
I

TRANSIENT FAULT RELIABILITY AND

SECURITY OF IP CORE

Ph.D. Thesis

By

DEEPAK KACHAVE

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
DECEMBER 2018

II

TRANSIENT FAULT RELIABILITY AND

SECURITY OF IP CORE

A THESIS

Submitted in partial fulfillment of the

requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

by

DEEPAK KACHAVE

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
DECEMBER 2018

III

INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE’S DECLARATION

 I hereby certify that the work which is being presented in the thesis entitled TRANSIENT

FAULT RELIABILITY AND SECURITY OF IP CORE in the partial fulfillment of the requirements

for the award of the degree of DOCTOR OF PHILOSOPHY and submitted in the DISCIPLINE OF

COMPUTER SCIENCE AND ENGINEERING, INDIAN INSTITUTE OF TECHNOLOGY

INDORE, is an authentic record of my own work carried out during the time period from JUNE, 2015 to

DECEMBER 2018 under the supervision of Dr. ANIRBAN SENGUPTA, Assistant Professor, Indian

Institute of Technology, Indore.

 The matter presented in this thesis has not been submitted by me for the award of any other degree

of this or any other institute.

 signature of the student with date

(DEEPAK KACHAVE)

--

 This is to certify that the above statement made by the candidate is correct to the best of my/our

knowledge.

Signature of Thesis Supervisor with date

 (ANIRBAN SENGUPTA)

 DEEPAK KACHAVE has successfully given his/her Ph.D. Oral Examination held on

Signature of Chairperson (OEB) Signature of External Examiner Signature(s) of Thesis Supervisor(s)

Date: Date: Date:

Signature of PSPC Member #1 Signature of PSPC Member #2 Signature of Convener, DPGC

Date: Date: Date:

Signature of Head of Discipline

Date:

IV

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor Dr. Anirban Sengupta

for providing me the opportunity to do work under his supervision. I would

like to thank him for his persistence and faith in me, without his relentless

effort, guidance and deadlines I would have not been to understand the

importance of research and the sacrifice it requires to reach a certain level.

Further, I would like to thank my parents and TA supervisors for their

continuous support. I would like to thank all the faculty members and

colleagues for their continuous support. The time spent at IIT Indore will be

one of the most valuable memory of my life.

I would like to thank Ministry of Electronics and Information Technology

(MEITY) for financial support.

V

Dedicated to OLD HANDS who care for their children

(parents)

&

STRONG HANDS who mold careers

(Teachers)

VI

ABSTRACT

The rapid growth of consumer electronics (CE) industry has led to cut-throat

competition of developing sophisticated devices. As the complexity of the CE

design increases along with shortening of time-to-market deadlines, the

designers are becoming heavily reliant on reusable Intellectual Property (IP)

cores generated at higher levels of design abstraction. A malicious attacker

may exploit dependency on IP cores through security issues/vulnerabilities

such as piracy, Trojan insertion, overbuilding, reverse engineering etc. Hence,

methodologies are required to ensure security of the IP cores.

Further similar to IP core security, IP core reliability is also becoming a major

concern. As the demand for CE devices with sophisticated features such as

low-power consumption, smaller silicon area, etc. increases, the IP core

designers are heavily depending upon technology scaling to meet these design

objectives. However, technology scaling enhances several reliability concerns

such as bias temperature instability, multi-cycle and multi-unit transient faults,

electromigration etc. Hence, methodologies are required for designing reliable

IP cores.

To advance the state-of-the-art for designing reliable and secured IP cores, this

thesis makes following contributions: (a) A novel methodology for generating

a DSP IP core that is simultaneously resilient/secure against multi-cycle

(temporal) and (multi-unit) spatial effect of transient fault. (b) A novel

methodology for generating a DSP IP core that is simultaneously tolerant

against multi-cycle temporal and multi-unit spatial effect of transient fault for

data intensive applications. (c) A novel methodology for generating a DSP IP

core that is simultaneously tolerant against multi-cycle temporal and multi-

unit spatial effect of transient fault for loop-based control intensive

applications. (d) A novel methodology for generating a low-cost, highly

secure, functionally obfuscated DSP IP core. (e) A novel methodology for

analyzing the aging effect of NBTI stress on performance of DSP IP core. (f)

A novel computational forensic engineering methodology for resolving

ownership conflict of DSP IP core generated using high level synthesis.

VII

LIST OF PUBLICATIONS

PEER-REVIEWED JOURNALS (10):

1. Anirban Sengupta, Deepak Kachave, "Spatial and Temporal

Redundancy for Transient Fault Tolerant Datapath," in IEEE

Transactions on Aerospace and Electronic Systems (TAES), Volume:

54, Issue:3, June 2018, pp. 1168-1183

2. Anirban Sengupta, Deepak Kachave, Dipanjan Roy "Low Cost

Functional Obfuscation of Reusable IP Cores used in CE Hardware

through Robust Locking", IEEE Transactions on Computer Aided

Design of Integrated Circuits & Systems (TCAD), Accepted, 2018.

3. Deepak Kachave, Anirban Sengupta, "Shielding CE Hardware Against

Reverse-Engineering Attacks Through Functional Locking", in IEEE

Consumer Electronics, vol. 7, no. 2, pp. 111-114, March 2018.

4. Deepak Kachave, Anirban Sengupta, “Performance Degradation of

DSP Cores due to NBTI Stress Attack (Invited Paper)”, IEEE

Potentials, 2018.

5. Deepak Kachave, Anirban Sengupta, "Applying digital forensic for

hardware protection : resolving false claim of IP ownership", IEEE

VLSI Circuits & Systems Letter, Volume 4, Issue 1, pp. 10 - 13, Feb

2018.

6. Deepak Kachave, Anirban Sengupta, Shubha Neema, Panugothu Sri

Harsha" Effect of NBTI Stress on DSP cores used in CE Devices:

Threat Model and Performance Estimation", IET Journal on

Computers & Digital Techniques (CDT), Volume 12, Issue 6,

November 2018, p. 268 – 278.

7. Anirban Sengupta, Deepak Kachave "Particle Swarm Optimisation

Driven Low Cost Single Event Transient Fault Secured Design during

Architectural Synthesis (Invited Paper)", IET Journal of Engineering,

p. 184-194, 2017

8. Anirban Sengupta, Deepak Kachave "Low Cost Fault Tolerance

against kc-cycle and km-unit Transient for Loop Based Control Data

Flow Graphs during Physically Aware High Level Synthesis", Elsevier

VIII

Journal on Microelectronics Reliability, Volume 74, July 2017, pp.

88-99.

9. Anirban Sengupta, Deepak Kachave "Forensic Engineering for

Resolving Ownership Problem of Reusable IP Core generated during

High Level Synthesis", Elsevier Journal on Future Generation

Computer Systems, Volume 80, Pages 29-46, March 2018.

10. Deepak Kachave, Anirban Sengupta, “Integrating Physical Level

Design and High Level Synthesis for Simultaneous Multi-Cycle

Transient and Multiple Transient Fault Resiliency of Application

Specific Datapath Processors”, Elsevier Journal on Microelectronics

Reliability, Volume 60, Pages 141-152, May 2016.

BOOK CHAPTER (1):

11. Deepak Kachave, Anirban Sengupta, "Hardware Reliability Analysis

of DSP Cores", IET Book: VLSI and Post-CMOS Devices, Circuits

and Modelling, Invited Book Chapter, 2017.

PEER-REVIEWED CONFERENCES (3):

12. Anirban Sengupta, Deepak Kachave, "Generating Multi-cycle and

Multiple Transient Fault Resilient Design During Physically Aware

High Level Synthesis," 2016 IEEE Computer Society Annual

Symposium on VLSI (ISVLSI), Pittsburgh, PA, 2016, pp. 75-80.

13. Anirban Sengupta, Deepak Kachave, Shubha Neema, Panugothu Sri

Harsha, "Reliability and Threat Analysis of NBTI Stress on DSP

Cores," 2017 IEEE International Symposium on Smart Electronic

Systems (IEEE-iSES, formerly IEEE-iNIS), Bhopal, 2017, pp. 11-14.

14. Deepak Kachave, Anirban Sengupta, "Protecting Ownership of

Reusable IP Core Generated during High Level Synthesis," 2016

IEEE International Symposium on Smart Electronic Systems (IEEE-

iSES, formerly IEEE-iNIS), Gwalior, 2016, pp. 80-82.

IX

TABLE OF CONTENTS

 ABSTRACT VI

 LIST OF PUBLICATIONS VII

 LIST OF FIGURES XII

 LIST OF TABLES XIV

 NOMENCLATURE XV

 ACRONYMS XVII

1. Chapter1 1

 Introduction

 1.1 IP core and its background 2

 1.2 Generic VLSI design flow 3

 1.3 Background on High Level Synthesis 4

 1.4 Transient fault resiliency/security of IP cores 4

 1.5 Security of IP cores 5

 1.6 NBTI stress analysis based accelerated aging attack on IP

cores

6

 1.7 Organization of thesis 6

2. Chapter 2 8

 State of the art

 2.1 State of the art on transient fault security/tolerance of an IP

core

8

 2.2 State of the art on security of IP core 10

 2.3 State of the art on NBTI stress analysis of DSP IP cores 11

 2.4 Objective of the thesis 11

 2.5 Summary of the contributions 12

3. Chapter 3 15

 Methodology for generating a DSP IP core that is simultaneously

resilient/secure against multi-cycle temporal and multi-unit spatial

effect of transient fault

 3.1 Introduction 15

 3.2 Proposed approach 16

 3.3 Demonstrative example 23

 3.4 Advantages and disadvantages of the proposed approach 26

 3.5 Summary 26

4 Chapter 4 28

 Methodology for generating a low-cost DSP IP core that is

X

simultaneously tolerant against multi-cycle temporal and multi-

unit spatial effects of transient fault for data intensive applications

 4.1 Introduction 28

 4.2 Proposed approach 29

 4.3 Proposed methodology for generating kc-cycle transient

fault tolerant design

31

 4.4 Proposed methodology for generating km-unit transient

fault tolerant design

34

 4.5 PSO-DSE framework for generating low-cost kc-cycle and

km-unit transient fault tolerant design

37

 4.6 Summary 39

5 Chapter 5 40

 Methodology for generating a low-cost DSP IP core that is

simultaneously tolerant against multi-cycle temporal and multi-

unit spatial effects of transient fault for loop-based control

intensive applications

 5.1 Introduction 40

 5.2 Proposed approach 40

 5.3 Preprocessing of CDFG 43

 5.4 Proposed methodology for generating a kc-cycle transient

fault tolerant design

45

 5.5 Proposed methodology for generating a km-unit transient

fault tolerant design

49

 5.6 PSO-DSE framework for generating low-cost kc-cycle and

km-unit transient fault tolerant design

52

 5.7 Summary 55

6 Chapter 6 56

 Methodology for generating a low-cost, highly secure,

functionally obfuscated DSP IP core

 6.1 Introduction 56

 6.2 Threat model 58

 6.3 Proposed approach 58

 6.4 Proposed PSO-DSE framework for generating low-cost

functionally obfuscated DSP IP core

66

 6.5 Summary 67

7 Chapter 7 68

 Methodology for analyzing the aging effect of NBTI stress on

performance of DSP IP core

 7.1 Introduction 68

 7.2 Proposed approach 69

XI

 7.3 Accelerated aging attack: Modelling and detection 74

 7.4 Summary 75

8 Chapter 8 76

 Computational forensic engineering methodology for resolving

ownership conflict of DSP IP core generated using high level

synthesis

 8.1 Introduction 76

 8.2 Computational forensics engineering framework 77

 8.3 Proposed approach 78

 8.4 Case study 79

 8.5 Summary 89

9 Chapter 9 91

 Experimental results and analysis

 9.1 Results and analysis: Methodology for generating a DSP IP

core that is simultaneously secure/resilient against multi-

cycle temporal and multi-unit spatial effect of transient

fault.

91

 9.2 Results and analysis: Methodology for generating a DSP IP

core that is simultaneously tolerant against multi-cycle

temporal and multi-unit spatial effect of transient fault.

95

 9.3 Results and analysis: Methodology for generating a low-

cost, highly secure, functionally obfuscated DSP IP core

99

 9.4 Results and analysis: Methodology for analyzing the aging

effect of NBTI stress on performance of DSP IP core

102

 9.5 Results and analysis: Computational forensic engineering

for resolving ownership conflict of DSP IP core generated

using high level synthesis

108

10 Conclusion and future work 116

 10.1 Conclusion 116

 10.2 Future work 117

 REFERENCES 118

XII

LIST OF FIGURES

Figure 1.1 Generic IC design flow 3

Figure 3.1 Overview of proposed transient fault security approach 16

Figure 3.2 Flow diagram of proposed methodology for generating

simultaneously kc and km resilient DSP IP core

17

Figure 3.3 Protecting the guard: Error-detection block 19

Figure 3.4 A dual modular redundant system of IIR Filter 22

Figure 3.5 2-cycle transient fault resilient DMR schedule of IIR

Filter

23

Figure 3.6 4-unit transient fault resilient floorplan based on the 2-

cycle transient fault resilient SDFG of IIR (2A, 2M)

24

Figure 3.7 IIR floorplan (2A, 2M) with no rules of multiple

Transient fault security

24

Figure 4.1 Overview of proposed TF tolerant approach for data

intensive applications

29

Figure 4.2 Flow graph of the proposed TF tolerant methodology for

data intensive applications

30

Figure 4.3 Un-timed TMR system for DWT DFG benchmark 33

Figure 4.4 4-cycle TF tolerant schedule of DWT DFG for particle

position Xi = {3A, 2M}

33

Figure 4.5 Proposed km-unit transient fault tolerant floorplanning

rules

35

Figure 4.6 Non-tolerant Floorplan of DWT benchmark 36

Figure 4.7 kc= 4 and km=4 fault-tolerant floorplan of DWT

benchmark

36

Figure 5.1 Overview of proposed TF tolerant approach for loop-

based control intensive applications

41

Figure 5.2 Flow graph of the proposed TF tolerant methodology for

loop-based control intensive applications

42

Figure 5.3 Unrolled CDFG of differential equation benchmark for

UF = 2

43

Figure 5.4 TMR system of unrolled CDFG (UF = 2) of differential

equation benchmark

44

XIII

Figure 5.5 4-cycle TF fault tolerant SCDFG TMR of differential

equation benchmark for (6M, 3A, 3S, 2C, UF=2)

44

Figure 5.6 Proposed km-unit transient fault tolerant floorplanning

rules

49

Figure 5.7 Non-tolerant Floorplan of differential equation

benchmark

51

Figure 5.8 kc=4 and km=4 fault-tolerant floorplan of differential

equation benchmark

51

Figure 6.1 Possibility of Reverse engineering attack during various

stages of IC design

57

Figure 6.2 Details of proposed functional obfuscation methodology 59

Figure 6.3 Proposed IP core locking Blocks 61

Figure 6.4 Obfuscated (locked) gate-level 4-bit FIR for (1A, 1M,

µ=2) locked with 64-bit key

64

Figure 7.1 Proposed NBTI stress analysis methodology 70

Figure 7.2 (a) Pseudocode of FIR benchmark 72

Figure 7.2 (b) Scheduling and allocation diagram based on sample

resource configuration (1A, 1M)

72

Figure 7.3 NAND based gate level implementation of FIR datapath 73

Figure 7.4 (a) FIR IP core block 74

Figure 7.4 (b) Modified Hardware logic 74

Figure 8.1 Process of resolving ownership conflict of a given IP

core (IPID) using CFE

80

Figure 8.2 Flow graph representing the feature extraction

methodology for scheduling algorithm feature

81

Figure 8.3 Schedule displaying chaining of adder w.r.t. multiplier

functional unit

82

Figure 8.4 Proposed algorithm to detect chaining in an IP 84

Figure 8.5 HDL code 85

Figure 8.6 Pipelining feature in IP with resource configuration (2A,

1M)

88

Figure 9.1 Nand based gate level implementation of FIR datapath

on FPGA board

106

Figure 9.2 Effect of NBTI stress on ARF Benchmark 107

XIV

LIST OF TABLES

Table 3.1 Conflict details of sister operations in 2-cycle transient

fault resilient SDFG DMR of IIR

21

Table 3.2 Library details based on 15nm NanGate 25

Table 7.1 Gate delay and pmos details corresponding to stress

time 1 year for input test vector 11101 (Note : G1, ….,

G23 represents gates of FIR datapath)

73

Table 9.1 Results comparison of proposed 2-cycle, 2-unit

transient fault resilient design with non-transient fault

resilient in terms of chip area and corresponding

overhead

92

Table 9.2 Results comparison of proposed 10-cycles, 4-units

transient fault resilient designs with non-transient fault

resilient in terms of chip area and corresponding

overhead

93

Table 9.3 Power comparison results of proposed 10-cycle, 4-unit

multiple transient fault resilient designs and non-

transient fault resilient DMR designs

94

Table 9.4 Cost comparison of proposed method with [12] for

kc=4 & km=4

98

Table 9.5 Comparison of power of proposed method with [12]

for kc=4 & km=4

98

Table 9.6 Comparison of area of proposed method with [12] for

kc=4 & km=4 (Note : 1 unit = 768nm)

98

Table 9.7 Comparison of delay of proposed method with [12] for

kc=4 & km=4

98

Table 9.8 Strength of obfuscation comparison of proposed

functionally obfuscated approach w.r.t. [21]

101

Table 9.9 Power comparison of proposed functionally obfuscated

approach w.r.t. [21]

101

Table 9.10 Cost comparison of proposed functionally obfuscated

approach w.r.t. [21]

101

Table 9.11 Delay after 1 year of continuous NBTI stress of IIR

Benchmark

105

Table 9.12 Delay after applying 1 year of continuous NBTI stress

on ARF benchmark

105

Table 9.13 Feature-set of IPID and IPCT for ARF benchmark 111

Table 9.14 Feature-set of IPID and IPCT for FFT benchmark 112

Table 9.15 Feature-set of IPID and IPCT for FIR benchmark 113

Table 9.16 Feature-set of IPID and IPCT for JPEG_IDCT

benchmark

114

Table 9.17 Average time consumed (ms) for feature extraction

through proposed CFE approach

115

Table 9.18 Advantages of proposed CFE approach over

watermarking [13] for IP protection during HLS

115

XV

NOMENCLATURE

Xi Particle encoding

L[k] List of conflicting hardware

kc Strength of temporal effect of transient fault

km Strength of spatial effect of transient fault

O
U

Original unit

D
U

Duplicate unit

t(v) control step (time) at which operation v is scheduled

t(v’) control step (time) at which operation v’ is scheduled

t(v’’) control step (time) at which operation v’’ is scheduled

S(Mv) Starting point of placement of hardware module (M) allocated to

operation v

S(Mv’) Starting point of placement of hardware module (M) allocated to

operation v’

cij Connectivity between i
th

 and j
th

 hardware units

dij Manhattan distance between i
th

 and j
th

 hardware units

Cf (Xi) Cost/fitness of design solution with respect to resource

configuration (Xi)

L
DMR

Latency of kc-cycle transient fault resilient design solution

Lmax
DMR

Maximum latency of kc-cycle transient fault resilient design space

A
FP

Area of transient fault resilient design solution

Amax
FP

 Maximum area of kc-cycle transient fault resilient design space

W
FP

Wirelength of transient fault tolerant floorplan

Wmax
FP

 Maximum wirelength of transient fault resilient design space

φ1, φ2,

φ3

User defined weights

O
C

Original copy

D
C

Duplicate copy

T
C

Triplicate copy

v Operation belonging to original copy

v’ Operations belonging to duplicate copy

v’’ Operations belonging to triplicate copy

[Ri] List of hardware resources in the kc-cycle fault tolerant schedule

(𝑍𝑅𝑖
[𝑅𝑗]) List of hardware in conflict with i

th
 resource due to spatial effect

of TF

Pi i
th

 particle of the swarm

NRD Number of resources in the D
th

 dimension of the design space

L
FT

Latency of fault tolerant design solution explored during PSO-

DSE

Lmax
FT

Maximum latency of the fault tolerant design space

A
FT

Area of the fault tolerant design solution

Amax
FT

Maximum area of the fault tolerant design solution

𝑅𝑑𝑖
 Number of resources of i

th
 particle in d

th
 dimension

𝑅𝑑𝑖

+ Updated number of resources of ith particle in dth dimension

XVI

𝑉𝑑𝑖
 Velocity of the i

th
 particle in the d

th
 dimension of the design space

𝑉𝑑𝑖

+ Updated velocity of the i
th

 particle in the d
th

 dimension of the

design space

ω Inertia weight

b1, b2 Acceleration coefficients

r1, r2 Random numbers

𝑅𝑑𝑔𝑏
 Global best in the d

th
 dimension

𝑅𝑑𝑙𝑏𝑖
 Local best in the d

th
 dimension

L
TMR

Latency of kc-cycles transient fault tolerant TMR design

Lseq Latency of sequential body

Lpar Latency of the parallel body

µ A random integer between 1 and TILB (1 ≤ µ ≤ TILB).

