effect of single 

event transient. The proposed approach presents novel transient fault 

tolerance-aware floor-planning rules. Further, it integrates PSO-DSE 

framework for exploring low-cost design solution. 

 Proposed a methodology for generating a DSP IP core that is 

simultaneously tolerant against multi-cycle temporal and multi-unit 

spatial effect of transient fault for control intensive applications. The 

proposed approach achieves a design cost improvement of ~27% along 

with power reduction of ~61% compared to the state-of-the-art.  

 Proposed a methodology for generating a low-cost, highly secure, 

functionally obfuscated DSP IP core. The proposed methodology 

presents a novel IP functional locking block termed as ILB. The 

proposed ILBs inherits security properties that enhances strength of 

obfuscation of the IP cores. Further, Security comparison of proposed 

approach with state-of-the-art, shows a minimum security 

enhancement of 4.29 e+9 times for the tested benchmarks. 
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 Proposed a methodology for analyzing the aging effect of NBTI stress 

on performance of DSP IP core. It presents performance comparison of 

stressed v/s not-stressed states of IP cores. Further, it presents a 

technique to identify input vector that causes maximum performance 

degradation due to NBTI stress on DSP IP core. The proposed 

approach can be utilized to detect the presence of accelerated aging 

attack on IP core. 

 Proposed a novel computational forensic engineering methodology for 

resolving ownership conflict of DSP IP core generated using high level 

synthesis. The proposed approach presents a set of ten novel features 

that can distinguish an IP core from another IP core generated using 

different high level synthesis tools. Further, the proposed approach 

presents feature extraction rules/algorithms for each of the ten features 

of the feature-set. The comparison of proposed approach with state-of-

the-art (watermarking based) approach for resolving ownership 

conflicts shows that the proposed approach incurs zero-overhead and 

zero-performance degradation. 

 

10.2. Future work  

In future, various reliability aware methodologies for resolving reliability 

concerns such as electromigration, intermittent faults, etc. can be devised for 

DSP cores using high level synthesis framework. In a similar manner, low 

energy/power security aware methodologies can be devised for ensuring 

protection against hardware Trojan, IP piracy, IP overbuilding, etc. using high 

level synthesis.   
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