TILB Total number of ILBs in the initial design space before AES block

integration

P
OB

Power of the obfuscated design solution explored during PSO-

DSE

Pmax
OB

Maximum power of the obfuscated design in the design space

D
OB

 Delay of the obfuscated design solution explored during PSO-

DSE

Dmax
OB

Maximum delay of the obfuscated design in the design space

ΔVth Change in the threshold voltage

a Input signal probability

b Constant

t Time in seconds

n Time exponential constant

T Delay of PMOS transistor

K Technology based proportionality constant

Vth
new

New threshold voltage

IPID Intellectual property core whose ownership is to be identified

IPCTn Intellectual property core generated using n
th

 claimant’s tool

FUi Functional unit of i
th

 type

CSs(FUi) Starting control step of i
th

 functional unit

CSE(FUi) Ending control step of i
th

 functional unit

CSS(N)1 Starting control step of the data set 1

CSE(N)1 Ending control step of the data set 1

m Matching percentage

XVII

ACRONYMS

HLS High level synthesis

VLSI Very Large Scale Integration

IP Intellectual property

DSP Digital signal processor

CE Consumer Electronics

IC Integrated Circuits

SoC System on chip

RTL Register Transfer Level

VHDL Very High Speed Integrated Circuit Hardware Description Language

GDS Graphic Database System

ALU Arithmetic Logic Unit

DFG Data Flow Graph

CDFG Control Data Flow Graph

FSM Finite State Machine

TF Transient Fault

MTF Multi-unit Transient Fault

MCT Multi-cycle Transient Fault

SET Single Event Transient

MOSFET Metal Oxide Semiconductor Field Effect Transistor

PMOS P-channel Metal Oxide Semiconductor

NBTI Negative Bias Temperature Instability

CFE Computational Forensic Engineering

PSO Particle Swarm Optimization

DSE Design Space Exploration

DMR Dual Modular Redundant

TMR Triple Modular Redundant

ILB IP functional Locking Block

LET Linear Energy Transfer

SDFG Scheduled Data Flow Graph

TFH Transient Fault Hazards

CS Control Step

FP Floor Plan

FU Functional unit

DWT Discrete Wavelet Transform

FIR Finite Impulse Response

IIR Infinite Impulse Response

ASP Application Specific Processor

ASIC Application Specific Integrated Circuit

UF Unrolling Factor

3PIP 3rd party Intellectual Property

ASAP As Soon As Possible

ALAP As Late As Possible

opn operation

Mux Multiplexer

Demux Demultiplexer

1

Chapter 1

Introduction

The invention of transistor in the mid-20
th

 century has led to unimaginable

progress of electronics industry. Since its invention, the reduction in

transistor’s dimensions has followed a well-known prediction termed as

Moore’s law [1]. In the 1970-80’s the devices made from transistors such as

computers could only be afforded by the large-scale industries/business-

houses due to their features such as large size, high power consumption, high

cost etc. However, as the transistor scaling continues, devices having low

power consumption, compact form-factor, better heat dissipation, were made

possible. These advances have led to a whole new industry, centered toward

manufacturing electronics devices for personal/home usage known as

consumer electronics (CE). Along with transistor scaling other technological

advances such as internet, smart phones, etc. have made consumer electronics

a major market force (with estimated sales in multi-billion dollars [2]). Due to

huge demand of CE devices, the competition for designing best product and

launching them as fast as possible has increased tremendously. The cut-throat

competition has resulted in very stringent (short) time-to-market deadlines.

Additionally, the increasing demand for miniscule devices possessing as many

features as possible has resulted in enhanced design complexity (for devices

such as smart phones, smart watches, etc.). In order to meet these stringent

time-to-market deadlines as well as reduce design complexity, the device

designers are highly dependent on third-party Intellectual property (IP) cores

designed at higher levels of design abstraction through high-level synthesis /

behavioral synthesis / architectural synthesis [3-5].

As more and more sophisticated electronics devices are becoming integral part

of business-critical and mission-critical systems, along with globalization of

supply-chain, the chances of a malicious attack on an electronics device in a

mission-critical system has increased tremendously [3-5]. Therefore, it is

mandatory to devise algorithms that can ensure security of IP cores.

Furthermore, the devices designed using scaled transistors are becoming more

sensitive to their environment than earlier technology scales. Therefore, as the

2

technology scaling continues in the sub-nanometer range, the reliability of

contemporary and future IP cores has become a major concern. Thus,

methodologies are required for developing reliable IP core for mission-critical

systems [6, 66-68].

This chapter briefly presents the background of the methodologies proposed in

this thesis for designing reliable and secured IP cores. The first section

discusses IP cores and its relevance in electronics industry. The second section

briefly discusses various design abstraction levels of a generic integrated

circuit (IC) design flow. The third section elaborates on the higher level of

design abstraction through a process called ‘high level synthesis (HLS)’.

Subsequently, the fourth, fifth, and sixth sections discuss the proposed

reliability and security methodologies. Finally, the seventh section discusses

the organization of the thesis.

1.1. IP core and its background

An intellectual property core in electronics refers to a reusable logic block that

is an intellectual property of an IP owner. Reusable IP cores plays a vital role

in reducing the design complexity and helps the designers to meet time-to-

market deadlines. An IP core is analogues to a library in the context of a

computer program. Like a library, an IP core can be utilized to design a system

on chip (SoC) quickly and easily. An IP buyer could purchase IP core (s) from

third party IP vendors and combine them along with in-house technologies (if

any) to generate a ‘market-ready’ product. For instance, consider a company

interested in developing a personal computer, it may buy IP cores for digital

signal processor (DSP), memory, etc. and combine it with its in-house

components to create a ‘market-ready’ product. Thereby, reducing time, effort

and cost to build in-house IP cores. An IP core can be of three types; soft IP

core or hard IP core or firm IP core [7]. A soft IP core is typically delivered as

a synthesizable Register transfer level (RTL) code in a hardware description

language (such as Verilog or VHDL) or schematic design. Similarly, a hard IP

is typically delivered as a layout design in the form of a GDS II file [4]. A soft

IP core is comparatively more modifiable/tweakable than a hard IP core. The

word hard and soft represents modifiability of these IP core. A question arises

3

several times that whether an IP core should be provided as a soft IP core or

hard IP core? A hard IP core is easily predictable but not portable for instance,

a hard IP core cannot be ported from initially targeted foundry to another

foundry. On the other hand, a soft IP core is portable but not predictable i.e.,

its performance may vary significantly as it gets converted into lower levels of

design abstractions. Therefore, a third type of IP core is required that is

simultaneously predictable and portable. This type of an IP core is termed

‘firm IP core’ [7, 69]. An IP core design process can be clearly understood

with the help of a generic integrated circuit design flow as discussed in section

1.2.

1.2. Generic VLSI design flow

A generic integrated circuit design flow is based on divide and conquer

technique. As shown in fig. 1.1, a complex design is divided into various

abstraction levels. At each level, design is optimized to achieve certain

objectives/goals. A generic IC design flow takes system specification as input

in the form of a programming language or a hardware description language.

Subsequently, high level synthesis is performed to obtain register transfer

level (RTL) datapath as discussed in section 1.3. Later, the RTL datapath is

converted into gate level netlist using logic synthesis. The gate level netlist

thus obtained is converted into layout design (typically in the form of a GDS II

file) during physical design step of the IC design flow. The layout file thus

generated is analyzed to check whether the layout design meets the design

objectives (specification/constraints). Once the layout is verified, it is sent for

fabrication. Once, the fabrication is completed, a ‘die’ is created.

Subsequently, the die is packaged and tested. The test approved ICs are made

Register

transfer

level (RTL)

High level

synthesis

(HLS)

Logic

Synthesis
Physical

design
System

specification

Gate level

netlist
Layout

(GDS II)

Physical

verification

Die
Fabrication

Packaging

& Testing

Fig. 1.1 Generic IC design flow

Market ready

Integrated circuit

4

available in the market [3-7, 21].

1.3. Background on High Level Synthesis

High level synthesis (a.k.a. behavioral or architectural synthesis) is a

technique to convert a behavioral description of a system into a register

transfer level design. The HLS methodology takes behavioral description of a

system (such as processors) and converts it into register transfer level design

(having elements such as ALU, muxes, demuxes, registers, etc.). The first step

of the HLS is to convert behavioral description in the form of a programming

language or hardware description Language into an internal representation.

Two types of internal representation are typically used during HLS: parse tree

and graphs [8,9]. In our proposed methodologies we have utilized graphical

representation. The graphical representation can further be in the form of a

data flow graph (DFG) or a control data flow graph (CDFG). The next two

steps of high level synthesis namely scheduling and allocation are closely

related to each other [8, 9, 46]. Scheduling step is responsible for assigning the

operations to the control steps, while allocation step assigns the hardware

resources to the operations i.e. functional units, storage and communication

elements (such as muxes, demuxes, buses). The aim of scheduling is to

minimize the number of control steps or time required for completion of the

program, while the aim of allocation is to minimize the number of hardware

resources required for complete execution of the program. Once the

scheduling and allocation steps are completed, binding step is executed. The

aim of binding is to determine the size of the switching elements

(muxes/demuxes) of the datapath. Once binding step is completed, the register

transfer level datapath is obtained. However, controller to drive the datapath

(as per the schedule’s requirement) is yet to be built.

A controller is typically designed as hardwired or micro-coded. In hardwired

controller design a control step corresponds to a state in the finite state

machine (FSM). Similarly, in a micro-coded controller, a control step

corresponds to a microprogram step [8, 9]. Subsequently, the controller is

optimized and synthesized. Once the controller and datapath of design are

available in the form RTL design. The lower level design steps are performed

to obtain the ‘market ready’ integrated circuit as shown in the fig. 1.1.

5

1.4. Transient fault resiliency/tolerance of IP cores

 As the transistor scaling continues in the sub-nanometer range, the amount of

charge stored in a circuit’s nodes continues to shrink, enhancing its

susceptibility to reliability concerns such as multi-cycle and multi-unit

transient fault [10, 11]. A transient fault may occur when a particle with

moderate energy strikes a circuit node. As the amount of charge stored in a

node is reduced, so does the critical charge required for changing the logic

level of a circuit, thereby increasing chances of transient fault due to particle

with moderate energy. Additionally, a particle with moderate energy that was

capable of affecting a single node in previous technology scale, can affect

more than one node placed within the same nanometer area in subsequent

technology scales (spatial effect) [27]. Therefore, the resulting impact of

transient fault could affect multiple hardware units placed in the

neighborhood. This spatial effect of TF is termed as multi-unit transient fault.

Similarly, as a result of continuous technology scaling, the supply voltage of

the device and clock-cycle time is decreasing (frequency is increasing).

Therefore, the temporal effect of a single particle strike will last for multiple

clock cycles in current and future technology scales [12, 17]. Hence,

methodologies are required to tackle both multi-cycle (temporal) as well as

multi-unit (spatial effect) of single event transient. The thesis proposes novel

solutions to these problems.

1.5. Security of IP cores

In past few years, the globalization of the market has presented several

opportunities for growth. However, globalization comes with its own set of

drawbacks. As the number of components of a device that are manufactured

outside the homeland continue to increase, the threat of a malicious attack is

also increasing. Further, the lack of strict laws for punishing attackers, has

resulted in higher vulnerability against these security threats. Traditionally,

intellectual property were protected using techniques / tools such as patents,

trademarks, copyright, trade secret, etc. However, these methodologies are

either not applicable or are inefficient in protecting IP cores of digital systems

[5, 13].

6

An IP core is vulnerable against various threats such as IP piracy, IP

overbuilding, trojan insertion, etc. Hence, methodologies are required to

protect IP cores against these threats. The methodologies presented in this

thesis provides protection / security to IP cores against these threats as

discussed in upcoming chapters.

Although most of the approaches, either address only security or only

reliability. However, negative bias temperature instability based accelerated

aging attack belongs partially to both reliability as well as security domain

[14, 15]. The thesis proposes novel solutions to these problems.

1.6. NBTI stress analysis based accelerated aging attack on IP cores

Aging is a natural process of any electronic device. As a result of it, the

performance of aged systems become un-reliable. Natural aging is a reliability

concern that can be accelerated by a malicious attack that aims to reduce the

life-span of the device [15]. This type of attack is known as accelerated aging

attack.

Negative bias temperature instability is a physical phenomenon observed in

metal oxide semiconductor field effect transistors (MOSFETs). NBTI is a

major factor contributing to natural aging process. A malicious attacker can

accelerate the aging of third-party IP core by applying input vectors causing

maximum performance degradation when the device is not in active use.

Thereby, device is degraded at maximum rate in inactive (standby mode) state.

Thus, causing maximum degradation without detection (as testing and

validation is typically performed in active states). This calls for methodology

to identify presence of accelerated aging attack in IP cores. The thesis has

proposed a novel methodology to perform NBTI stress analysis on DSP IP

cores, that can further be applied to predict/identify the presence of accelerated

aging attack on DSP IP cores.

1.7. Organization of thesis

The upcoming chapters of the thesis are organized as follow: Chapter 2

presents state-of-art with respect to proposed methodologies. Chapter 3

presents the proposed methodology to provide simultaneous resiliency

7

against multi-cycle temporal and multi-unit spatial effect of single event

transient in DSP IP cores. Chapter 4 presents the proposed methodology to

provide simultaneous tolerance against multi-cycle temporal and multi-unit

spatial effect of single event transient for data intensive applications. Chapter

5 presents the proposed methodology to generate a low-cost (low-area, low-

delay) optimized DSP IP core simultaneously tolerant against multi-cycle

temporal and multi-unit spatial effect of transient fault for loop-based control-

intensive applications. Chapter 6 will present presents a methodology to

generate low-cost, highly-secure, logic obfuscated DSP IP cores to provide

security against key-sensitization based attacks. Chapter 7 presents

methodology to analyze effect of NBTI stress on DSP IP core and identify the

presence of accelerated aging attack. Chapter 8 presents computational

forensics engineering based methodology to resolve ownership of DSP IP

core. Chapter 9 presents the experimental results of the proposed

methodologies and compares them with their respective state-of-the-arts.

Chapter 10 concludes the thesis and briefly discusses the future work.

8

Chapter 2

State of the art

This chapter discusses state-of-the-art related to the proposed methodologies

presented in this thesis. The first section presents state-of-the-art on transient

fault (TF) reliability. The second section presents approaches related to

security of DSP IP cores. The third section presents state-of-the-art on NBTI

stress analysis of DSP IP cores. The fourth section describes the objective of

this thesis. The fifth section summarizes the contributions of this thesis.

2.1. State of the art on transient fault security/tolerance of an IP core

As discussed in previous chapter, a transient fault may occur due to particle

strike. Reliability against transient fault can be achieved either through

security (resiliency) or tolerance. A security mechanism aims to detect

occurrence of transient fault in a circuit. However, it cannot prevent the impact

of transient fault from affecting the correct functionality of the circuit. On the

other hand, a tolerance mechanism aims to preserve correct functionality of

the circuit. In other words, a tolerant IP core guarantees generation of correct

output in the presence of transient fault. Whereas, a secure IP core only detects

the occurrence of transient fault but cannot guarantee generation of correct

output in presence of transient fault.

State-of-art on transient fault security: methodologies for creating transient

fault secured circuits can be designed at various levels of design abstractions.

A few approaches such as [16], [17], and [18] consider transient fault security

at behavioral level. However, none of these approaches provide simultaneous

security against multi-cycle temporal and multi-unit spatial effect of transient

fault.

Multi-cycle transient fault security: The approaches presented in [16-18]

have adopted a dual modular redundancy (DMR) based technique for

detecting concurrent error due to transient fault. The primary motive of the

DMR structure is to isolate the impact of the transient fault in one of the

modules, such that the other unaffected module could produce correct output.

Hence, when the outputs of two modules are compared, a difference indicates

9

the occurrence of transient fault in the device. However, there is no technique

to identify which one of these two modules has produced the correct output.

Hence, only detection is possible through DMR based approaches.

The approach presented in [17] is more sophisticated than [16, 18]. This is

because in [16, 18], at-least two-distinct hardware were required for ensuring

security, which is not mandatory in [17]. The methodology presented in [17]

ensures transient fault detection using a single hardware resource of a

particular type. All these techniques consider only multi-cycle temporal effect

of transient fault. However, they do not consider spatial effect of single event

transient.

Multi-unit transient fault security: Most approaches in the literature

consider multiple event transient fault on memory. However, a few approaches

such as [19, 20] consider effect of multiple transient fault at logic level.

Nonetheless, these approaches do not consider security at behavioral level.

The proposed approach presents a novel methodology to provide simultaneous

security against multi-cycle temporal and multi-unit spatial effects of single

event transient on DSP IP cores generated using high level synthesis.

State-of-art on transient fault tolerance:

Multi-cycle transient fault tolerance: There is only one work that presents a

technique to create a multi-cycle transient fault tolerant design using high

level synthesis [12]. However, it fails to provide either security or tolerance

against spatial effect of transient fault.

Multi-unit transient fault tolerance: There is no technique present in the

literature to generate multi-unit TF tolerant design using high level synthesis.

However, the techniques such as [19], [20] are present in the literature that

only considers security (no tolerance) against multi-unit spatial effect of

transient fault. The approaches [19], [20] do not consider multi-cycle temporal

effect of TF. Further, these approaches do not take measures to reduce design

overhead and are not applicable on loop-based applications.

This thesis presents novel techniques for generating a low-cost DSP IP core

that is simultaneously tolerant against multi-cycle temporal and multi-unit

10

spatial effect of single event transient for loop-based control intensive and

non-loop based data intensive DSP applications.

2.2. State of the art on security of IP core

An IP core is vulnerable against several security threats such as IP piracy, IP

overbuilding, false claim of ownership, Trojan insertion etc. To tackle these

security threats, several approaches are present in the literature such as IP

metering, structural obfuscation, functional obfuscation, etc. However, in this

section, we only discuss the state-of-the-art approaches that are closely related

to our proposed methodologies for ensuring security of IP cores i.e., functional

obfuscation and hardware watermarking of DSP core.

State-of-art on functional obfuscation: The aim of functional obfuscation is

to protect an IP core from a malicious attacker present in the third-party

fabrication facility. Functional obfuscation (a.k.a. functional locking) is a

technique that locks an IP core by inserting locking units (such as logic gates,

multiplexers/demultiplexers). Thereby, only the person who knows the valid

key can unlock the IP core. The state-of-the-art functional obfuscation

techniques are presented in [21], [22]. Authors of [21] and [22] have presented

some novel attacks based on ‘key-sensitization’ technique. Subsequently, they

have suggested few security features that can enhances resiliency against key-

sensitization based attacks.

The proposed functional obfuscation methodology enhances resiliency against

key-sensitization attacks with the help of novel locking units termed as ‘IP

functional locking blocks (ILBs)’. The proposed ILBs are 8-key bit (per ILB)

intertwined structures of many logic gates such as AND, NAND, NOT, XOR,

XNOR, etc. On the other hand, function obfuscation technique of [21], [22]

uses only XOR and/or XNOR gates as locking units (1-key bit per locking

unit). The novel security features of the proposed ILBs enormously enhances

resiliency against ‘key-sensitization’ attacks. Furthermore, the proposed

approach integrates particle swarm optimization based design space

exploration (PSO-DSE) framework for exploring low-cost functionally

obfuscated design solution. However, no effort was made in [21] or [22] to

obtain low-cost design solution.

11

State-of-art on ownership protection of DSP IP cores: digital watermarking

based approaches (such as [13], [23]) were the state-of-the-art techniques to

resolve ownership conflict of DSP IP core generated using high level

synthesis. However, the security of a watermarked IP core can be breached

using attacks such as signature tampering, reverse engineering etc.

Furthermore, integral step of digital watermarking such as signature insertion

can cause performance degradation, design overhead, etc. Hence, a more

sophisticated signature-free methodology was required to resolve ownership of

an IP core. The proposed computational forensics engineering (CFE) based

methodology overcome these drawbacks as it does not depend on in-design

based step such as signature insertion and there is no known attack on the

proposed approach.

2.3. State of the art on NBTI stress analysis of DSP IP core

NBTI stress is a physical phenomenon observed in PMOS transistors that

partially contributes to natural aging of these transistors. There was no effort

made in the literature to study and analyze the impact of aging on IP cores

generated using high level synthesis. The proposed approach presents a novel

methodology for analyzing the aging effect of NBTI stress on performance of

DSP IP core generated using high level synthesis. The phenomenon of natural

aging due to NBTI stress can be utilized to perform accelerated aging attack.

An attacker can accelerate the natural aging process of a transistor by

continuously applying NBTI stress when the device is in inactive usage (such

as in standby mode). The aim of an attacker is to accelerated aging process of

a device such that it fails within the warranty period [15]. The proposed

methodology to analyze the natural aging of DSP IP core can further be

utilized to detect the presence of accelerated aging attack on the IP cores

generated using high level synthesis.

2.4. Objective of the thesis

The objective of the thesis is to develop novel methodologies for ensuring

reliability and security of DSP IP core against specific hardware

threats/concerns. To achieve this aim following objectives were set:

12

1. To develop a methodology for generating a DSP IP core that is

simultaneously secure/resilient against multi-cycle temporal and multi-

unit spatial effect of transient fault.

2. To develop a methodology for generating a low-cost DSP IP core that

is simultaneously tolerant against multi-cycle temporal and multi-unit

spatial effect of transient fault for data intensive applications.

3. To develop a methodology for generating a low-cost DSP IP core that

is simultaneously tolerant against multi-cycle temporal and multi-unit

spatial effect of transient fault for loop-based control intensive

applications.

4. To develop a methodology for generating a low-cost, highly secure,

functionally obfuscated DSP IP core.

5. To develop a methodology for analyzing the aging effect of NBTI

stress on performance of DSP IP core.

6. To develop a methodology for resolving ownership conflict of DSP IP

core.

2.5. Summary of the contributions

This thesis presents several novel methodologies for ensuring/enhancing

reliability and security of DSP IP core. In order to advance the state-of-the-art,

following contributions were made:

 A novel methodology for generating a DSP IP core that is

simultaneously resilient/secure against multi-cycle temporal and multi-

unit spatial effect of transient fault. (publications: J7, J10, B1, C1)

- Proposes a novel security-aware floor-planning technique / rules

for providing resiliency against multi-unit spatial effect of transient

fault.

- Proposes an integrated approach for providing security

simultaneously against multi-cycle temporal and multi-unit spatial

effect of transient fault.

- Presents a novel cost function for evaluating cost of the design

solution based on schedule latency, chip area and wire-length.

 A novel methodology for generating a DSP IP core that is

simultaneously tolerant against multi-cycle temporal and multi-unit

13

spatial effect of transient fault for data intensive applications.

(publications: J1, B1)

- Propose novel scheduling rules for generating multi-cycle transient

fault tolerant triple modular redundant (TMR) schedule.

- Propose novel tolerance-aware floor-planning rules for ensuring

tolerance against multi-unit spatial effect of transient fault.

- Integrates a particle swarm optimization based design space

exploration (PSO-DSE) framework for exploring low-cost transient

fault tolerant design solution for data intensive DSP applications.

- Proposed methodology is applicable on data intensive DSP

application.

 A novel methodology for generating a DSP IP core that is

simultaneously tolerant against multi-cycle temporal and multi-unit

spatial effect of transient fault for loop-based control intensive

applications. (publications: J8, B1)

- Integrates a modified particle swarm optimization based design

space exploration (PSO-DSE) framework for exploring low-cost

design solution for loop-based control-intensive DSP applications.

- Integrates a pre-processing technique for generating optimal

unrolling factor for loop-based control-intensive DSP applications.

 A novel methodology for generating a low-cost, highly secure,

functionally obfuscated DSP IP core. (publications: J2, J3)

- Proposes a novel Functional obfuscation methodology for

obfuscating DSP IP cores.

- Proposes a set of novel locking units termed as IP functional

locking blocks (ILBs).

- Presents security enhancing features/properties of proposed ILBs.

- Integrates a modified PSO-DSE framework for exploring low-cost

obfuscated design solution.

- Presents a novel technique for insertion of proposed ILBs.

- Security comparison of proposed approach with state-of-art

approach, shows a minimum security enhancement of 4.29 e+9

times for the tested benchmarks.

14

 A novel methodology for analyzing the aging effect of NBTI stress on

performance of DSP IP core. (publications: J4, J6, C2)

- Proposes a technique to identify input vector that causes maximum

performance degradation due to NBTI stress on DSP IP core.

- Proposes a methodology to analyze the effect of NBTI stress with

respect to varying stress times on critical path delay of DSP cores.

- Presents a performance comparison of stress v/s no-stress condition

of DSP cores with respect to various input vector samples.

- Presents a technique to predict the presence of accelerated aging

attack on DSP IP core.

 A novel computational forensic engineering methodology for resolving

ownership conflict of DSP IP core generated using high level

synthesis. (publications: J5, J9, C3)

- Proposes a novel feature-set containing ten features that can be

utilized for resolving ownership conflict of an IP core.

- Proposes novel feature extraction rules/algorithms for each of the

proposed features.

- The proposed technique incurs zero-overhead, zero-performance

degradation compared to watermarking based IP core protection

(due to its signature independence).

15

Chapter 3

Methodology for generating a DSP IP core -

Simultaneously resilient/secure against multi-cycle

temporal and multi-unit spatial effect of transient fault

This chapter presents a novel methodology for detecting the presence of

transient fault due to temporal and spatial effects of single event transient. The

first section introduces the problem. The second section provides a detailed

description of the proposed approach. Subsequently, the proposed

methodology is illustrated with the help of a demonstrative example in third

section. Further, the advantages and disadvantages of the proposed approach

are presented in the fourth section and conclusions are drawn in the fifth

section.

3.1. Introduction

As discussed in earlier chapters, a transient fault (TF) may occur when a

particle with moderate energy strikes a circuit. A particle with linear energy

transfer (LET) value more than critical charge can change the logic state of the

affected node. An example of such a particle capable of causing transient fault

is ‘α-particle’ (present in packaging material of an integrated circuit). In the

past, the impact of a single particle strike was assumed (modelled) to be

capable of affecting only a single node. However, as the technology scale

reaches 130 nanometer range, it becomes evident that this assumption can no

longer hold true for current and future technology scales [24-27]. In future, a

single particle strike is more likely to affect more than one node placed

adjacent to each other [27]. Additionally, if these nodes belong to different

hardware units, then all these hardware units will produce faulty outputs. This

spatial impact of transient fault on more than one hardware unit is termed as

multi-unit transient fault (MTF). In our proposed approach, the worst-case

spatial impact of transient fault is considered as ‘km-units’. The value of ‘km’

is estimated by the designer based on the environment in which the circuit will

be deployed and fed as an input to the proposed approach.

16

In a manner similar to the spatial effect, the temporal effect of a single event

transient is expected to last for multiple clock cycles [12, 17, 24]. This is due

to factors such as input voltage scaling, increasing frequency of the devices,

etc. This temporal effect of transient fault is termed as multi-cycle transient

fault (MCT). In the proposed approach, the worst-case temporal effect of

transient fault is considered as ‘kc-cycles’. The value of ‘kc’ is estimated by

the designer and fed as an input to the proposed methodology.

Moreover, as the technology scaling continues and the demand for smaller and

faster devices increases, the design complexity has also increased. Therefore,

to reduce the effort required to design complex circuits, many designers have

moved to higher level of design abstraction such as architectural (a.k.a.

behavioral / high) level [3-6]. Hence, novel methodologies are required at

architectural level to identify the presence of temporal and spatial effect of

transient fault. The proposed approach presents a novel methodology that

integrates ‘high level synthesis (HLS)’ and ‘physical design’ frameworks for

generating a DSP IP core that is simultaneously resilient/secure against multi-

cycle temporal and multi-unit spatial effects of transient fault.

3.2. Proposed approach

This section provides a detailed description of our proposed methodology.

3.2.1. Problem formulation

Given a DSP application in the form of data flow graph (DFG) along with

module library, strength of multi-cycle transient fault (kc-cycles), strength of

Fig.3.1. Overview of proposed transient fault security approach

Transient Fault Secured Block

Block for generating kc-cycle transient fault

resilient design using DMR Scheduling (during

HLS)

Block for generating km-unit transient fault

resilient design using Physical Floorplanning

List L[k] of hardware modules

kc-cycle & km-unit transient fault resilient

design

Latency of DMR schedule

Area of Enveloping Rectangle

and Wirelength

Transient fault strength in

temporal domain (kc)

 Transient fault strength in

spatial domain (km)

CDFG/ DFG

Module Library/ Resource

constraint

Input Block

17

multi-unit transient fault (km-units), user-provided resource constraint Xi,

generate a kc-cycle and km-unit transient fault resilient design.

3.2.2. Overview of proposed methodology

As discussed earlier, in future technologies, transient fault occurring due to

radiation strike can last for multiple cycles as well as can affect multiple

hardware units placed in the neighborhood of the affected unit (node). Hence,

it is necessary for future technologies to consider both the temporal and spatial

effect of transient fault during the creation of transient fault resilient (secured)

design. A single particle strike could simultaneously cause multi-cycle and

multi-unit transient faults. However, as MCT affects in temporal domain and

MTF affects in spatial domain. Therefore, domain specific independent

techniques are required to detect the effect of transient fault in their respective

domains. As shown in fig.3.1, the proposed approach integrates multi-cycle

transient fault resilient ‘high level synthesis’ framework with a novel multi-

unit TF resilient ‘physical design’ framework to generate a simultaneously

MCT and MTF resilient DSP IP core design.

A detailed flow diagram of the proposed approach is shown in fig.3.2. In the

initial step of proposed approach, a dual modular redundant (DMR) system is

created by duplicating all the operations of DFG application. Subsequently,

Building DMR Scheduling using List scheduling Algorithm

Generating kC –cycle secured DMR Schedule

Generating km –unit Resilient Floorplan (FP) based on proposed FP Design Rules

Perform global routing of Modules in FP

Apply proposed H/w allocation rules

Latency, List of H/w Components, Interconnection

Evaluate enveloping rectangle area & wire-length from Floorplan

Cost Evaluation

Strength of multi-

cycle Transient
Fault (kc)

Module

Library

Input Block

Resource

Constraints
(Xi)

Strength of Multi-

unit Transient
Fault (km)

DFG

Is Floorplan results

into NPE?

No

,,,

 Yes

,,,

Fig.3.2 Flow diagram of proposed methodology for generating

simultaneously kc and km resilient DSP IP core

18

these operations are concurrently scheduled based on the user specified

resource constraint (Xi). The scheduled DFG (SDFG) thus obtained, along

with the strength of multi-cycle transient fault (kc-cycles) are fed into a multi-

cycle transient fault resiliency algorithm (adopted from [28, 17]) to obtain a

kc-cycle transient fault resilient SDFG DMR. The schedule latency of kc-

cycle resilient design is extracted and stored for cost/fitness evaluation in the

future. Once temporal resiliency is achieved, the MCT resilient design along

with strength of multi-unit TF (km-units) are fed into spatial resiliency

framework. In the first step of spatial resiliency framework, a list ‘L[k]’ of

hardware modules comprising of functional units, multiplexers/demultiplexers

units etc. is generated. Subsequently, a physical level floorplan ([70]) is

generated based the proposed km-unit transient fault resiliency rules. Further,

global routing of modules is performed based on which wirelength is

estimated. Subsequently, wirelength and rectangular chip area of the km-unit

transient fault tolerant floorplan along with schedule delay (stored earlier) are

utilized for evaluating the cost of the generated design solution as discussed in

section 3.2.6. The upcoming sections 3.2.3 and 3.2.4 will discuss framework

for multi-cycle and multi-unit resiliency respectively.

3.2.3. Methodology for generating a kc-cycle transient fault resilient

design

This section provides a detailed description of the methodology for designing

kc-cycle fault resilient SDFG DMR (adopted from [28, 17]). The MCT

resiliency algorithm takes resource constraints (Xi), DFG application, strength

of MCT (kc-cycles) and module library as inputs and produces a kc-cycle

transient fault resilient DMR schedule. The initial step of resiliency algorithm

is to create a DMR system by duplicating all the operations of original (input)

DFG as duplicate DFG. The DMR system thus created has original unit (O
U
)

and duplicate unit (D
U
) as shown in fig 3.3. In the next step, both O

U
 and D

U

are concurrently scheduled (a step of HLS) based on list scheduling algorithm

and the user specified resource constraints Xi. Once scheduled DMR system is

generated, the hardware allocation of both the units (O
U
 and D

U
) is performed

based on the following fault resiliency conditions as stated below:

i. Allocate opn (v) ∈ O
U
 and opn (v′) ∈ D

U
 to distinct operators

(hardware units) based on availability.

19

ii. If unavailable, then:

Keep same assignment for v′ (as v) in D
U
 such that:

t(v') – t(v) ≥ kc (3.1)

iii. If the above condition (Eq. (3.1)) is false, then:

Push v′ (and its successors) ∈ D
U
 one CS below until Eq. (3.1) is

true.

Hardware allocation of duplication unit’s operations without obeying

conditions (i), (ii) or (iii) may result in transient fault hazards (TFH) between

similar operations of O
U
 and D

U
. In other words, TFH occurs if:

t(v') – t(v) ≤ kc; where (v) ∈ O
U
 and (v′) ∈ D

U
 (3.2)

The TFHs are resolved by pushing the affected operation of the duplicate unit

(along with its successors) in later control steps. The pushing of operations

ensures that the time interval between v and v′ is greater than (or equals to) kc-

cycles [28]. Hence, the temporal effect of transient fault will remain isolated in

the affected module. Therefore, when a single event transient will cause a fault

in one of the modules, other module will produce correct output. Thus,

difference between the output of original unit and duplicate unit will indicate

presence of transient fault in a DSP IP core. The outputs of the O
U
 and D

U
 are

compared with the help of a special circuit as discussed in the upcoming sub-

section.

Protecting the guard in DMR schedule

As shown in fig. 3.3, error detection block comprises of two stages. In the first

stage, outputs of the original & duplicate units of the scheduled DMR are fed

into three comparators (C1, C2 & C3). In the second stage, the output of the

comparators C1, C2 & C3 are subsequently fed to a voter (V). This multi-

Original unit Duplicate unit

Comparator

(C1)

Comparator

(C2)

Comparator

(C3)

Voter (V)

Stage 1

Stage 2

Fig.3.3. Protecting the guard: Error-detection block

Error-detection block

DMR system

20

stage setup (adopted from [29]) protects the transient fault resilient design

against a possible vulnerability of transient fault due to a particle strike on the

comparator.

The transient fault can affect the comparator(s) in two possible scenarios: (a)

faulty comparator & fault in hardware of original unit or duplicate unit: In

this scenario, any two faultless comparators will produce logic ‘1’ as output

indicating difference in outputs of original and duplicate unit. On the contrary,

the faulty comparator will yield a logic ‘0’ indicating no difference in output

of O
U
 and D

U
. Therefore, when the outputs of these three comparators are fed

into voter, a logic ‘1’ will be produced at voter output thereby, indicating

presence of transient fault in the DMR system. (b) faulty comparator & no

fault in hardware original or duplicate: In this scenario, two faultless

comparators will produce logic ‘0’ as output indicating no difference in

outputs of O
U
 and D

U
 while faulty comparator will produce logic ‘1’

indicating a difference in outputs of O
U
 and D

U
. Therefore, when the outputs

of three comparators are fed into voter, a logic ‘0’ will be produced at voter

output thereby, indicating no occurrence of transient fault in the DMR system.

Both the scenario shows that the multi-stage setup will always detect the

presence of the transient fault in the circuit even if the particle strike affects a

comparator. Further, note that the voter adopted in our proposed approach is

tolerant against temporal effect of transient fault [30].

3.2.4. Methodology for generating a km-unit transient fault resilient

design

The proposed algorithm takes kc-cycle transient fault resilient schedule and

obtain the list ‘L[k]’ of hardware modules (functional units, interconnect units

etc.). The hardware module list L[k], along with strength of multi-unit

transient fault (km) are fed as input to the proposed km-resiliency algorithm.

Subsequently, the hardware modules present in the L[k] are placed based on

the proposed resiliency/security aware floorplanning rules:

1. Select a pair of sister operations (v & v′) in kc-cycle resilient SDFG DMR.

2. Find corresponding sister hardware functional modules (Mv & Mv′)

assigned to sister operations in DMR SDFG.

21

3. Place sister hardware modules in a floorplan such that they are at least km

units apart i.e. S(Mv′) ≥ S(Mv) + km; where S(Mv′) and S(Mv) are the

starting point of placement of modules Mv & Mv′ along x-axis or y-axis

(spatial domain) in a floorplan.

4. Repeat steps 2–3 for all remaining pair of sister operations present in the

kc-cycle resilient DMR SDFG.

The aim of the proposed floorplanning rules is to isolate spatial effect of

transient fault within a single module of the DMR system. To this end, FP

rules ensures that any pair of functional modules allocated to sister operations

are bi-directionally placed at least km units apart from each other in a

floorplan. This is because, if functional modules allocated to sister operations

are bi-directionally placed within km units, then the spatial effect of transient

fault due to a potential radiation strike may affect both the units similarly. In

such a scenario, both O
U
 and D

U
 will produce same erroneous output

(concurrent error). Therefore, error detection block will not be able to

(distinguish between the output of O
U
 and D

U
) detect fault. Thus, proposed

floorplanning rules ensures a minimum bi-directional distance of km units

between functional units allocated to sister operations.

 In our proposed methodology, the strength of multiple transient fault is

considered in terms of km-units. Where 1 unit = 0.768 μm has been assumed

based on sample values of MTF (in nanometer range) presented in [19,31]. the

strength of multiple transient fault (km) represents the worst possible impact

Operation
of UOG

Operation
of UDP

Corr. H/w of
UOG

Corr. H/w
of UDP

1 1’ M1 M2

2 2’ M2 M1

3 3’ M1 M2

4 4’ A1 A2

5 5’ A1 A2

6 6’ M2 M1

7 7’ A1 A2

8 8’ M1 M2

9 9’ A1 A2

10 10’ C1 C2

Table 3.1 Conflict details of sister operations in 2-cycle

transient fault resilient SDFG DMR of IIR

22

of MTF provided to the designer as an input. For the purpose of demonstration

km = 4 is assumed. However, our proposed algorithm is applicable for any

value of km. In practical scenario, the km value depends on the expected

energy of the particle. (Note: in our approach we have assumed spatial impact

of transient fault between functional units such as adders, multipliers, etc. but

not on multiplexers / demultiplexers)

3.2.5. Wirelength estimation

Once kc-cycle and km-unit transient fault resilient floorplan is generated,

wirelength is estimated as per the following equation.

dijcijW
ji

FP 
,

 (3.3)

Where cij is connectivity between hardware units i & j and dij is Manhattan

distance between center of rectangles i & j. For evaluating Manhattan

distance, the I/O connectivity is assumed to be at the center of each module.

3.2.6. Cost evaluation

In prosed approach, cost is evaluated as the normalized weighted sum of

wirelength, chip area (enveloping rectangular area), and latency as shown by

the following equation:

FP

FP

FP

FP

DMR

DMR

if
W

W

A

A

L

L
XC

maxmax

2

max

1 3)(  (3.4)

Where, Cf (Xi), is the cost/fitness function of transient fault resilient design

+

* *

+

*

+

+

* *

2 1 3

4

5

6

7

8

9

O
U D

U

Fig.3.4. A dual modular redundant system of IIR Filter

+

* *

+

*

+

+

* *

2’ 1’ 3’

4’

5’

6’

7’

8’

9’

23

based on resource constraint Xi; φ1 = φ2 = φ3 are the user specified weights

of schedule latency, floorplan chip area and floorplan wirelength respectively.

Equal weightage is assumed for φ1 = φ2 = φ3 = 0.333. L
DMR

 = latency of kc-

cycle transient fault resilient DMR schedule, based on user provided resource

constraint Xi; Lmax
DMR

 = latency of kc-cycle transient fault resilient DMR

schedule, based on maximum resources available for each type in the design

space; A
FP

= floorplan chip area of km-unit TF resilient floorplan based on user

provided resource constraints; Amax
FP

 = floorplan chip area of km-unit multiple

transient fault resilient floorplan based on maximum number of resources in

the design space; W
FP

 = wirelength of FP based on user provided resource

constraints; Wmax
FP

 = wirelength of FP based on maximum number of

resources in the design space.

3.3. Demonstrative example

24

This section provides a detailed description of the proposed approach with the

help of an example of IIR filter benchmark. In demonstrative example,

strength of multi-cycle and multi-unit transient faults are assumed to be kc=2

cycles and km=4 units (where, 1 unit=768 nm) respectively. Further, in the

> C1 9

1

2

3

4

5

6

7

8

A1
+

* *

+
*

+

+

*

*

M2

M2

A1

M1

A1

M1
A1

M1 2 1

3
4

5

6

7

8

9
M2

M2

6’

3’

M2

A2

A2 M1

M1

A2

A2

1’

*

*

+

+

+

+

*

* *

2’

4’

5’

7’

8’

9’

Fig.3.5. 2-cycle transient fault resilient dual modular redundant

schedule of IIR Filter

> C3 > C2

25

demonstrative example 1 cycle or control step is equal to 100 ps. In the initial

step of proposed approach, a DMR system is created by duplicating all the

operations of original DFG application as duplicate unit D
U
 as demonstrated

with IIR benchmark shown in fig. 3.4. Subsequently, scheduling (using list

26

scheduling algorithm) of the DMR system is performed based on user

specified resource constraints Xi = (2A, 2M). Once Scheduled DMR system is

generated proposed kc-cycle transient fault resilience rules are applied to

generate 2-cycle transient fault resilient design as shown in fig. 3.5.

M1
d3

M2
d4

A1

m11

A2

m04 m13 m03

m12

d1

d2

m14

m01

m02

8
 u

n
it

s
3
.7

5
 u

n
it

s
3
.2

5
 u

n
it

s

8
.7

5
 u

n
it

s

2
 u

n
it

s

7
.5

 u
n
it

s

1
 u

n
it

4 units 4 units

12 units

Fig.3.6. 4-unit transient fault resilient floorplan based on the

2-cycle transient fault resilient SDFG of IIR (2A, 2M)

C1

C2

5
.7

5
 u

n
it

s

M1 M2

m11

A2

m04 m13 m03

m12

d1

d2

d4

d3

A1

m14

m01

m02

8
.7

5
 u

n
it

s
2
 u

n
it

s
1
 u

n
it

8
 u

n
it

s
7
.5

 u
n

it
s

3
.2

5
 u

n
it

3
.7

5
 u

n
it

4 units 1 unit each

12 units

Fig. 3.7. IIR floorplan (2A, 2M) with no rules of multiple

Transient fault security

C2 C1

5
.7

5
 u

n
it

27

The kc-cycle transient fault tolerant design thus obtained is used to create a list

of hardware modules L[k]. The list L[k] of the SDFG DMR thus obtained is

L[k] = {(Adders: A1, A2), (Comparator: C1, C2, C3), (Multipliers: M1, M2),

(2:1MUX: m01, m02), (4:1MUX: m11, m12), (8:1MUX:m03,m13,m04,m14),

(demux1:4:d1,d2), (demux1:8: d3,d4) }

After list L[k] is created, a table comprising of conflicting hardware resources

(hardware resources allocated to sister operations within kc control steps) is

generated as shown by table 1. Subsequently, the hardware modules are

floorplanned based on the proposed km-unit transient fault resilient

floorplanning rules discussed in section 3.2.4. (Note that the geometric

dimensions of the modules based on NanGate 15 nm open source technology

library [31] are shown in table 2.) For example, consider a pair of conflicting

hardware M1 and M2 allocated to operation 1 and 1’ respectively (within kc-

cycles). Hence, to avoid transient fault impacting both the operations 1 and 1’,

hardware modules M1 and M2 must be placed at least km-units apart from

each other. Hence, as shown in fig. 3.6, M1 and M2 are placed km=4 units

distance apart from each other. Similarly, other conflicting hardware modules

are placed. The floorplan thus obtained is km-unit & kc-cycles transient fault

resilient. On the contrary, fig. 3.7 shows the non-resilient floorplan. In this

normal floorplan hardware modules M1 and M2 are placed adjacent to each

Module name Height width

 nm units nm units

Multiplier 6144 8 3072 4

Adder 1536 2 768 1

Comparator 4480 5.75 768 1

Subtractor 1792 2.25 768 1

2:1 MUX 832 1 768 1

4:1 MUX 2496 3.25 768 1

8:1 MUX 5824 7.5 768 1

16:1 MUX 12480 16.25 768 1

32:1 MUX 25792 33.5 768 1

1:2 demux 960 1.25 768 1

1:4 demux 2880 3.75 768 1

1:8 demux 6720 8.75 768 1

1:16 demux 14400 18.75 768 1

1:32 demux 29760 38.75 768 1

Table 3.2. Library details based on 15nm NanGate

28

other. Hence, in such a design although kc-cycle (temporal) resiliency is

achieved. However, the design is still vulnerable to spatial effect of transient

fault. Therefore, to ensure complete resiliency against transient faults, it is

mandatory that the resiliency is provided against both the temporal as well as

spatial effect of single event transient (SET). The proposed approach ensures

resiliency against both temporal and spatial effects of SET.

3.4. Advantages and disadvantages of proposed approach at

behavioral level

3.4.1. Advantages

(i) Offers lower implementation runtime than existing fault secured

approaches at lower level.

(ii) Offers greater reliability (i.e. temporal & spatial transient fault aware

digital design synthesis flow) than lower level techniques.

(iii) Offers automated generation of multiple alternative hardware

implementations that are simultaneously resilient against multi-cycle

and multi-transient fault compared to lower level techniques.

(iv) Offers flexibility to design resilient digital systems against any kc-

cycle and km-unit transient fault as per user requirement compared to

lower level techniques where specification of worst case transient fault

range (strength) may not be possible as input.

3.4.2. Disadvantages

(i) Area, power and delay overhead may be larger compared to lower

level techniques.

(ii) Lower level interconnection/wirelength/datapath details are not

available much at behavioral level which makes solution cost

evaluation complicated.

3.5. Summary

The proposed methodology is the first approach in the literature that

simultaneously consider temporal and spatial effects of transient fault. It

integrates ‘high level synthesis’ and ‘physical design’ frameworks for

providing security/resilience against multi-cycle temporal and multi-unit

spatial effects of transient fault. Further, the proposed approach presents novel

29

security-aware floor-planning rules for providing resiliency against multi-unit

spatial effect of transient fault. Additionally, the proposed approach presents a

novel cost function for evaluating cost of the design solution based on

schedule latency, chip area and wire-length. By virtue of these novel

contributions the proposed approach can generate a DSP IP core that is

simultaneously resilient against multi-cycle temporal and multi-unit spatial

effects of transient fault.

30

Chapter 4

Methodology for generating a low-cost DSP IP core

that is simultaneously tolerant against multi-cycle

temporal and multi-unit spatial effects of transient

fault for data intensive applications

This chapter presents the proposed approach to generate a DSP IP core that

will produce correct output even on the occurrence of transient fault. The first

section introduces the problem. The second section presents a brief overview

of the proposed methodology. The third, fourth and fifth section describes the

major blocks of the proposed approach. The sixth section summarize the major

contributions of the proposed approach.

4.1. Introduction

As discussed in preceding chapters, radiation induced transient fault in digital

systems has become a major reliability concern. Although, detection of

transient faults can be sufficient in many applications. However, only

detection of transient fault is not enough for mission-critical applications. Due

to criticality of the application, it is mandatory to ensure that correct output is

generated even on the occurrence of transient fault.

For instance, consider mission-critical application such as aircraft control

system. The aircraft control system comprises of important sub-systems such

as computers (involving processors), sensors and actuators. The criticality of

these control systems mandates ensuring correct operation of processing cores

such as application specific processing (ASPs) cores or integrated circuits

(ASICs) even on the occurrence of transient fault. Moreover, due to typical

working environment of aircrafts, they remain exposed to radiations that may

result into transient faults. Further, due to demand of high operational speeds

(high frequency), low area, low power application specific processors in the

aerospace systems. The chances of temporal effect of transient fault lasting for

multiple cycles has increased manifold. Similarly, the chances of spatial effect

of transient fault affecting multiple units placed in the neighborhood has also

increased. Hence, it is mandatory to consider both the temporal as well as

31

spatial impact of transient fault while designing applications for mission-

critical systems.

The proposed approach presents a novel methodology for generating a ‘low

cost optimized transient fault tolerant hardware against multi-cycle (temporal)

and multi-unit (spatial) effect of transient fault for data-intensive digital signal

processing (DSP) applications’.

4.2. Proposed approach

This section provides a brief overview of our proposed methodology.

4.2.1. Problem formulation

Given a data intensives DSP application in the form of data flow graph (DFG)

along with module library, strength of multi-cycle transient fault (kc), strength

of multi-unit transient fault (km), as inputs, generate a kc-cycle and km-unit

transient fault tolerant low-cost design solution as output.

4.2.2. Overview of proposed methodology

As shown in fig 4.1, the proposed methodology comprises of three major

components. The first component particle swarm optimization-based design

space exploration (PSO-DSE) is primarily responsible for generating low-cost

design solution. The second component is responsible for providing tolerance

against temporal effect of transient fault. The third and the last component

provides tolerance against spatial effect of transient fault.

32

As shown in fig.4.2, The first step of proposed approach is to initialize the

particle swarm [32, 33]. Subsequently, cost along with PSO-DSE parameters

such as velocity, local best and global best are initialized. Afterwards, for each

particle of the swarm, a triple modular redundant (TMR) system is created,

and the proposed kc-cycle transient fault tolerant rules are applied to obtain

kc-cycle transient fault tolerant schedule. The latency of the schedule thus

generated, is stored for cost evaluation. Subsequently, a list of conflicting

hardware is created, and proposed km-unit fault tolerant design rules are

applied to obtain km-unit transient fault tolerant floorplan. The overall system

thus generated is kc-cycle and km-unit transient fault tolerant design. The

rectangular floorplan (chip) area thus obtained is stored for cost evaluation.

Further, the cost of the transient fault tolerant design is evaluated and PSO-

DSE parameters (local best, global best, velocity, particle’s position) are

updated. The process is repeated till one of the PSO-DSE termination criteria

is met [33,32]. The optimal design solution thus explored is the low-cost kc-

cycle and km-unit transient fault tolerant design solution.

PSO-DSE block

Tolerance against spatial effect

(km) of transient fault

Proposed approach

Spatial (km) & temporal (kc) fault tolerant

low cost design solution

Fig.4.1. Overview of proposed TF tolerant approach for data

intensive applications

Tolerance against temporal effect

(kc) of transient fault

DFG

Application

Module library

Strength of

temporal effect

(kc)

Strength of

spatial effect

(km)

I
N
P
U
T

B
L
O
C
K

DFG application

Module library

Strength of temporal

impact (kc)

Strength of spatial

impact (km)

I
N
P
U
T

B
L
O
C
K

Initialize the particle swarm

Evaluate cost

Create TMR of the DFG

Schedule DFG based on proposed kc-cycle fault

tolerant rules

Obtain the list of hardware conflicts

Generate the km-unit fault tolerant floorplan

Fig.4.2. Flow graph of the proposed TF tolerant methodology for

data intensive applications

PSO-DSE

Tolerance against temporal effect of
transient fault

Tolerance against spatial effect of transient
fault

Update local best and global best position

Update velocity and swarm position

33

The upcoming sections describe major components of proposed methodology

in detail.

4.3. Proposed Methodology for generating a kc-cycle transient

fault tolerant design

This section provides a detailed description of the proposed methodology for

designing kc-cycle transient fault tolerant scheduled DFG (SDFG) TMR

system. The aim of the proposed methodology is to isolate the impact of

transient fault in any one of the three modules (copy) of the TMR system such

that remaining two modules (copies) should function correctly even in the

presence of transient fault. Hence, when a voter is applied to the TMR system

then voter will always vote-in the correct output.

The proposed algorithm takes resource constraints (Xi), DFG application,

strength of multi-cycle transient fault (kc) and module library as inputs and

produces a kc-cycle transient fault tolerant TMR schedule. The initial step of

proposed approach is to create a triple module redundant system by copying

all the operations of original (input) DFG (O
C
) as duplicate copy (D

C
) and

triplicate copy (T
C
) as shown in fig 4.3. Subsequently, scheduling and

allocation of TMR system is performed based on resource constraints (particle

position Xi, produced from PSO-DSE block) using the proposed kc-cycle

transient fault tolerant scheduling and allocation rules.

The temporal effect of transient fault may cause hardware conflicts during

scheduling and allocation. The hardware conflict arises when a hardware

resource allocated to an operation of a copy is re-allocated to another

operation of its cloned copies within kc-cycles. The proposed kc-cycle

transient fault tolerant scheduling and allocation rules to resolve these

hardware conflicts are:

a. Hardware resource (R) allocated to an operation of a copy can be re-

allocated to an operation of the same copy within kc control steps

(cycles).

b. Shift operation of a copy if no hardware resource can be allocated

without conflicts. Thus, allocations are made based on the following:

34

i. Resource ‘R’ allocated to an operation of O
C
 (v ∈ O

C
) can be re-

allocated to an operation of D
C
 (v’ ∈ D

C
) or an operation of T

C
 (v’’ ∈

T
C
) only after a distance of kc control steps (cycles).

i.e. t(v’)-t(v)> kc, and

t(v’’)-t(v)> kc

ii. Resource ‘R’ allocated to an operation of D
C
 (v’ ∈ D

C
) can be re-

allocated to an operation of O
C
 (v ∈ O

C
) or an operation of T

C
 (v’’ ∈

T
C
) only after a distance of kc control steps (cycles).

i.e. t(v)-t(v’)> kc, and

t(v’’)-t(v’)> kc

iii. Resource ‘R’ allocated to an operation of T
C
 (v’’ ∈ T

C
) can be re-

allocated to an operation of O
C
 (v ∈ O

C
) or an operation of D

C
 (v’ ∈

D
C
) only after a distance of kc control steps (cycles).

i.e. t(v)-t(v’’)> kc, and

t(v’)-t(v’’)> kc

Proposed scheduling and allocation rules ensure fault isolation within a single

copy i.e., a single particle strike causing transient fault in a copy (O
C
, D

C
 or

T
C
) of the TMR system will not affect the remaining two copies. Hence, even

in the presence of (temporal effect of) transient fault due to a single particle

strike, two copies will always produce correct output thus voter will ensure

correct output is always produced as final output of the TMR system. The

delay of the kc-cycle transient fault tolerant design thus generated is stored for

future utilization during cost evaluation.

4.3.1 Demonstrative example of proposed methodology for generating a

kc-cycle transient fault tolerant design

This section illustrates proposed kc-cycle transient fault tolerant scheduling

and allocation rules with the help of an example of DWT DFG benchmark.

For the demonstrative purpose, the realistic delay value of one control step is

taken as 100 ps [24]. Further the values of area and delay of hardware

resources are based on 15nm technology open source NanGate library [31].

Additionally, for demonstrative purpose strength of transient fault is assumed

to be (kc =) 4 control steps/cycles (equivalent to 400 ps) as adopted from [24].

35

However, note that the proposed approach is applicable for any other kc

values.

Fig. 4.3 shows a basic TMR system of DWT benchmark. The proposed kc-

cycle transient fault tolerant scheduling and allocation rules are applied on the

TMR system to obtain a 4-cycle transient fault tolerant scheduling based on

particle

36

*
2

*
3

*
4

*
5

+
7

+
8

+
9

*
1

+
6

+
10

+
11

+
12

+
13

+
14

+
15

+
16

+
17

*
2’

*
3’

*
4’

*
5’

+
7’

+
8’

+
9’

*
1’

+
6’

+

10’

+
11

’

+
12’

+
13’

+
14’

+
15’

+
16’

+
17

’

*
2’’

*
3’’

*
4’’

*
5’’

+
7’’

+
8’’

+
9’’

*
1’’

+
6’’

+

10’’

+
11’

’

+
12’’

+
13’

’

+
14’

’

+
15’

’

+
16’’

+
17’

’

OC
DC TC

Fig.4.3. Un-timed TMR system for DWT DFG benchmark

V
V1

*
M2 2

*
M1 3

*
M2 4

*
M1 5

+
A1 7

+
A2 8

+
A1 9

*
M1 1

+
A1 6

+
A3 10

*
M1 11

+
A1 12

*
M1 13

+
A1 14

*
M1 15

+
A1 16

+
A1 17

*
M2 2’

*
M2 3’

*
M2 4’

*
M2 5’

+
A2 7’

+
A2 8’

+
A2 9’

*
M2 1’

+
A2 6’

+
A2 10’

*
M2 11’

+
A2 12’

*
M2 13’

+
A1 14’

*
M2 15’

+
A1 16’

+ A1 17’

*
M1 2’’

*
M1 3’’

*
M1 4’’

*
M1 5’’

+
A3 7’’

+
A3 8’’

+
A2 9’’

*
M1 1’’

+
A3 6’’

+
A3 10’’

*
M1 11’’

+
A2 12’’

*
M1 13’’

+
A2 14’’

*
M1 15’’

+
A1 16’’

+
A1 17’’

CS 1

CS 2

CS 3

CS 4

CS 5

CS 6

CS 7

CS 8

CS 9

CS 10

CS 11

CS 12

CS 13

CS 14

CS 15

CS 16

CS 17

CS 18

CS 19

CS 20

CS 21

CS 22

CS 23

CS 24

O
C

D
C

T
C

CS 25

Fig.4.4. 4-cycle TF tolerant schedule of DWT DFG for particle position Xi = {3A, 2M}

37

position Xi = {3A, 2M} as shown in fig.4.4. The proposed rule ‘a’ permits a

hardware resource allocated in pervious control steps to an operation of a copy

to be re-allocated within kc cycles to another operation of same copy. This is

because fault affected hardware will perform operations of same copy within

kc cycles, hence fault will remain isolated in the same copy and will not

propagate to other copies. Further, it results in better hardware resource

utilization leading to reduction in delay of the scheduled DFG. Thus, fault

isolation within the same copy is ensured as long as rules b is also satisfied.

For example, rule ‘a’ permits hardware M1 allocated to opn 1 (of O
C
) to be re-

allocated to opn 3 of the same copy within kc-control steps/cycles. As per

proposed rule ‘b’, opn 1’ of D
C
 has been shifted to CS7 since no allocation

was possible due to hardware conflicts. Further as per rule b i., hardware

resource A1 allocated to opn 17 of O
C
 at CS10 is re-allocated to opn 14’ (of

D
C
) at CS15 only after 4 cycles (control steps). Similarly, M1 allocated to opn

15 of O
C
 at CS8 is re-allocated to operation 1’’ of T

C
 at CS13 only after 4-

cycles. Additionally, according to rule b.ii., hardware A2 allocated to opn 9’

can only be re-allocated to opn 9’’ (of T
C
) in CS 18 after 4 cycles. Further,

according to rule b.iii., M1 allocated to operation 1’’ (of T
C
) could only be re-

allocated to an operation of D
C
 or O

C
 after 4 cycles. Thus, M1 allocated to 1’’

could not be re-allocated to 13’ or 15’.

4.4. Proposed Methodology for generating a km-unit transient

fault tolerant design

The proposed methodology for generating a km-unit transient fault tolerant

design takes kc-cycle fault tolerant TMR system along with strength of spatial

effect of transient fault (km) as input and generates kc-cycles & km-unit fault

tolerant floorplan as output.

The proposed methodology considers spatial effect of transient fault in term of

hardware conflicts. A hardware conflict due to spatial effect occurs when a

hardware resource allocated to an operation of a copy is placed within km-unit

distance to any hardware resource allocated to an operation of remaining two

copies within kc-CS (cycles). In such a scenario if two hardware resources

allocated to different copies are placed less than km-unit to each other then,

38

fault may propagate from one copy to another due to spatial effect of transient

fault. Hence, more than one copy will generate incorrect output leading to

incorrect output by voter. Therefore, resolving hardware conflicts due to

spatial effect of transient fault is important to provide complete tolerance

against transient faults. (Note that the voter utilized in the proposed approach

is transient fault tolerant [30]).

As shown in fig. 4.5, the first step of proposed methodology is to obtain list of

all hardware resources [Ri] present in kc-cycle fault tolerant design. In the

next step, a list of conflicting hardware (𝑍𝑅𝑖
[𝑅𝑗]) due to spatial effect of

transient fault is generated for all the resources present in the list [Ri].

Subsequently, the hardware resources are placed during floorplanning such

that each resource Ri is placed at least km-unit distance apart from its

conflicting resources Rj. These steps are repeated till all the resources are

placed. The floorplan thus obtained is kc-cycle and km-unit transient fault

tolerant floorplan.

4.4.1 Demonstrative example of proposed methodology for generating a

km-unit transient fault tolerant floorplan

This section illustrates proposed km-unit transient fault tolerant methodology

with the help of an example of DWT DFG benchmark. In the initial step, list

of all hardware resource is obtained from 4-cycle transient fault tolerant TMR

system (discussed earlier in section 3.2.4) as L[R] = {M1, M2, A1, A2, A3}.

Subsequently, for each of the hardware resources, list of conflicting hardware

is created. For instance, consider hardware resource M1, the M1 allocated to

an operation 1 of OC at CS 1 will be in conflict with all the hardware allocated

to any operation of DC or TC within kc = 4 cycles. However, there is no other

Obtain a list 𝑳[𝑹𝒊] of all hardware resource (𝑹𝒊) from kc-cycle fault

tolerant SDFG

(where i=1,2,.., n.)

Obtain list of conflicting hardware resources (𝑍𝑅𝑖
[𝑅𝑗]) for each element of

[𝑅𝑖] .

Place each element of 𝐿[𝑅𝑖] such that it is at least km-unit distance apart

from each of its conflicting hardware listed in 𝑍𝑅𝑖
[𝑅𝑗] .

Repeat until 𝐿[𝑅𝑖] ≠ ∅.

Fig.4.5 Proposed km-unit transient fault tolerant

floorplanning rules

39

operation of DC or TC scheduled till CS5. Hence, for M1 allocated to

operation 1 of OC there is no conflict. Similarly, M1 allocated to opn 3 at CS2

has no conflict. However, M1 allocated to opn 5 of OC at CS3 conflicts with

M2 allocated to opn 1’ of DC. likewise, M1 allocated to opn 11 at CS4

conflicts with M2 and A2 allocated to opn 1’ and 6’ of DC respectively.

Similarly, other conflicts of resource M1 is evaluated and the list of

conflicting hardware of resource M1 thus obtained is 𝑍𝑀1[𝑅𝑗] = {𝑀2, 𝐴1, 𝐴2}. In

similar manner list of all conflicting hardware is obtained. Subsequently, in

the third and final step of the proposed km-unit transient fault tolerant

approach, the conflicting hardware are placed at least km-unit (=4)

bidirectional distance apart from each other. For example consider the list of

conflicting hardware of M1 : 𝑍𝑀1[𝑅𝑗] = {𝑀2, 𝐴1, 𝐴2} and A3 : 𝑍𝐴3[𝑅𝑗] =

{𝑀2, 𝐴1, 𝐴2} . Since both the conflicting list does not contain A3, or M1

respectively. Hence, both M1 and A3 can be placed adjacent to each other as

shown in fig.4.7. Similarly, as list of M1 contain A2 hence M1 and M2 are

placed at least km=4 unit distance apart from each other.

On the contrary, in case of spatially non-tolerant floorplan all the hardware

resources are compactly placed as shown in fig.4.6. Although, such a floorplan

has lesser area compared to proposed approach, it is vulnerable to spatial

M1

M2

A
2

A
1 V

1

A
3

2

8
 u

n
it

s

3
1

.2
5

 u
n

it
s

13 units

AREA = 406.25 Sq. units

Fig.4.7. kc=4 and km=4 fault-tolerant

floorplan of DWT benchmark

8
 u

n
it

s

4 units

4 units

4 units

6
 u

n
it

s

A1

A2
M1 M2

A3

2
 u

n
it

s
ea

ch

8
 u

n
it

s

9 units

AREA = 72 Sq. units

4 units

Fig.4.6. Non-tolerant Floorplan

of DWT benchmark

40

effect of transient fault. The main crux of the proposed approach is to provide

tolerance against temporal as well as spatial effect of the transient fault.

Additionally, the proposed approach reduces the impact of area overhead by

exploring low-cost design solution with the help of PSO-DSE framework.

4.5. PSO-DSE framework for generating low-cost kc-cycle and

km-unit transient fault tolerant design

This section provides a detailed description of particle swarm optimization

based design space exploration PSO-DSE framework [32, 33]. The PSO-DSE

framework comprises of four major steps as follows:

4.5.1 Particle encoding and swarm initialization

In the initial step of the PSO-DSE framework, particles of the swarm (Pi) are

encoded as Xi = {NR1, NR2, …, NRD} where Xi denotes position of i
th

 particle

in the design space, NRD represents the number of resources of type RD in the

D
th

 dimension of the design space[32, 33]. Each particle of the swarm

represents number of hardware resources utilized for generating transient fault

tolerant design solutions. Subsequently, particles are initialized in the design

space. The first three particles (P1, P2 and P3) are initialized as:

X1={min(R1), min(R2), … , min(RD)}

X2={max(R1), max(R2), … , max(RD)}

X3={[min(R1) + max(R1)]/2, … , [min(RD) + max(RD)]/2}

Representing minimum, maximum, and middle positions of the design space.

Hence, ensuring good coverage of design space. Afterwards, the remaining

particles (Pi) are initialized as:

Xi={[min(R1) + max(R1)]/2 ± 𝛼, … , [min(RD) + max(RD)]/2 ± 𝛼}

Where, min(RD) and max(RD) denotes minimum and maximum resource in

D
th

 dimension respectively. 𝛼 is a random integer between the min(RD) and

max (RD).

4.5.2 Fitness / cost evaluation

Each particle’s position in the design space represent the number of hardware

resources utilized for generating kc-cycle and km-unit transient fault tolerant

41

design solution. Based on the varying resource configuration (particle

position) fault tolerant design solutions are generated and evaluated for

analyzing fitness based on the following cost function.

FTA

FTA

FTL

FTL

iXfC

max
2

max
1)( 

(4.1)

where Cf (Xi) represents the cost/fitness of fault tolerant design solution based

on the (resource configuration) particle position Xi, 1 and 2 are weightage

of schedule latency and area of floorplan respectively. L
FT

 is the latency of

transient fault tolerant design, Lmax
FT

 is the maximum latency of transient fault

tolerant design solution in the design space (derived using minimum number

of hardware resources), A
FT

 is the enveloping floorplan chip area of the fault

tolerant design solution, Amax
FT

 is the maximum floorplan area of the transient

fault tolerant design (derived using maximum number of hardware resources).

4.5.3 Updating local best and global best

In each iteration of the PSO-DSE framework, particle ‘P’ of the swarm

explores some position ‘Xi’ in the design space. The local best denotes least

cost (best fit) position explored by an individual particle ‘P’ of the swarm till

the current iteration. Whereas, global best represents the best fit design

solution explored by the entire particle population till the current iteration.

In each iteration, local best of a particle ‘P’ is updated if a lower cost design

solution compared to current local best is explored by particle ‘P’ in current

iteration. Similarly, in each iteration global best of entire particle swarm is

updated, if a lower cost design solution compared to previous global best is

explored by particle swarm in current iteration.

4.5.4 Updating Velocity and particle’s position

After the local best and global best are updated, the velocity of a particle is

updated using eq. 4.2.

𝑉𝑑𝑖

+ = 𝜔𝑉𝑑𝑖
+ 𝑏1𝑟1[𝑅𝑑lbi

− 𝑅𝑑𝑖
] + 𝑏2𝑟2[𝑅𝑑𝑔𝑏

− 𝑅𝑑𝑖
] (4.2)

Subsequently, the position of a particle is updated using 4.3.

𝑅𝑑𝑖
+ = 𝑅𝑑𝑖 + 𝑉𝑑𝑖

+ (4.3)

https://en.wikipedia.org/wiki/File:Greek_phi_Didot.svg
https://en.wikipedia.org/wiki/File:Greek_phi_Didot.svg

42

Where 𝑉𝑑𝑖

+ ,𝑉𝑑𝑖
 ,𝜔, 𝑅𝑑lbi

 , 𝑅𝑑𝑔𝑏
 , 𝑅𝑑𝑖

 ,b1, b2 ,𝑟1 and 𝑟2 are as defined in

nomenclature of this thesis ([32, 33]).

Subsequently, for the new particle positions, kc-cycle and km-unit transient

fault tolerant designs are generated and finesses are evaluated. This process

continues till one of the termination criteria is satisfied:

1. The global best is not updated for last 10 iterations.

2. The user-defined maximum number of iterations have been executed.

The PSO-DSE process generates optimal low-cost kc-cycle and km-unit

transient fault tolerant design solution upon termination.

4.6. Summary

The proposed methodology is the first approach in the literature to generate

DSP IP cores that are simultaneously tolerance against multi-cycle temporal

and multi-unit spatial effects of transient fault for data intensive applications.

The proposed approach presents novel TF tolerant Scheduling and

floorplanning techniques for generating DSP IP cores simultaneously tolerant

against temporal and spatial effect of transient fault. Further, the proposed

approach generates low-cost design solution with the help of integrated PSO-

DSE framework.

43

Chapter 5

Methodology for generating a low-cost DSP IP core

that is simultaneously tolerant against multi-cycle

temporal and multi-unit spatial effects of transient

fault for loop-based control intensive applications

The previous chapter has presented the methodology for generating transient

fault tolerant DSP IP core for data intensive applications. In this chapter we

will discuss methodology for generating transient fault tolerant DSP IP core

for loop-based control intensive applications. The chapter is organized in five

sections. In the first section we will introduce the problem. In the second

section we will present a brief overview of the proposed solution. The third,

fourth and fifth section will describe the major blocks of the proposed solution

with the help of a demonstrative example. The fifth and the last section will

conclude the chapter.

5.1. Introduction

As discussed in previous chapter, it is necessary to consider tolerance against

radiation induced transient faults while designing applications for mission-

critical systems. Further, due to very stringent requirements such as low-

power, low-area, low-delay of mission-critical systems, it is equally (if not

more) important to consider optimization while designing reliable systems.

The mission critical systems require both data intensive as well as control

intensive applications. Therefore, although technique discussed in previous

chapter generates optimal design solutions for data intensive applications, it is

not applicable to loop-based control intensive applications. Hence, novel

methodology is required for generating optimal designs for control intensive

DSP applications.

The proposed approach presents a novel methodology for generating a ‘low

cost optimized transient fault tolerant hardware against multi-cycle (temporal)

and multi-unit (spatial) effect of transient fault for loop-based control

intensive digital signal processing (DSP) applications’

5.2. Proposed approach

44

This section briefly describes major components of proposed methodology.

5.2.1 Problem formulation

Given a control intensives DSP application in the form of control data flow

graph (CDFG) along with module library, strength of multi-cycle transient

fault (kc), strength of multi-unit transient fault (km), generate a low-cost kc-

cycle and km-unit transient fault tolerant design solution.

5.2.2 Overview of proposed methodology

As shown in fig 5.1, the proposed methodology comprises of four major

components namely PSO-DSE block, pre-processing block, kc-cycle tolerance

block and km-unit tolerance block. The particle swarm optimization-based

design space exploration (PSO-DSE) block is primarily responsible for

exploring low-cost design solution. The pre-processing block takes CDFG

application as input and determines the optimal unrolling factor. The kc-cycle

tolerance block is responsible for providing tolerance against temporal effect

of transient fault. The fourth and final block provides tolerance against spatial

effect of transient fault.

As shown in fig. 5.2, The first step of proposed methodology is to perform

pre-processing of the CDFG application for identifying optimal unrolling

factors (UF) for the design space. Subsequently, based on the pre-processed

unrolling factors, particle swarm is initialized as Xi = {NR1, NR2, …, NRD,

 CDFG

Application

0

Strength of

MCT (kc)

Strength of

MTF (km)

Module

library

INPUT BLOCK

PSO DSE

Block in

HLS

Pre-processing of CDFG

MTF (Km-unit) fault tolerant

HLS block

Proposed approach

kc-cycle & km-unit fault tolerant low-cost design solution

Fig.5.1. Overview of proposed TF tolerant approach for loop-

based control intensive applications

MCT (Kc-cycle) fault tolerant HLS

block

45

UF} where Xi denotes position of i
th

 particle in the design space, NRD is the

number of resources of type RD in the D
th

 dimension of the design space, UF is

unrolling factor. Further, for each particle position Xi, CDFG application is

unrolled based on unrolling factor UF. Subsequently, a TMR system of

unrolled CDFG is created with respect to each particle position Xi.

Afterwards, proposed transient fault tolerant rules are applied to generate kc-

cycle transient fault tolerant schedule. The kc-cycle transient fault tolerant

schedule thus obtained is utilized for creating a list of hardware conflicts.

Subsequently, the proposed km-unit fault tolerant rules are applied for

generating kc cycle and km unit transient fault tolerant floorplan. Once kc-

cycle and km-unit transient fault tolerant design is generated, cost is evaluated

and PSO-DSE parameters such as velocity, local best and global best are

updated. The process is repeated till one of the PSO-DSE termination criteria

is met. The optimal design solution thus explored is the low-cost kc-cycle and

km-unit transient fault tolerant control intensive DSP application. The

upcoming sections describe major components of proposed methodology in

CDFGs Module Library Strength of multi-cycle

transient fault (kc)

Strength of multi-unit

transient fault (km)

Perform Pre-processing for

Unrolling Factor (UF)

Initialize the

swarm with

resource config

and UF

Update velocity

and swarm

position

Evaluate Fitness

Upgrade local best

and global best

Perform unrolling of CDFG for the

obtained UF

Create TMR of the unrolled CDFG

and perform scheduling using list

scheduling algorithm

Schedule the CDFG based on

proposed kc-cycle MCT fault

tolerant rules

Obtain the list of hardware conflicts

Create the km-unit fault tolerant

floorplan

INPUTS BLOCK

P
S
O

D
S
E

B
L
O
C
K

Fig. 5.2. Flow graph of the proposed TF tolerant methodology for loop-

based control intensive applications

Pre-processing

of CDFGs

MCT (kc-cycle)

fault tolerant block

MTF (km- unit)

fault tolerant block

46

detail.

5.3. Preprocessing of CDFG

The pre-processing of CDFG application is a process by which optimal

unrolling factors for the given application are determined. The pre-processing

step perform optimization by removing non-optimal UFs. Thereby, reducing

design space to include only optimal unrolling factors. As shown in fig. 5.2,

pre-processing step comprises of two sub-steps as described below

5.3.1 Preprocessing of CDFG application for determining optimal

unrolling factors

The pre-processing approach is adopted from []. The pre-processing step takes

CDFG application as input and determine the desirable unrolling factors as per

follo

win

g equation

where ‘I’ is total number of loop iterations and UF is unrolling factor. The

UFs thus obtained are most desirable UFs as shown in [VCAL vol.2 issue2

etc. papers].

5.3.2 Unrolling of CDFG

In our proposed approach, each particle position Xi = {NR1, NR2, …, NRD,

UF} comprises of a desirable UF. For each Xi, CDFG application is unfolded

‘UF-1’ times to get unrolled CDFG. For instance, as shown in fig. 5.3, The

original CDFG application (1
st
 iteration) is unfolded once more (2

nd
 iteration)

to obtain unrolled CDFG with UF=2. The 1
st
 and 2

nd
 iterations are represented

desirable UF = ((I mod UF <
𝑈𝐹

2
) && (UF <=

𝐼

2
)) (5.1)

*
1

*
2

*
3

*
10

*
11

*
12

+
19

*
4

*
5

*
13

*
14

*
8

*
17

<
20

-
6

-
15

-
7

+
9

-
16

+
18

Fig. 5.3. Unrolled CDFG of differential equation benchmark for

UF = 2

OC

Iteration 1 Iteration 2

47

by light

48

*
1

*
2

*
3

*
10

*
11

*
12

+
19

*
4

*
5

*
13

*
14

*
8

*
17

<
20

-
6

-
15

-
7

+
9

-
16

+
18

*
1’

*
2’

*
3’

*
10’

*
11’

*
12’

+
19’

*
4’

*
5’

*
13’

*
14’

*
8’

*
17’

<
20’

-
6’

-
15’

-
7’

+
9’

-
16’

+
18’

*
1’’

*
2’’

*
3’’

*
10’’

*
11’’

*
12’’

+
19’’

*
4’’

*
5’’

*
13’’

*
14’’

*
8’’

*
17’’

<
20’’

-
6’’

-
15’’

-
7’’

+
9’’

-
16’’

+
18’’

Fig. 5.4. TMR system of unrolled CDFG (UF = 2) of differential equation benchmark

OC DC TC

Iteration 1 Iteration 2

*
M1 8’

+
A1 9’

-
S1 7’

M6

*
2’

*
M5 1’

*
M4 4’

*
M3 3’

*
M3 5’

-
S3 6’

<
C2 20’

+
A2 19’

-
S1 16’

*
M1 17’

+
A1 18’

*
M3 14’

*
M4 12’

-
S2 15’

*
M6 11’

*
M5 10’

*
M5 13’

+
A3 19’’

<
C1 20’’

*
M4 10’’

*
M5 11’’

*
M6 12’’

*
M2 13’’

-
S1 15’’

*
M3 14’’

*
M1 17’’

+
A1 18’’

-
S1 16’’

*
M2 3’’

*
M2 5’’

*
M2 1’’

*
M2 2’’

*
M6 4’’

-
S3 6’’

-
S2 7’’

*
M2 8’’

+
A2 9’’

*
M2 5

-
S1 6

-
S1 7

+
A1 19

<
C1 20

*
M1 1

*
M2 2

*
M3 3

*
M1 4

*
M1 8

+
A1 9

*
M4 10

*
M5 11

*
M3 13

*
M6 12

*
M4 14

-
S2 15

-
S2 16

*
M2 17

+
A2 18

CS 1

CS 2

CS 3

CS 4

CS 5

CS 6

CS 7

CS 8

CS 9

CS 10

CS 11

CS 12

CS 13

CS 14

CS 15

CS 17

CS 18

CS 16

Fig. 5.5. 4-cycle TF fault tolerant SCDFG TMR of differential equation benchmark for (6M, 3A, 3S, 2C, UF=2)

v

v

v
V1

V1

V1

OC
DC

TC

Iteration

1

Iteration 2

49

blue and purple colored outlines respectively. The additional circuit

comprising of an adder and a comparator is utilized for counting

(incrementing) the number of iterations executed and comparing them with the

maximum number of iterations (I) to be performed. This section provides a

detailed description of the proposed methodology for designing kc-cycle

transient fault tolerant scheduled DFG (SDFG) TMR system. The aim of the

proposed methodology is to isolate the impact of transient fault in any one of

the three modules (copy) of the TMR system such that remaining two modules

(copies) should function correctly even in the presence of transient fault.

Hence, when a voter is applied to the TMR system then voter will always

vote-in the correct output. The pre-processed and unrolled CDFG thus

generated is fed as input to next step of our proposed methodology.

5.4. Proposed Methodology for generating a kc-cycle transient

fault tolerant design

The proposed methodology comprises of two steps as described below.

5.4.1. Creating TMR of the unrolled CDFG

The first step of kc-cycle transient fault tolerant methodology takes unrolled

CDFG as input and creates a triple modular redundant (TMR) system by

copying all the operations of original unrolled CDFG (O
C
) as duplicate copy

(D
C
) and triplicate copy (T

C
) as shown in fig. 5.3. The TMR system thus

generated is fed into our proposed methodology for generating kc-cycle

transient fault tolerant scheduled TMR system as discussed in the following

sub-section.

5.4.2. Methodology for generating kc-cycle transient fault tolerant

scheduled TMR system

The proposed algorithm takes D-dimensional resource configuration extracted

from particle position Xi as input along with unrolled CDFG based TMR

system, strength of multi-cycle transient fault (kc) and module library and

produces a kc-cycle transient fault tolerant scheduled TMR system as output.

The first step of proposed approach is to perform scheduling and allocation of

50

TMR system based on resource configuration extracted from Xi, using the

proposed kc-cycle transient fault tolerant scheduling and allocation rules.

The proposed approach considers the temporal effect of transient fault as

hardware conflicts. A hardware conflict arises when a hardware resource

allocated to an operation of a copy is re-allocated to another operation of its

cloned copies within kc-cycles. The proposed kc-cycle transient fault tolerant

scheduling and allocation rules applied to resolve these hardware conflicts are:

a. Hardware resource (R) allocated to an operation of a copy can be re-

allocated to an operation of the same copy within kc control steps

(cycles).

b. Shift operation of a copy if no hardware resource can be allocated

without conflicts. Thus, allocations are made based on the following:

i. Resource ‘R’ allocated to an operation of O
C
 (v ∈ O

C
) can be re-

allocated to an operation of D
C
 (v’ ∈ D

C
) or an operation of T

C
 (v’’ ∈

T
C
) only after a distance of kc control steps (cycles).

i.e. t(v’)-t(v)> kc, and

t(v’’)-t(v)> kc

ii. Resource ‘R’ allocated to an operation of D
C
 (v’ ∈ D

C
) can be re-

allocated to an operation of O
C
 (v ∈ O

C
) or an operation of T

C
 (v’’ ∈

T
C
) only after a distance of kc control steps (cycles).

i.e. t(v)-t(v’)> kc, and

t(v’’)-t(v’)> kc

iii. Resource ‘R’ allocated to an operation of T
C
 (v’’ ∈ T

C
) can be re-

allocated to an operation of O
C
 (v ∈ O

C
) or an operation of D

C
 (v’ ∈

D
C
) only after a distance of kc control steps (cycles).

i.e. t(v)-t(v’’)> kc, and

t(v’)-t(v’’)> kc

c.

i. There should be at least control steps (cycles) delay between

execution of two consecutive sequential loops such that there are no

conflicts:

i.e. 𝑇𝑆ⅇ𝑞2
𝑠 − 𝑇𝑆ⅇ𝑞1

𝐸 > 𝑘𝐶,

51

ii. There should be at least control steps (cycles) delay between

execution of two consecutive parallel loops such that there are no

conflicts:

i.e. 𝑇𝑝𝑎𝑟2
𝑠 − 𝑇𝑝𝑎𝑟1

𝐸 > 𝑘𝐶,

iii. There should be at least control steps (cycles) delay between start of

the execution of sequential loop1 and completion of parallel loop2

such that there are no conflicts:

i.e. 𝑇𝑆ⅇ𝑞1
𝑠 − 𝑇𝑝𝑎𝑟2

𝐸 > 𝑘𝐶,

Proposed scheduling and allocation rules ensure fault isolation within a single

copy i.e., a single particle strike causing transient fault in a copy (O
C
, D

C
 or

T
C
) of the TMR system will not affect the remaining two copies. Hence, even

in the presence of (temporal effect of) transient fault due to a single particle

strike, two copies will always produce correct output. Hence, voter applied to

output of TMR system will ensure correct output is always produced as final

output of the TMR system. The proposed rules are elaborated in upcoming

section 5.4.3. The delay of the kc-cycle transient fault tolerant design thus

generated is evaluated (as discussed below) and stored for future utilization

during cost evaluation.

Proposed Latency model: The latency of kc-cycle transient fault tolerant

TMR (L
TMR

) is given by following equation

𝐿𝑇𝑀𝑅 = (𝐼%𝑈𝐹) ∗ 𝐿𝑠ⅇ𝑞 + (
𝐼

𝑈𝐹
)

𝑞𝑢𝑜𝑡𝑖ⅇ𝑛𝑡

∗ 𝐿𝑝𝑎𝑟
(5.2)

Where, (𝐼%𝑈𝐹) indicates the number of sequential loops, and (
𝐼

𝑈𝐹
)

𝑞𝑢𝑜𝑡𝑖ⅇ𝑛𝑡

denotes number of parallel loops, 𝐿𝑠ⅇ𝑞, 𝐿𝑝𝑎𝑟 denotes latency of sequential

body and parallel body respectively. The 𝐿𝑠ⅇ𝑞, 𝐿𝑝𝑎𝑟 are calculated as

summation of ‘delay of each control step of the kc-cycle fault tolerant

schedule’ and ‘delay of strength of kc-cycle transient fault’ as shown by eq.

(3).

𝐿𝑠ⅇ𝑞/𝑝𝑎𝑟 = {∑ 𝑀𝑎𝑥(𝐷(𝑜𝑝𝑖), . . , 𝐷(𝑜𝑝𝑛), 𝐷(𝑜𝑝𝑖′), . . , 𝐷(𝑜𝑝𝑛′), 𝐷(𝑜𝑝𝑖′′), . . , 𝐷(𝑜𝑝𝑛′′)
𝑁

𝑐𝑠=1
} + 𝑘𝑐(5.3)

Where delay of a control step is evaluated as maximum value among ‘delay of

all the operations belonging to any copy of the TMR system’. where ‘D(opi)’,

52

‘D(opi’)’, ‘D(opi’’)’ represents delay of operation belonging to original copy,

duplicate copy and triplicate copy respectively. Further, 1 ≤ i ≤ n; 1’≤ i’ ≤ n’;

1’’≤ i’’ ≤ n’’, where, i, i’ and i’’ = operations of original copy, duplicate copy

and triplicate copy respectively. n, n’ and n’’ = maximum number of nodes of

original, duplicate and triplicate copy respectively; N = maximum number of

control steps (cs) of the scheduled CDFG; kc denotes the delay of kc-cycles.

Addition of kc in the eq. (5.3), ensures kc-cycle difference between execution

of consecutive sequential/parallel loops. Hence, ensuring fault doesn’t

propagate within two consecutively scheduled sequential and parallel bodies.

The upcoming sub-section will describe the proposed methodology with the

help of an example.

5.4.3. Demonstrative example of proposed methodology for generating a

kc-cycle transient fault tolerant design for control intensive DSP

applications.

This section illustrates proposed kc-cycle transient fault tolerant scheduling

and allocation rules with the help of an example of differential equation

benchmark. For the demonstrative purpose, the realistic delay value of one

control step is taken as 1000 ps for designing an application specific processor

with frequency 1Ghz. Additionally, for demonstrative purpose strength of

transient fault is assumed to be (kc =) 2 control steps (equivalent to 2000 ps)

as adopted from [39,41,40]. Further, the values of area and delay of hardware

resources are based on 15nm technology open source NanGate library [30].

However, note that the proposed approach is applicable for any other kc

values.

Fig. 5.3 shows a basic TMR system of unrolled differential equations

benchmark. The proposed kc-cycle transient fault tolerant scheduling and

allocation rules are applied on the TMR system to obtain a 2-cycle transient

fault tolerant schedule based on D-dimensional resource constrains extracted

from particle position Xi = {6M, 3A, 3S, 2C, UF=2} as {6M, 3A, 3S, 2C}

where UF=2 is already utilized during creation of unrolled CDFG.

The proposed rule ‘a’ permits a hardware resource allocated in pervious

control steps to an operation of a copy to be re-allocated within kc cycles to

53

another operation of same copy. This is because fault affected hardware will

perform operations of same copy within kc cycles, hence fault will remain

isolated in the same copy and will not propagate to other copies. Further, it

results in better hardware resource utilization leading to reduction in delay of

the scheduled CDFG. Thus, fault isolation within the same copy is ensured as

long as rules b and c are also satisfied. For example, rule ‘a’ permits hardware

M1 allocated to opn 1 (of O
C
) to be re-allocated to opn 4 of the same copy

within kc-control steps/cycles.

As per proposed rule ‘b’, opn 1’ & 2’of D
C
 have been shifted to CS4 since

no allocation was possible due to hardware conflicts. Further, as per rule b i.,

hardware resource M5 allocated to opn 11 of O
C
 at CS1 can only be re-

allocated to opn 1’ (of D
C
) at CS4 after 2 cycles (control steps). Similarly, as

per rule b ii., hardware resource M5 allocated to opn 13’ of D
C
 at CS6 is re-

allocated to opn 10’’ (of T
C
) at CS9 only after 2 cycles (control steps). Further,

according to rule b.iii., M5 allocated to operation 10’’ (of T
C
) could only be

re-allocated to an operation of O
C
 or D

C
 after 2 cycles in case re-allocation of

M5 was needed.

5.5. Proposed Methodology for generating a km-unit transient

fault tolerant design

The proposed methodology for generating a km-unit transient fault tolerant

design takes kc-cycle fault tolerant TMR system along with strength of spatial

effect of transient fault (km) as input and generates kc-cycles & km-unit fault

tolerant floorplan as output.

The proposed methodology considers spatial effect of transient fault in term of

hardware conflicts. A hardware conflict due to spatial effect occurs when a

hardware resource allocated to an operation of a copy is placed within km-unit

distance to any hardware resource allocated to an operation of remaining two

Obtain a list 𝑳[𝑹𝒊] of all hardware resource (𝑹𝒊) from kc-cycle fault tolerant

SDFG (where i=1,2,.., n.)

Obtain list of conflicting hardware resources (𝑍𝑅𝑖
[𝑅𝑗]) for each element of [𝑅𝑖]

.

Place each element of 𝐿[𝑅𝑖] such that it is at least km-unit distance apart from

each of its conflicting hardware listed in 𝑍𝑅𝑖
[𝑅𝑗] .

Repeat until 𝐿[𝑅𝑖] ≠ ∅.

Fig. 5.6 Proposed km-unit transient fault tolerant floorplanning rules

54

copies within kc-CS (cycles). In such a scenario if two hardware resources

allocated to different copies are placed less than km-unit to each other then,

fault may propagate from one copy to another due to spatial effect of transient

fault. Hence, more than one copy will generate incorrect output leading to

incorrect output by voter. Therefore, resolving hardware conflicts due to

spatial effect of transient fault is important to provide complete tolerance

against transient faults.

As shown in fig. 5.5, the first step of proposed methodology is to obtain list of

all hardware resources [Ri] present in kc-cycle fault tolerant design. In the

next step, a list of conflicting hardware (𝑍𝑅𝑖
[𝑅𝑗]) due to spatial effect of

transient fault is generated for all the resources present in the list [Ri].

Subsequently, the hardware resources are placed during floorplanning such

that each resource Ri is placed at least km-unit distance apart from its

conflicting resources Rj. These steps are repeated till all the resources are

placed. The floorplan thus obtained is kc-cycle and km-unit transient fault

tolerant floorplan.

5.5.1 Demonstrative example of proposed methodology for generating a

km-unit transient fault tolerant floorplan

This section illustrates proposed km-unit transient fault tolerant methodology

with the help of an example of differential equation benchmark. In the initial

step, list of all hardware resource is obtained from 2-cycle transient fault

tolerant TMR system (discussed earlier in section 5.4) as L[R] = {M1, M2, …

, M6, A1, A2, A3, S1, S2, S3, C1, C2}. Subsequently, for each of the

hardware resources, list of conflicting hardware is created. for instance,

consider hardware resource M1, the M1 allocated to an operation 1 of O
C
 at

CS 1 will be in conflict with all the hardware allocated to any operation of D
C

or T
C
 within kc = 2 cycles. Thus, for M1 scheduled at CS1 allocated to opn 1

of O
C
, the conflicting hardware in terms of spatial effect are A2, C2 (allocated

to opn 19’ and 20’ of D
C
 at CS 1 and 2 respectively) and A3 (allocated to opn

19’’ of T
C
 at CS1). Similarly, for M1 scheduled at CS2, the conflicting

hardware in terms of spatial effect are C2, M5 and M6. Similarly, for M1

scheduled at CS5, the conflicting hardware are: M5, M6, M4, M3, C1, S3, S1

and S2. Further, for M1 scheduled at CS10 the conflicting hardware are M2,

55

M6, S3, M4, M5, S2 and M3. Likewise, for M1 scheduled at CS11 the

conflicting hardware are M2, M6, S3, M4, M5, S2, M3, S1 for all occurrences

of M1 is obtained and a set of all those conflict hardware as shown below is

termed as list of conflicting hardware with respect to M1:

 𝑍𝑀1[𝑅𝑗] = {𝑀2, 𝑀3, 𝑀4, 𝑀5, 𝑀6, 𝐶1, 𝐶2, 𝑆1, 𝑆2, 𝑆3, 𝐴2, 𝐴3}

A1

A2
M1 M2 M3

M4 M5 M6

C

1

C

2
S1

S3

S2

A3

2
 u

n
it

s
ea

ch
 1

6
 u

n
it

s

2
.2

5

8
 u

n
it

s

16 units

AREA = 256 Sq. units

4 units

Fig. 5.7. non-tolerant Floorplan of

differential equation benchmark

M1

M3

M2

M5

M4

M6

C

1

C

2

S3

S2 S1

A1 A2

V

1

A3
2

.2
5

2

8
 u

n
it

s

3
1

.2
5

 u
n

it
s

5
.7

5
 u

n
it

s

22 units

AREA = 687.5 Sq. units

Fig. 5.8. kc=4 and km=4 fault-tolerant floorplan of

differential equation benchmark

8
 u

n
it

s

4 units

4 units

4 units

4 units

4 units

4 units

4
 u

n
it

s
4

 u
n

it
s

56

Similarly, the list of all the conflicting hardware with A2 is

𝑍𝐴2[𝑅𝑗] = {𝑀1, 𝑀2, 𝑀3, 𝑀4, 𝑀5, 𝑀6, 𝑆1, 𝑆2, 𝑆3, 𝐴1, 𝐴3, 𝐶1}.

Therefore, as evident from the above lists, A2 has conflict with M1 and vice-

versa. Hence, A2 cannot be placed in neighborhood of M1. In similar manner,

in the third and final step of the proposed km-unit transient fault tolerant

floorplanning approach. The conflicting hardware are placed at least km-unit

(=2) bidirectional distance apart from each other as shown in fig.5.6.

Likewise, voter is also placed at km-distance apart from each hardware

resource of the TMR system to avoid fault propagation from hardware

resources to voter and vice-versa.

On the contrary, in case of spatially non-tolerant floorplan all the hardware

resources are compactly placed as shown in fig.5.5. Hence, transient fault due

to particle strike with strengths kc=2 (and km=2) affecting M1 during

execution of operation 8 in CS5 will affect both M2 and M4 due to spatial

effect and hence will affect operation 4’, 12’. Hence, fault will propagate from

original copy (O
C
) to duplicate copy (D

C
). Thus, voter will not be able to vote-

in correct output in case of non-tolerant floorplan. Therefore, although such a

floorplan has lesser area compared to proposed approach, it is vulnerable to

spatial effect of transient fault. The main crux of the proposed approach is to

provide tolerance against temporal as well as spatial effect of the transient

fault. Hence, small area overhead could be inconsequential. However,

considering the criticality of mission-critical systems, the proposed approach

reduces the impact of area overhead by exploring low-cost design solution

with the help of PSO-DSE framework.

5.6. Proposed PSO-DSE framework for generating low-cost

kc-cycle and km-unit transient fault tolerant design

This section provides a detailed description of optimization based on PSO-

DSE framework. The PSO-DSE framework comprises of four major steps as

follows:

5.6.1 Particle encoding and swarm initialization

57

In the initial step of the PSO-DSE framework, particles of the swarm (Pi) are

encoded as Xi = {NR1, NR2, …, NRD, UF} where Xi denotes position of i
th

particle in the design space, NRD represents the number of resources of type

RD in the D
th

 dimension of the design space, UF is the pre-processed unrolling

factor. Each particle of the swarm represents number of hardware resources

(along with unrolling factor) utilized for generating transient fault tolerant

design solutions. Subsequently, particles are initialized in the design space.

The first three particles (P1, P2 and P3) are initialized at positions:

X1={min(R1), min(R2), … , min(RD), min(UF)}

X2={max(R1), max(R2), … , max(RD), max(UF)}

X3={[min(R1) + max(R1)]/2, … , [min(RD) + max(RD)]/2,

[min(UF) + max(UF)]/2}

Representing minimum, maximum, and middle positions of the design space.

Hence, ensuring good coverage of design space. Subsequently, the remaining

particles (Pi) are initialized at positions:

Xi={[min(R1) + max(R1)]/2 ± 𝛼, … , [min(RD) + max(RD)]/2 ± 𝛼,

[min(UF) + max(UF)]/2 ± 𝛼}

Where, min(RD) and max(RD) denotes minimum and maximum resource in

D
th

 dimension respectively. Similarly, min(UF) and max(UF) denotes

minimum and maximum pre-processed unrolling factor respectively. 𝛼 is a

random integer between minimum and maximum value of D
th

dimensional

resource or unrolling factor.

5.6.2 Fitness / cost evaluation

Each particle’s position in the design space contains the number of hardware

resources in D
th

 dimension and unrolling factor. From each position, resource

configuration is extracted and utilized for generating kc-cycle and km-unit

transient fault tolerant design solution. The fitness of the generated design

solution is evaluated using following cost/fitness function.

FTA

FTA

FTL

FTL

iXfC

max
2

max
1)( 

(5.4)

58

where Cf (Xi) represents the cost/fitness of fault tolerant design solution based

on the (resource configuration) particle position Xi, 1 and 2 are weightage

of schedule latency and area of floorplan respectively. L
FT

 is the latency of

transient fault tolerant design, Lmax
FT

 is the maximum latency of transient fault

tolerant design solution in the design space (derived using minimum number

of hardware resources), A
FT

 is the enveloping floorplan chip area of the fault

tolerant design solution, Amax
FT

 is the maximum floorplan area of the transient

fault tolerant design (derived using maximum number of hardware resources).

5.6.3 Updating local best and global best

In each iteration of the PSO-DSE framework, particle ‘P’ of the swarm

explores some position ‘Xi’ in the design space. The local best denotes least

cost (best fit) position ‘Xi’ explored by an individual particle ‘P’ of the swarm

till the current iteration. Whereas, global best represents the best fit design

solution explored by the entire particle population till the current iteration.

In each iteration, local best of a particle ‘P’ is updated if a lower cost design

solution compared to current local best is explored by particle ‘P’ in current

iteration. Similarly, in each iteration global best of entire particle swarm is

updated, if a lower cost design solution compared to previous global best is

explored by particle swarm in current iteration.

5.6.4 Updating Velocity and particle’s position

After the local best and global best are updated, the velocity of a particle is

updated using eq. 5.5.

𝑉𝑑𝑖

+ = 𝜔𝑉𝑑𝑖
+ 𝑏1𝑟1[𝑅𝑑lbi

− 𝑅𝑑𝑖
] + 𝑏2𝑟2[𝑅𝑑𝑔𝑏

− 𝑅𝑑𝑖
] (5.5)

Subsequently, the position of a particle is updated using eq. 3.

𝑅𝑑𝑖
+ = 𝑅𝑑𝑖 + 𝑉𝑑𝑖

+ (5.6)

Where 𝑉𝑑𝑖

+ ,𝑉𝑑𝑖
 ,𝜔, 𝑅𝑑lbi

 , 𝑅𝑑𝑔𝑏
 , 𝑅𝑑𝑖

 ,b1, b2 ,𝑟1 and 𝑟2 are as defined in

nomenclature of this thesis ([32, 33]).

Subsequently, for the new particle positions, kc-cycle and km-unit transient

fault tolerant designs are generated and finesses are evaluated. This process

continues till one of the termination criteria is satisfied:

https://en.wikipedia.org/wiki/File:Greek_phi_Didot.svg
https://en.wikipedia.org/wiki/File:Greek_phi_Didot.svg

59

3. The global best is not updated for last 10 iterations.

4. The user-defined maximum number of iterations have been executed.

The PSO-DSE process generates optimal low-cost kc-cycle and km-unit

transient fault tolerant design solution upon termination.

5.7. Summary

The paper presented a novel methodology that achieves fault tolerance against

multi-cycle temporal and multi-unit spatial effect of transient fault in loop-

based control intensive DSP IP cores generated using high level synthesis.

Further, the proposed approach generates low-cost design solution for loop

based CDFG applications with the help of integrated PSO-DSE framework.

60

Chapter 6

Methodology for generating a low-cost, highly secure,

functionally obfuscated DSP IP core

This chapter presents the proposed methodology for generating low-cost

functionally obfuscated DSP IP core. The chapter is organized in four

sections. In the first section the problem is introduced. In the second section

threat model is presented. The third and fourth section describe the proposed

solution with the help of a demonstrative example. The fifth and the last

section will summarize the chapter.

6.1. Introduction

As discussed in the introductory chapters, the continuous technology scaling

has led to various reliability and security concerns. Further, rapid technology

scaling and increasing cost of maintaining advanced fabrication facility has led

to the monopoly of few advanced fabrication facilities. Majority of design

houses lacks an in-house fabrication facility and must send their designs to

third-party fabrication facility. This dependency of design houses on advanced

fabrication facilities has enhanced security vulnerabilities such as IP Piracy, IP

overbuilding, reverse engineering etc. [21, 34, 35]. Hence, methodologies are

required for providing protection against these security vulnerabilities/threats.

The proposed approach provides protection against some of these threats using

logic locking (a.k.a. functional obfuscation/locking). Logic locking is a

technique that inserts locking units (logic gates such as AND/ OR/ XNOR

etc.) such that correct output cannot be obtained until a correct key is applied

to the locked circuit. A malicious attacker would be motivated to identify the

correct key with the help of attacks based on reverse engineering [21, 35]. The

proposed approach provides protection by enhancing the complexity of the

reverse engineering. The proposed approach presents novel locking units

termed as ‘IP locking blocks (ILBs)’. The proposed ILBs incorporates some

novel properties to enhance its robustness against state-of-art attacks. Further,

the proposed approach integrates PSO-DSE framework for generating a low-

cost logically

61

Locked

netlist of IP

core

Functional

obfuscation

Locked

netlist

Layout

Fabrication Packaging

DSP application

Original

netlist of IP

core

CE device-

SoC RTL

netlist

GDSII

Mask

Non-

functional

IC

IC

Activation

 Functional

IC (market

ready)
Reverse Engineering

Locked Netlist

Fig. 6.1 Possibility of Reverse engineering attack during various stages of IC design

Attack

Deciphered Netlist

62

locked DSP IP core. This is because DSP circuits have several alternative

design solutions and selection of an optimal (or low-cost) alternative requires

integration of a design space exploration framework such as PSO-DSE. In

case, if an optimization framework such as PSO-DSE is not incorporated

while designing DSP IP cores, then the generated design may incur huge area,

power, and delay overheads.

The proposed approach presents a novel methodology for generating a ‘low

cost highly secure, functionally obfuscated DSP IP core through robust

locking’

6.2. Threat model

Fig. 6.1 shows the typical IC design flow. The IP core designer will take DSP

application as input and perform functional obfuscation (functional locking) to

generate locked netlist of IP core. These IP cores will be integrated in SoC

designs and a layout of SoC is created in the form of GDS-II file which is

further processed as shown in fig.6.2. A malicious attacker could perform

reverse engineering on layout, mask, non-functional IC to obtain the locked

netlist. Further, he could perform attack such as key sensitization attack to

obtain the unlocked (deciphered netlist). The primary motive of an attacker is

to determine the secret key, so that he/she could unlock the circuit,

manufacture the IC and sell them illegally. Additionally, an attacker can

understand the design if correct key-bits are known and hence could insert

hard to detect trojans at safe places [21, 22]. To accomplish these attacks, an

attacker is assumed to possess the following:

(a) Locked netlist: obtained through theft or reverse engineering of layout

or mask.

(b) A functional IC: brought from open market.

6.3. Proposed approach

This section briefly describes major components of proposed methodology.

6.3.1. Problem formulation

Given a DSP application in the form of data flow graph (DFG) or control data

flow graph (CDFG) along with module library, IP core locking blocks (ILBs),

63

PSO control parameters as inputs, generate a low-cost highly secure

functionally obfuscated DSP IP core.

6.3.2. Overview of proposed methodology

As shown in fig 6.2, the proposed methodology comprises of two major

components namely PSO-DSE and IP functional locking. The first step of the

proposed approach is to initialize the particle swarm [32]. For each particle

position, a gate level datapath structure is created. Subsequently, proposed IP

locking blocks are inserted in the gate level structure. Further, fitness and

security (strength of obfuscation) of the obfuscated design for each particle’s

position is evaluated. Based on the particle’s fitness PSO-DSE parameters are

updated. This process is repeated till one of the PSO-DSE termination criteria

is met. The solution thus generated is low-cost functionally obfuscated DSP IP

core. The functionally obfuscated design thus obtained will be highly robust

against reverse engineering based attacks. The particle swarm optimization-

based design space exploration (PSO-DSE) block is primarily responsible for

exploring low-cost design solution.

Input Blocks

DFG

application
Module

library

IP core

Locking

blocks (8-bit

key/data bit)

PSO control
parameters

(ω,p,b)

Initialize the particle swarm

Evaluate cost

Generate a random variable µ

Generate the gate level structure based

on particle position

Insert ILBs at the output of each

Functional unit (FU) based on µ

Fig. 6.2. Details of proposed functional obfuscation methodology

PSO-DSE

IP functional locking

Update local best and global best

Update velocity and swarm position

64

The upcoming section describes our proposed IP locking blocks and discuss

their properties responsible for enhancing strength of obfuscation.

6.3.3. Proposed IP core locking blocks

This section discusses properties of proposed ILBs shown in fig. 6.3. Each

ILB provides same robustness against RE and key sensitization attacks.

However, they activate for different key bits. Further, Each ILB has different

structure that causes different implications on hardware power and delay.

These implications are considered and incorporated in PSO-DSE framework

with the help of modified particle encoding. The modified design space

represents particle positions as Xi = {NR1, NR2, …, NRD, µ} for DFG

applications and Xi = {NR1, NR2, …, NRD, UF, µ} for CDFG applications.

Where µ is a random integer. The proposed methodology is applicable to both

DFG as well as CDFG applications. However, to avoid confusion, the

proposed approach will be presented in context of DFG applications.

The proposed ILBs incorporate robust security features such as multi-pairwise

security, prohibition of key gate isolation etc. These security features enhance

robustness against reverse engineering and key sensitization attacks as

discussed below:

 Multi-pairwise security: This security feature is responsible for

providing protection against key sensitization attack. Key sensitization

is an attempt of an attacker to identify and apply input pattern

combination that sensitizes key-bits to primary output pins [21, 22]. The

attacker can identify single input pattern or a combination of input

patterns for sensitizing key-bits and apply them to observe correct key

bits at the output pins of functional IC. Key-bits K1 & K2 are said to be

pairwise secure if an attacker cannot sensitize K1 without

knowing/controlling key bit K2 and vice-versa [21]. Our proposed ILBs

are multi-pairwise secured, i.e., any of the 8 key-bits cannot be

sensitized without knowing/controlling other 7 key-bits. Therefore, an

attacker must apply brute-force attack to determine the correct key.

Thereby proposed ILB’s multi-pairwise security property enhances

robustness of functional obfuscation methodology and increases

complexity of reverse engineering in comparison to other locking units

present in literature.

65

 Prohibiting key gate isolation: Isolated key gates can be easily

sensitized using key sensitization attacks as shown in [21]. A key Kiso is

said to isolated if there is no path between Kiso and remaining keys of

the locked design and vice-versa. Hence, such keys are highly

vulnerable to sensitization attacks and therefore must be avoided. The

proposed ILBs have multiple path between key bits and none of the

key-bits are isolated hence proposed ILBs have higher resiliency

against key sensitization attack.

 Protection against run of key gates: A few combinations of run-of key

gates may reduce the effort of an attacker to identify correct key by

increasing number of valid keys [21]. Further, an attacker could replace

run of key gates with a single gate. This is not feasible in case of

proposed ILBs as key gates of proposed ILBs are intertwined for 8-key

bits. Hence, it is very difficult to identify run of key gates in the

structure of proposed ILBs.

Proposed ILB 2

K1

K2

K3
K4

K5
K6
K7
K8

i/p

O/P O/P

i/p

Proposed ILB 1

K1

K2

K3
K4

K5
K6
K7
K8

O/P

Proposed ILB 3

K1

K2

K3
K4

K5
K6

K7
K8

i/p

Proposed ILB 4

K1

K2

K3
K4

K5
K6

K7
K8

O/P

i/p

Fig. 6.3 Proposed IP core locking Blocks

66

 Non-mutable key gates: An attacker try to identify a ‘non-key’ primary

input between the path connecting two key bits K1 and K2 such that by

controlling this input, effect of K1 can be stopped from reaching K2

and simultaneously K2 can be sensitized to primary output. Such a key

gate K1 is termed as mutable key gate. The proposed ILBs have

intertwined paths between its 8 key-bits. Hence, it is infeasible to

sensitize a particular key bit without controlling remaining 7 key bits.

Further, the effect of 7 key bits cannot be muted by controlling a single

input. Thus, proposed ILBs are robust against muting based key

sensitization attacks presented in [21].

6.3.4. Insertion technique of proposed ILBs

As discussed earlier, the particle positions are encoded as Xi = {NR1, NR2,

…, NRD, µ} where µ is a random number between 1 and TILB; where, µ

symbolizes user specified repetition pattern of ILB insertion. TILB is the total

number of different ILB structures available for selection. Once a gate level

structure is generated with respect to each particle position, the proposed ILBs

are inserted at the output of each functional unit (FU), each data output bit is

locked using an ILB. The same ILB is inserted ‘µ’ times. After ‘µ’ repetitions

new ILB is selected from TILB and inserted ‘µ’ times. The process is repeated

till all the output bits of FUs are locked using proposed IP functional locking

blocks (ILBs).

An illustrative example of 4-bit FIR locked datapath generated for

particle position {1A, 1M, µ=2} is shown in fig.6.3. Initially, a gate level

structure of FIR benchmark is generated based on resource configuration

(1Adder, 1Multiplier). Subsequently, as µ=2, the proposed ILB1 is inserted at

first two output bits of adder functional unit. Further, after ‘µ=2’ repetitions,

ILB2 is selected and inserted at next two output data bits. The process is

repeated till all the output bits of each FU is locked.

6.3.5. Security due to insertion of proposed ILBs

The security enhancement due to insertion of proposed ILBs is given by

following equation

𝐾𝑆 = 2 ^ (𝑏 ∗ 𝑚 ∗ 𝑓) (6.1)

67

Where KS symbolizes the key-space (Strength of Obfuscation), b = key-bits

per ILB, m = number of ILBs inserted per functional unit, f = number of

functional unit in the datapath. For example, consider the security evaluation

of 4-bit FIR benchmark shown in fig.6.3. The number of output bits of each

FU is 4. Therefore, number of ILBs inserted per functional unit is (m=) 4.

Further, as each ILB structure has 8 key-bit therefore b=8. Additionally, as the

FIR datapath is generated for resource configuration (1 adder, 1 multiplier).

Hence, number of functional units in the datapath is (f=) 2. Therefore, the

strength of obfuscation of 4-bit FIR datapath is KS = 2 ^ (8*4*2) = 1.8 e+19.

The upcoming section analyze security of proposed methodology from an

attacker’s perspective.

6.3.6. Security analysis of proposed methodology

An attacker is assumed to have following tools/facilities to unlock the locked

design:

 Access to an advanced fabrication facility.

 A locked gate-level netlist obtained through theft or reverse engineering

the layout or mask of the locked design.

 Functional IC bought from open market.

An attacker who has access to these tools will try to determine the number of

key bits through reverse engineering. Once an attacker determines the correct

set of key-bits. He/she will try to apply key sensitization attack to determine

the value of key-bit that matches with a valid key. As the proposed

methodology is resilient to several state-of-art attacks (see section 6.3.3 and

6.3.7). Hence, an attacker is forced to apply brute force attack to identify the

valid key. For demonstrative example of FIR datapath having 64 key-bits, an

attacker has to apply 2 ^ 64 different combination of key-bits to determine the

correct key. Hence, if 1 billion combinations of key-bits could be applied in 1

second [21], it would require 10^21 years to determine the valid key using

brute force attack.

68

S0

S’0

I21

I22

I23

I24

S0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

I16

S0

I53 I54

I57

I58

I61

I62

I65

6

I66

7

I55 I56

I59

I60

I63

I64

I67

6

I68

7

I69

I70

I73 I74 I77

I78

I81

I82

I71 I72

I75 I76 I79

I80

I83

I84

S’0

S’0

I17 I18

I19

I20
I25

I26

I27
I28

I35

I36
I45
I46

I47
I48

I33
I34

I39

I40
I49

I50

I51
I52

I38
I37

I29 I30

I31

I32
I41

I42

I43
I44

Mux_Add SR_Latch 4 bit Adder SR_Latch Proposed ILBs Demux

4x4 Multiplier

SR Latch

Demux

Fig. 6.4 Obfuscated (locked) gate-level 4-bit FIR for (1A, 1M, µ=2) locked with 64-bit key

69

6.3.7. Resiliency of proposed methodology against various state-of-art

attacks

This section discuss the resiliency of proposed approach against key-

sensitization attack [21, 22], IP piracy attack [36, 37], and Trojan insertion

attack [38].

(i) Key sensitization attack based on isolated key-bits: A isolated key bit

can be easily sensitized. Hence, to avoid its sensitization isolation must

be avoided. A key-bit k
iso

 is said to be isolated if there is no path

between k
iso

 and any of the remaining key-bits utilized for locking the

circuit. As discussed earlier, our proposed ILB are intertwined

structure of 8 key-bits interdependent on each other. Hence, key

sensitization due to isolated key-bits is not feasible in our proposed

ILB structures.

(ii) Key sensitization attack based on run of key-gates: A back-to back

connection of key gates is termed as run of key gates [21]. The run of

key gates can increase the valid (correct) key in the key space.

Thereby, reducing the effort to identify a valid key through brute force

attack. In run-of-key based attack, an attacker tries to identify and

replace a run of key gates with a single key gate and identify the input

value of replaced key gate. Based on this value, the correct key bits are

determined. The proposed ILBs are intertwined connection of gates

among 8 key inputs. Hence, complexity to identify and replace run of

key gates is increased compared to XOR/XNOR based run of key

gates.

(iii)Key sensitization attack based on mutable key-gates: An attacker

attempts to mute the impact of a key bit (k
mutable

) from reaching another

key-bit (k
sensitizable

), such that while k
mutable

 is muted, the key-bit

k
sensitizable

 could be sensitized to the primary output. The muting is

performed by controlling the path between two key bits by controlling

few primary inputs. Such an attack is not feasible through our proposed

ILB structures as the proposed ILBs doesn’t have any such controllable

(by primary inputs) path between its 8 key bits. Furthermore, proposed

ILB’s multi-pairwise security feature ensures a key bit cannot be

70

sensitized without controlling the remaining 7 key-bits. Hence,

proposed ILBs are resilient to mutable key-gates based sensitization

attacks.

(iv) IP piracy and trojan insertion attacks: An attacker or a pirate must

understand the correct functionality of the IP core, so that a pirate can

identify the appropriate buyer for re-selling the IP core and market

(explain) the IP properly. Further, an attacker targeting trojan insertion

must understand the correct functionality so that the trojan(s) could be

inserted at safe places. Thereby reducing chances of detection. The

proposed functional obfuscation methodology based on ILBs, enhances

the effort of an attacker to identify the correct key as it is resilient to

many state-of-art attacks discussed above.

6.4. Proposed PSO-DSE framework for generating low-cost

functionally obfuscated DSP IP core.

This section provides a detailed description of PSO-DSE framework. The

PSO-DSE framework comprises of four major steps as follows:

6.4.1 Particle encoding and swarm initialization

The particles of the swarm (Pi) are encoded as Xi = {NR1, NR2, …, NRD, µ},

where Xi denotes position of i
th

 particle in the design space, NRD represents

the number of resources of type RD in the D
th

 dimension of the design space, µ

is a random integer between 1 and TILB (1 ≤ µ ≤ TILB). Each particle represents

number of hardware resources (along with µ) utilized for generating

functionally obfuscated IP cores. Subsequently, particles swarm is initialized.

The first three particles (P1, P2 and P3) are initialized at positions:

X1={min(R1), min(R2), … , min(RD), µ}

X2={max(R1), max(R2), … , max(RD), µ}

X3={[min(R1) + max(R1)]/2, … , [min(RD) + max(RD)]/2, µ}

Representing minimum, maximum, and middle positions of the design space

[32, 33]. Hence, ensuring good coverage of design space. Subsequently, the

remaining particles (Pi) are initialized as:

Xi={[min(R1) + max(R1)]/2 ± 𝛼, … , [min(RD) + max(RD)]/2 ± 𝛼,µ}

71

Where, min(RD) and max(RD) denotes minimum and maximum resource in

D
th

 dimension respectively. 𝛼 is a random integer between minimum and

maximum value of D
th

dimensional resource.

6.4.2 Fitness / cost evaluation

For each particle’s position, a gate level structure is created based on the

number of hardware resources in D
th

 dimension. Subsequently, ILBs are

inserted based on µ. The fitness of the obfuscated IP core thus generated is

evaluated using following cost/fitness function.

𝐶𝑓(𝑋𝑖) = 𝜙1

𝑃𝑂𝐵

𝑃𝑚𝑎𝑥
𝑂𝐵 + 𝜙2

𝐷𝑂𝐵

𝐷𝑚𝑎𝑥
𝑂𝐵 (6.2)

where Cf (Xi) represents the cost/fitness of the obfuscated IP core, based on the

(resource configuration) particle position Xi. 1 and 2 are weightage of

power and delay of obfuscated IP core respectively. P
OB

 and D
OB

 are the

power and delay of the IP core based on particle position Xi. Pmax
OB

 and

Dmax
OB

 are the maximum power and maximum delay of the functionally

obfuscated IP core’s design space.

6.4.3 Updating local best and global best

The local best and global best are updated as explained in PSO-DSE

framework of previous chapters as well as in [32, 33].

6.4.4 Updating Velocity and particle’s position

The velocity and particle’s position are updated as explained in PSO-DSE

framework of previous chapter. The PSO-DSE process generates low-cost,

highly secure, functionally obfuscated design solution upon termination.

6.5. Summary

The proposed approach presents a novel methodology for generating a low-

cost highly secured functionally obfuscated DSP IP core. Further, the

proposed methodology introduces a novel locking unit termed as IP locking

block (ILB). This chapter presented the security enhancing properties of the

ILB. Subsequently, the security of the proposed approach is evaluated and

demonstrated with the help of an example of FIR benchmark.

https://en.wikipedia.org/wiki/File:Greek_phi_Didot.svg
https://en.wikipedia.org/wiki/File:Greek_phi_Didot.svg

72

73

Chapter 7

Methodology for analyzing the aging effect of NBTI

stress on performance of DSP IP core

This chapter provides a detailed description of the proposed approach to

analyze the impact of negative bias temperature instability (NBTI) stress on

performance of DSP IP core. The given methodology can be utilized to detect

presence of accelerated aging attack on an IP core. In the first section we will

introduce the problem. In the second section we will present a brief overview

of the proposed solution. The third section will describe the major blocks of

the proposed solution with the help of a demonstrative example. The fourth

will conclude the chapter.

7.1. Introduction

As discussed in previous chapters, technology scaling has raised several

reliability and security concerns. One such reliability concern is negative bias

temperature instability [39-42]. NBTI occurs when a negative bias is applied

between gate and source terminal of a PMOS transistor at an elevated

temperature resulting in instability of transistor’s parameters such as threshold

voltage (Vth), transconductance(gm), etc. The continuous application of NBTI

stress causes degradation in delay (performance) of the transistor. A malicious

attacker may exploit this phenomenon to accelerate the aging process of a

PMOS transistor due to NBTI stress [15]. Different input vector activates

(stresses) different PMOS transistors in a circuit thereby degrading

performance of different transistors [43, 44]. An attacker would like to

determine the input vector causing maximum degradation of critical path of a

circuit thereby causing maximum acceleration in performance degradation

(aging) of the device. On the other hand, a designer would like to determine

these input vectors and apply input vectors causing minimum performance

degradation during the standby mode. The proposed approach presents a novel

methodology for (a) estimating performance degradation of DSP IP cores

subjected to NBTI stress (b) determine input vectors that causes

minimum/maximum degradation. (c) presents hardware-based attack model

for accelerated aging attack on DSP IP cores.

74

A large share of electronic products manufacturing companies focuses

primarily on consumer electronic (CE) devices such as television, cameras,

mobile phones etc. Majority of these electronic devices contains at least one

digital signal processing (DSP) component. Further, due to arduous

competition and stringent time-to-market deadlines, CE industry rely heavily

on 3
rd

 party IP core to beat the competition. This dependency of CE industry

on 3
rd

 party IP cores can be exploited by a malicious attacker in the IP design

house or IP supply chain to perform several types of attacks such as trojan

insertion, IP piracy, etc. One such attack is accelerated aging attack using

NBTI stress [15]. In this type of attack, an attacker aims to modify the IP core

such that the IP core remains under constant NBTI stress in the standby mode.

The aim of the attacker is to ensure continuous performance degradation of the

IP core (thereby of the device that integrates the compromised IP core), even

when the device is not in active usage. The primary motive of the attacker is to

cause device failure within warranty period [15]. Different input vectors cause

different amount of NBTI stress on the circuit [43, 44]. Therefore, techniques

are required to identify the impact of input vectors on DSP IP core.

The proposed approach presents a novel methodology for ‘performing NBTI

stress analysis of DSP IP core that can be utilized to identify the presence of

accelerated aging attack on DSP IP cores’

7.2. Proposed approach

This section provides a brief overview of our proposed methodology.

7.2.1. Problem formulation

Given a DSP application in the form of data flow graph (DFG) or control data

flow graph (CDFG) along with module library, perform the NBTI stress

analysis to determine the input vectors that causes maximum degradation due

to continuous NBTI stress.

7.2.2. Overview of proposed methodology

The proposed work presents a novel methodology for analyzing the effect of

NBTI stress on DSP IP cores. Based on the analysis the input vectors causing

maximum degradation are determined and are utilized to identify the presence

75

of accelerated aging attack on the DSP IP core. As shown in fig.7.1, The first

step of the proposed approach takes DSP application in the form of DFG or

CDFG as input and performs high level synthesis (scheduling, allocation and

binding) to generate a register transfer level (RTL) datapath. The RTL

datapath thus obtained is converted into gate level structure. Subsequently, the

critical path of the gate level structure is determined. Later, input vectors are

applied on the gate level structure and degradation in performance parameter

(threshold voltage) is evaluated. Subsequently, the degraded threshold voltage

is utilized to calculate delay degradation. The process is repeated for all input

vectors and the input vector(s) causing maximum degradation are identified.

Further, the presence of accelerated aging attack in the device is identified by

operating the device in the standby mode for a substantial amount of time (say

15 days). If the device’s performance degrades with similar rate as that of

maximum rate of degradation, then accelerated aging attack is said to be

present in the device.

The approach to evaluate the effect of NBTI stress on the DSP IP core is

discussed in the upcoming section.

7.2.3. Evaluating effect of NBTI stress on DSP IP core

The various combinations of input vector are applied on the gate level

structure of DSP IP core and the impact of NBTI stress on PMOS transistor’s

DSP core in the form of Control/Data Flow Graph

(CDFG or DFG)

Binding

Convert Register transfer level datapath in gate level

module

Identify the critical path

Evaluate Degradation in threshold voltage due to NBTI

stress using eq. (7.1)

Evaluate delay Degradation using eq. (7.3)

Apply input Vectors

Repeat for all input

Vectors

Identify set of most degrading input Vectors

Fig. 7.1 Proposed NBTI stress analysis methodology

Allocation

Scheduling

High level Synthesis

Register transfer

level

76

parameters such as threshold voltage and delay are evaluated using equations

7.1, 7.2 and 7.3.

 𝛥𝑉th = 𝑏 ⋅ 𝑎𝑛𝑡𝑛 (7.1)

Where, ΔVth represents change in threshold voltage due to NBTI stress. b =

3.9 x 10
-3

 V.s-1\6, n is time exponential constant=0.16, a = input signal

probability, t = time in seconds.

 𝑉𝑡ℎ
𝑛ⅇ𝑤 = 𝑉th + 𝛥𝑉th (7.2)

Where, 𝑉𝑡ℎ
𝑛ⅇ𝑤 represents new threshold voltage after PMOS transistor is

stressed for ‘t’ amount of time. Vth represents threshold voltage= 0.365V for

65nm technology scale [15]. Further, the new threshold voltage(𝑉𝑡ℎ
𝑛ⅇ𝑤) of

pmos thus obtained is utilized in eq. 7.3

 𝑇 = 𝐾
𝑉

(𝑉−𝑉𝑡ℎ
𝑛𝑒𝑤)𝛼 (7.3)

Where, T= delay of pmos transistor, K is technology based proportionality

constant, V = VDD. For 65nm technology scale, V= 1.2V is adopted from [15],

and α=1.4, K=155 x 10
-6

is adopted from [45].

Equation 7.1 represents change in threshold voltage, when a continuous NBTI

stress is applied for a duration of ‘t’ seconds. The change in threshold voltage

is added to original threshold voltage to obtain new threshold voltage using

eq.7.2. Subsequently, the new threshold voltage is utilized to evaluate

degraded delay of stressed PMOS transistor using eq. 7.3. Note that the delay

of NMOS transistor is evaluated using original threshold voltage instead of

new threshold voltage because NBTI stress does not affect NMOS transistors.

A case-study of the proposed methodology on FIR benchmark is presented in

the upcoming sub-section.

7.2.4. Case-study

The FIR application can be represented as a pseudocode shown in fig.7.2(a).

In the initial step of proposed approach, application’s pseudocode is converted

into data flow graph (DFG) and taken as input. Subsequently, high level

synthesis is performed to obtain register level datapath [46]. HLS comprises of

three sub-steps: Scheduling, allocation and binding. In the first sub-step, the

77

scheduling of FIR benchmark is performed based on resource configuration

(1A, 1M). Subsequently, resources are allocated to each operation during

allocation step of HLS. The scheduled and allocated FIR application is shown

in fig.7.2(b). Subsequently, all the operations allocated to a particular

hardware resources (say adder1 (A1)) are bonded together during binding step

of HLS. The RTL datapath thus generated is subsequently converted into

subsequent gate level modules (of NAND gates) and critical path is identified

as shown by red colored line in fig.7.3. The critical path comprises of 11 gates

(G1, …, G11) in the critical path of multiplier and 12 gates (G12, …, G23) in

the critical path of adder sub-circuits. Subsequently, various combinations of

input vector are applied to primary input of FIR datapath and correspondingly

turned on PMOS/NMOS transistors of each gate of the critical path is

tabulated. Table 7.1 shows the turned on PMOS/NMOS transistors on

applying input vector 11101. The NBTI stress occurs on PMOS transistor of

CMOS NAND gates when logic’0’ is applied at its input. The degraded delay

of stressed PMOS transistors is evaluated using equations 7.1, 7.2 and 7.3.

y(n)

x(n) h0

x(n-1) h1
*

Latch 1 Latch 2

Mux 1 Mux 2

Demux 1

Latch 3

RegY

Reg A

M1 1

A1 2

A1

3 M1

4

CS 1

(3970.5 µs)

CS 2

(4452.3 µs)

CS 3

(4452.3 µs)

Reg B

+

Latch 4 Latch 5

Mux 3 Mux 4

Demux 2

Latch 6

*

Latch 1 Latch 2

Mux 1 Mux 2

Demux 1

Latch 3

+

Latch 4 Latch 5

Mux 3 Mux 4

Demux 2

Latch 6

Reg C Reg D Reg E

For (i = 0 ; i< 2 ; i++)

{

 Y(n) + = x(n-i) * hi

} Fig 7.2(a) Pseudocode of FIR benchmark

Fig.7.2(b) Scheduling and allocation diagram based on sample

resource configuration (1A, 1M)

78

2PMOS

261.8 µs

2NMOS

478.8 µs

1P 1N

266.7 µs

2NMOS

478.8 µs

1P 1N

266.7 µs

2NMOS

478.8 µs

2PMOS

261.8 µs

2NMOS

478.8 µs

 1P 1N

261.8 µs

2NMOS

478.8 µs

2PMOS

261.8 µs

3970.5 µs

G1 G2 G3 G4 G5 G6 G7 G8

G9 G10 G11 Total

2PMOS

261.8 µs

2NMOS

478.8 µs

1P 1N

261.8 µs

2NMOS

478.8 µs

1P 1N

261.8 µs

2NMOS

478.8 µs

1P 1N

266.7 µs

2NMOS

478.8 µs

G20

266.7 µs

G21

478.8 µs

G22

266.7 µs

G23

478.8 µs

Total

4452.3 µs

G12 G13 G14 G15 G16 G17 G18 G19

1P 1N 2NMOS 1P 1N 2NMOS ----

2NMOS

478.8 µs

2PMOS

261.8 µs

2NMOS

478.8 µs

1P 1N

261.8 µs

2NMOS

478.8 µs

2PMOS

261.8 µs

1P 1N

266.7 µs

2NMOS

478.8 µs

G20

266.7 µs

G21

478.8 µs

G22

266.7 µs

G23

478.8 µs

Total

4452.3 µs

G12 G13 G14 G15 G16 G17 G18 G19

1P 1N 2NMOS 2PMOS 2NMOS Total

CS 1

CS 2

CS 3

Table 7.1. Gate delay and pmos details corresponding to stress time 1 year for input

test vector 11101 (Note : G1, …., G23 represents gates of FIR datapath)

SR latch

SR latch 1:2 DEMUX

SR latch

Adder (R1) in

Reg Y

2:1 MUX 1

2:1 MUX 2

SR latch

SR latch

1: 2 DEMUX

A*B

C*D

Multiplier(R2)

2:1 MUX 3

2:1 MUX 4

Reg E

Reg A

Reg B

Reg C

Reg D

S1

S0

S’0

S’1

S0

S’0

1
2

3

8
9

10 11

6 7

4
5

SR latch

1 bit Half Adder (R1)

15
16

20
21

18

17 19

12
13

14 22 23

Fig. 7.3 NAND based gate level implementation of FIR datapath

12 Gates (G12,,G23) in the critical path of adder datapath

11 Gates (G1, ……., G11) in the critical path of Multiplier datapath

79

 The process is repeated for each possible combination of input vectors.

Finally, the input pattern causing maximum degradation is identified. Based

on the identified vector, an attacker could launch an accelerated aging attack

as discussed below.

7.3. Accelerated aging attack: Modelling and detection

This section presents attack model and detection mechanism of accelerated

aging attack

7.3.1 Attack model

An attacker would exploit the natural aging of PMOS transistor due to NBTI

stress to accelerate the aging process. To achieve acceleration, an attacker

must keep PMOS transistor in stressed (turned on) state for as long as

possible. To accomplish this goal, an attacker must devise an attack that apply

continuous stress when the device is in standby mode (i.e., outside natural

aging due to active usage). The attack could be launched through hardware as

well as software modifications as discussed below

 Hardware based attack model: As shown in fig.7.4(b), The attacker can

devise a hardware modification such that the modified DSP IP core age

naturally (functions correctly) when enable signal ‘EN’ is ‘1’. Moreover,

aging is accelerated when ‘EN’ is ‘0’ (in standby mode) by applying most

harmful vector 11101.

En

Fig.7.4(a) FIR IP core block Fig.7.4(b) Modified Hardware logic

1.2V

1 0

1 0

1 0

1 0

1 0

FIR block

RegA

Reg B

Reg C

Reg D

RegE

En

FIR block

Reg A

Reg B

Reg C

Reg D

RegE

80

 Software based attack model [15]: An attacker could also identify the

correct working of DSP IP core by reverse engineering the device.

Subsequently, a software modification is devised such that the hardware is

in continuous stress in operating system mode.

7.3.2 Detection of accelerated aging attack

As discussed in previous section, an aging attack could be modelled as

hardware or software based attack. However, the detection method of both

type of attack is same. A tester should keep the device activated in the standby

mode or operating system mode for a substantial amount of time (say fifteen

days). After 15 days the tester can test the delay of the device, if the

degradation of IP core occurs roughly at the same rate as the maximum rate

(degradation due to input vector causing maximum degradation) then presence

of accelerated aging attack is confirmed. Hence, if an attack is detected, the

design house should check for and remove any malicious hardware or

software modifications.

7.4. Summary

The proposed approach presents a novel methodology to analyze the impact of

aging due NBTI stress on DSP IP cores. The impact of NBTI stress is

analyzed based on the following: (a) performance degradation of DSP IP cores

subjected to NBTI stress (b) input vectors that causes minimum/maximum

degradation. The proposed approach presents hardware-based attack model for

accelerated aging attack on DSP IP cores.

81

Chapter 8

Computational forensic engineering methodology for

resolving ownership conflict of DSP IP core generated

using high level synthesis

This chapter provide a detailed description of the proposed approach to

resolve false claim of ownership of reusable DSP IP core using computational

forensic engineering (CFE). The first section introduces the problem. The

second section presents a brief overview of the proposed solution. The third

and fourth section describes the proposed methodology with the help of

demonstrative examples. The fifth section concludes the chapter.

8.1. Introduction

As discussed in previous chapters, consumer electronic industries rely heavily

on 3
rd

 party IP (3PIP) core to beat the competition. This is because 3PIP cores

helps in achieving higher productivity and reducing deign development time.

However, 3PIP core are vulnerable against several threats such as abuse of IP

ownership, IP piracy, false claim of ownership, etc. [36-38, 47-48] Hence,

protection mechanisms are required to provide protection against these threats.

The proposed methodology provides protection against one such threat known

as false claim of ownership.

Although mechanisms such as patents, copyright, trademarks, etc. are

provided by law to enjoy the legal ownership. However, these mechanisms are

either incapable or inadequate in protecting reusable IP cores [13]. Further, in

context of reusable IP cores, IP piracy is a major threat. A malicious attacker

can obtain the IP by means of theft/fraud. By virtue of which he/she can also

claim to be the rightful owner of the IP. In such a scenario, methodologies to

resolve ownership conflict of reusable IP core is needed. One such approach is

digital watermarking [13, 49]. In this approach, signature is inserted in the

design without affecting the functionality of the design by the IP designer.

Further, if someone else falsely claims the ownership of the IP, signature

detection step is carried out to identify the rightful owner. Because signature

will be known only to the rightful owner (although rarely, but an attacker can

82

recover signature through reverse engineering), if signature is detected in the

IP core, ownership will be awarded to the rightful claimant. However,

watermarking requires signature insertion while designing an IP core. In case

if designer doesn’t forecast the possibility of the threat or does not take

appropriate measures such as signature insertion (watermarking) during the

design phase. Then, ownership claims will become very hard to resolve.

Moreover, watermarking is vulnerable to signature tampering attacks. Hence,

methodologies are required that can resolve the ownership without depending

on proactive measures such as signature insertion. In this chapter, we will

present a novel methodology that does not depend on such proactive measures.

Further, there is no known attack on the generic CFE, which is the baseline

framework used in our proposed approach.

The proposed approach presents a novel computational forensic engineering

based methodology to ‘protect reusable DSP IP cores generated using high

level synthesis against false/fraudulent claim of ownership’

8.2. Computational Forensic Engineering Framework

This section provides a brief description of generic CFE framework utilized in

our proposed methodology.

8.2.1. Generic CFE: Problem definition

A typical CFE problem can be formulated as: given a solution ‘S’ to a problem

‘P’ having a finite set of algorithms/tools AT_n (n is a non-zero positive

integer) applicable to problem P, that can generate solution S, identify with a

certain degree of confidence that the algorithm/tool AT_i has been applied to

generate the solution S [50, 51].

8.2.2. Overview of generic CFE

A generic CFE approach comprises of four stages: (a) feature and data

collection (b) feature extraction (c) Algorithm clustering, and (d) Validation

[50]. During the execution of the first stage, features are identified that can

classify the data point in one of the categories during multi-category

classification. Further, features are extracted from each solution of the various

algorithms, during feature extraction stage of CFE. Once the features are

83

extracted, the data points (algorithms/tools) are classified (clustered) in several

categories during algorithm clustering stage of CFE. Finally, during the

validation phase, the accuracy of the classification is checked for. If the

classification is sufficiently accurate (say ≥ 95% accuracy), then the CFE

approach is said to be able to classify any other data point with the same

accuracy. If the classification is not sufficiently accurate, then new features

should be introduced for increasing accuracy.

8.2.3. Comparison of proposed CFE vs generic CFE

In our proposed methodology, we have adopted only three stages of generic

CFE as (a) IP core feature and data collection, (b) IP core feature extraction,

and (b) IP validation. Note that in our proposed approach we have not adopted

algorithm clustering stage as our problem is loosely related to clustering. The

proposed approach classifies the claimant in just two categories: ‘Rightful

owner’ and ‘fraudulent claimants’. In practical scenarios, the number of IP

vendors claiming to be the rightful owner of an IP core will be very few

(typically 2 to 3) with only one rightful claimant. Hence, the ownership

problem has very few data points and thus will create two clusters (classes) of

size 1 and ‘n-1’ (typically 1 to 2) respectively. Therefore, our proposed

approach does not require a separate clustering stage. Moreover, while

resolving ownership conflicts, the resolution must be 100% accurate. Hence,

our adoption of IP validation stage necessitates 100% accuracy. Therefore, our

proposed methodology skips the optional algorithm clustering and identify the

‘rightful claimant’ in the IP validation stage.

8.3. Proposed approach

This section describes the proposed methodology for resolving ownership of

reusable IP cores generated using HLS.

8.3.1 Key points about the proposed approach

 The proposed CFE approach for IP ownership is applicable in scenarios

where ‘n’ IP vendors are claiming to be the rightful owner of an IP core.

Each IP vendor is assumed to have its own HLS tool to generate their

respective IP designs. However, if two or more IP vendors uses a common

third-party HLS tool then proposed approach is not applicable.

84

 The proposed approach does not require source code, packaging

information of HLS tools, only an executable version of HLS tools of each

IP claimant is required.

 If any IP claimant refuses to provide an executable version of HLS tool or

‘respectively generated RTL description in supervision of a legal entity’.

Then, that specific claimant will be disqualified. As rightful owner will be

willing to provide at least RTL description generated using its own HLS

tool.

 The proposed approach is applicable for HLS tools that targets generation

of application specific IP core (processors) of digital signal processing

applications. The HLS tools that targets generation of general purpose

processors does not fall in the scope of the proposed work.

8.3.2 Problem formulation

Given the IP core whose ownership is to be identified (termed as IPID) along

with IPs generated from HLS tools of IP claimants (termed as IPCT n, where ‘n’

signify the IP core generated using HLS tool of ‘n
th

’ claimant) identify the

rightful owner of the IPID.

8.3.3 Overview of proposed methodology

As discussed earlier, the proposed CFE based approach comprises of three

major steps (a) IP core feature and data collection (b) IP core feature

extraction, and (c) IP core validation. In the first step of the proposed approach

the HLS tools are collected from the competing IP vendors. Subsequently,

HLS tools are executed to generate IP cores with respect to each vendor’s

HLS tool (IPCT n). Once all the IP cores are generated, IPCT n are examined to

identify features that can distinguish IP cores based on their originating HLS

tool. A set of such features is termed as ‘feature set’. In the second step of the

proposed step, feature extraction rules are devised. Based on these rules,

features are extracted from IPCT n and IPID. In the third and final step of the

proposed approach, the ownership of IPID is awarded to vendor whose IPCT’s

feature set matches 100% with feature set of IPID. The upcoming section

demonstrate the proposed approach with the help of a case-study

8.4. Case study

85

In this case study we have considered a scenario where seven claimants are

legally competing for the ownership of IPID in court of law and court must

award IP ownership to the rightful claimant. (Note: we have used seven

claimants to demonstrate the proposed approach effectively). The case study

considers industrial as well as academics HLS tools [12, 13, 17, 33, 52- 54]. In

the first step of the proposed approach, the HLS tools are obtained from the

respective IP vendor’s company. Further, each tool is executed to generate a

solution IPCT n, (n = 1, …, 7). Subsequently, each IPCT is studied to identify

properties that can distinguish an IP core based on its parent HLS tool.

In practical scenarios, each company has their own set of proprietary

algorithms/techniques that are uniquely developed by that company to

advance state-of-art. These, properties are unique to that particular company

thus features based on such properties are termed as ‘unique feature’. Further,

the proposed unique feature set include properties that are rarely found but can

potentially be available in more than one advanced HLS tools. The unique

features identified through our case study are: {reliability, trojan security, loop

support, pipelining, chaining, multi-cycling, design objective}. Moreover,

every HLS tool implements some common HLS framework. The framework

can be implemented using different algorithms resulting in different properties

of IP cores. These properties are examined to create a generic feature set:

{Scheduling algorithm, resource type, bus width support}. A feature set

comprising of both generic as well as unique features is created. Subsequently,

HLS tool of
Vendor 1

HLS tool of
Vendor 2

HLS tool of
Vendor n

Given IPID

(RTL HDL)

IPCT 1
(RTL HDL)

Automated portion
of proposed CFE

Actual vendor (owner) of IPID identified

Inputs

Fig 8.1 Process of resolving ownership conflict of a given IP

core (IPID) using CFE

IP core feature
and data
collection

IP core feature
extraction

IP core
validation

Proposed CFE for IP protection

IPCT 2
(RTL HDL)

IPCT n
(RTL HDL)

86

in the second step of the proposed approach feature extraction rules are

devised and features are extracted as discussed in upcoming sub-sections.

8.4.1 Scheduling algorithm

The feature extraction methodology to extract scheduling algorithm feature

takes controller HDL file of IP core as input and identify the scheduling

algorithm utilized during HLS of the IP core. The proposed technique

classifies the scheduling algorithm as either ASAP scheduling, ALAP

scheduling, or List scheduling (three most widely used scheduling algorithms

[55-57]) (fig.8.2). The feature extraction rules to identify the scheduling

algorithm used are:

 ASAP scheduling: A scheduling algorithm satisfying both the conditions

(a) and (b) is ASAP scheduling.

(a) All functional units of independent operations should be activated in the

first control step.

(b) All dependent operations and its successors should be placed in the

consecutive control step based on their dependencies.

 ALAP scheduling: A scheduling algorithm satisfying both the conditions

(c) and (d) is ALAP scheduling.

(c) All functional units having primary outputs should be activated in the last

control step.

ASAP: both rule a & b conditions should satisfy
simultaneously

a) All Functional Units (FUs) of independent

operations are activated in first control Step (first
clock cycle)

b) All dependent operations and its successors
should be placed in consecutive control steps

based on their dependencies.

Check for scheduling algorithm

ALAP: both rule a & b conditions should satisfy
simultaneously

a) All Functional Units having Primary Outputs

should be activated in last control step
b) All parent operations and its predecessors should
be placed in consecutive control steps based on their

dependencies.

LIST: Rule a or b must satisfy simultaneously
with either c or d for scheduling to be
identified as list algorithm:
a) All functional units of independent
operations should not be activated in the first
control step.
b) All dependent operations and its
successors should not be placed in
consecutive control step based on their
dependencies.
c) All functional units having primary outputs
should not be activated in last control step.
d) All parent operations and its predecessors
should be placed in consecutive control steps.

ASAP/ALAP/LIST

ASAP/ ALAP/

LIST

Fig. 8.2 Flow graph representing the feature extraction methodology for scheduling algorithm

feature

87

(d) All parent operations and its predecessors should be placed in the

consecutive control steps.

 LIST scheduling: A scheduling algorithm that satisfies conditions (e) or (f)

along with either (g) or (h), then the scheduling algorithm is list

scheduling.

(e) All functional units of independent operations should not be activated in

the first control step.

(f) All dependent operations and its successors should not be placed in the

consecutive control step based on their dependencies.

(g) All functional units having primary outputs should not be activated in the

last control step.

(h) All parent operations and its predecessors should not be placed in the

consecutive control steps.

This feature distinguishes (HLS tools utilized for creating) IPID and IPCTn. If

IPID utilizes different scheduling algorithm than IPCTn, then HLS tool that

generates IPCTn cannot be the rightful owner.

8.4.2 Resource configuration type

The resource configuration type feature extraction methodology takes datapath

HDL file of IP core as input. Further, HDL file is examined to identify the

different type of resources (functional units) utilized in the RTL datapath of

Control step

*

+

+ +

+

1

2

3

4

5

6

7

38

39

40

A1

A2

M1

Fig. 8.3 Schedule displaying chaining of adder

w.r.t. multiplier functional unit

2

1 3

88

the IP core. For instance, if an IP core have adder, subtractor and multiplier

resources, the resource config type feature is represented as: A, S, M.

component Adder

 port (enable_R1 : in std_logic;

 Data_out7 : in std_logic_vector (15 downto 0);

 Data_out8 : in std_logic_vector (15 downto 0);

 Data_in9 : out std_logic_vector (15 downto 0));

 end component;

8.4.3 Chaining

Chaining is an optimization technique that targets reduction of schedule delay.

The concept of chaining can be understood with the help of an exemplary

schedule shown in fig.8.3. In this example, two addition operations (1 & 2) are

scheduled during a single execution of multiplication operation (3). If there

was no chaining, operation 2 would have been scheduled at control step 41.

Hence, overall delay of without chaining would be 41 control steps. The rule

to identify the presence of chaining feature can be stated as: if more than one

operation of functional unit of type ‘i’ (FUi), is executed within a single

execution of FUj; then, chaining feature is present in the IP core. The

chaining feature extraction rule is algorithmically represented in fig.8.4.

The chaining feature extraction algorithm takes controller HDL file of IP core

as input and identifies the presence or absence of chaining feature in the given

IP core. In Fig.8.4, ‘n’ represents the total number of functional units presents

in the IP core. CSS(FUi) and CSE(FUi) represents the starting and ending

control steps of i
th

 functional unit respectively. The starting and ending control

steps of a FU can be determined from the controller HDL file. For instance,

consider the controller shown in fig.8.5, the first multiplication operation starts

its execution in control step 1 (MUL_EN_1<=‘1’) and ends in control step 40

(MUL_EN_1<=‘0’).Hence, CSS(multiplier) = 1 and CSE(multiplier) = 40. As

shown in fig. 8.4, ‘i’ and ‘j’ are loop variables. The first loop runs for all FUs.

The second loop allow all the FUi such that i ≠ j. Further, the first if allows

comparison of i
th

 FU with only those j
th

 FUs that have started their execution

after execution of i
th

 FU is started and FUs that have ended their execution

before execution of i
th

 FU is ended. If the number of all such FUs is ≥ 2 then

chaining feature is present in the IP core.

8.4.4 Bus width support

89

The Bus width support feature extraction algorithm takes datapath HDL file of

IP core as input. Subsequently, top level entity HDL code is examined to

identify the bus width of register components. A portion of HDL code is

shown below:

component registerTp

 port (tp : in std_logic_vector (7 downto 0);

 regtp: out std_logic_vector (7 downto 0);

 strobe: in std_logic);

 end component;

As shown in the HDL code, register components are identified with the help of

component’s name. Further, the size of register components is determined as

the highest size of the variable using statements such as std_logic_vector (7

downto 0). Where, 7 down to 0 indicates variable size as 8 bits. Similarly,

size of all the variables is evaluated and the largest variable’s size is taken as

size of the register. Similarly, largest size among all the register components

present in an IP is taken as the bus width supported by the architecture of an IP

core.

8.4.5 Data pipelining

The pipelining technique intends to reduce the delay of the overall design of

the IP core. The data pipelining feature extraction algorithm takes datapath

HDL file of IP core as input and identify the presence of pipelining feature as

per the following equation:

Algorithm (Input: controller HDL of IP: Output: detection of

chaining)

for (i=1 to n)

{

 for (j=1 to n && j != i)

 {

 if (CSS(FUi) ≤ CSS(FUj) && CSE(FUi) ≥ CSE(FUj))

 {

if (CSE(FUi) – CSS(FUi) ≥ (CSE(FUj) – CSS(FUj))1 + (

CSE(FUj) – CSS(FUj))2 + …. + (CSE(FUj) – CSS(FUj))m

)

 {

Chaining feature detected in IP core!

 }

 }

 }

}

Fig. 8.4 Proposed algorithm to detect chaining in an IP

90

(CSE(N)1 - CSS(N)1 +1) > (CSE(N)2 – CSE(N)1 +1) (8.1)

Where, CSE(N)1 and CSE(N)2 denotes the ending control steps of data set 1 and

2. Similarly, CSS(N)1 denotes starting control step od data set 1. Further,

(CSE(N)1 - CSS(N)1 +1) represents the execution time of data set 1. Likewise,

(CSE(N)2 – CSE(N)1 +1) represents time difference between ending control

step of data set 1 and ending control step of data set 2. Hence, in case when IP

core does not incorporate pipelining feature. Both the right-hand side and left-

hand side of eq. (8.1) will be equal. However, if pipelining is present in the IP

core eq. (8.1) will be satisfied. For instance, consider schedule of an IP core

shown in fig.8.6. The output of data set 1 and data set 2 are available in

register Y at control step 42 and 82 respectively. Hence, The L.H.S of eq. 1

can be written as (42-1+1) = 42. Similarly, R.H.S. can be written as (82-42+1)

= 41. Hence, eq. (8.1) is satisfied when pipelining is present in an IP core.

8.4.6 Multi-cycling

The multi-cycling feature extraction algorithm takes controller HDL file of IP

core as input. Subsequently, on examining HDL code if there is a functional

entity control_unit is

port(

 clock, reset: in std_logic;

 :

 :

 :

 ADD_EN_1, ADD_EN_2, MUL_EN_1 : out

std_logic;

 REG_Y : out std_logic;

 :

 :

 :

);

end control_unit;

architecture Behavioral of control_unit is

signal CS: INTEGER RANGE 0 TO 19;

signal count: INTEGER RANGE 0 TO 10;

signal busy : std_logic;

 begin

 process(clock,reset)

 begin

if (clock'event and clock='1') then

 if(reset='0')then

 if CS =0 then

 clk<='1';

 REG_IP_A_EN <='1';

 REG_IP_B_EN <='1';

 REG_IP_C_EN <='1';

 REG_IP_D_EN <='1';

REG_IP_E_EN <='1';

 end if;

Fig. 8.5(a) Portion of a HDL code

91

unit whose execution time span more than 1 control step, then multi-cycling

feature is said to be present in the IP core. In other words, if a functional unit’s

operation ends at control step greater than the starting control step (eq.8.2),

then multi-

92

 CS <= CS +1;

 end if;

---------------------------------CONTROL STEP 1---------------------------

if CS=1 then

 if count=first_count

 ADD_EN_1<='1';
 MUL_EN_1<='1'; //start
of multiplication operation//
 count <= count+1;

 end if;

 :

 :

 If count = last_count

 ADD_EN_1 <= '0';
 count <= '0';

 end if;

 CS <= CS+1;

end if;

---------------------------------CONTROL STEP 2---------------------------

if CS=2 then

 if count= first_count

 ADD_EN_1<='1';

 count <= count+1;

 end if;

 :

 :

 :

 If count = last_count

 ADD_EN_1 <= '0';

 count <= '0';

 end if;

 CS <= CS+1;

end if;

:

---------------------------------CONTROL STEP 40--------------------------

if CS=40 then

 if count= first_count
 count <= count+1;

 REG_IP_A_EN <='0';

 REG_IP_B_EN <='0';

 REG_IP_C_EN <='0';

 REG_IP_D_EN <='0';

 REG_IP_E_EN <='0';

 end if;

 :

 :

 :

 If count = last_count
 MUL_EN_1 <= '0'; //end
of multiplication operation//

REG_IP_A_EN <='1';

 REG_IP_B_EN <='1';

 REG_IP_C_EN <='1';

 REG_IP_D_EN <='1';

 REG_IP_E_EN <='1';

 count <= '0';

 end if;

 CS <= CS+1;

end if;

---------------------------------CONTROL STEP 41--------------------------

if CS=41 then

 if count= first_count

 count <= count+1;

 ADD_EN_1 <= '1';

 ADD_EN_2 <= '1';
MUL_EN_1 <= '1';

Fig. 8.5(b) Portion of a HDL code

 REG_Y <='0';

 end if;

 :

 :

 :

 If count = last_count

 ADD_EN_1 <= '0';

 ADD_EN_2 <= '0';

 count <= '0';

 end if;

 CS <= CS+1;

end if;

-----------------------------CONTROL STEP 42---------------------------

if CS=42 then

 if count= first_count
 REG_Y <='1';//output of
data set 1 available//
 count <= count+1;

 ADD_EN_1 <= '1';

 end if;
 :

 :

 :

 If count = last_count

 ADD_EN_1 <= '0';

 count <= '0';

 end if;

 CS<=CS+1;

end if;

-----------------------------CONTROL STEP 80---------------------------

if CS=80 then

 if count= first_count

 count <= count+1;

 REG_IP_A_EN <='0';

 REG_IP_B_EN <='0';

 REG_IP_C_EN <='0';

 REG_IP_D_EN <='0';

 REG_IP_E_EN <='0';

 end if;

 :

 :

 :

 If count = last_count

 MUL_EN_1 <= '0';

REG_IP_A_EN <='1';

 REG_IP_B_EN <='1';

 REG_IP_C_EN <='1';
 REG_IP_D_EN <='1';

 REG_IP_E_EN <='1';

 count <= '0';

 end if;

 CS<=CS+1;

end if;

-----------------------------CONTROL STEP 81---------------------------

if CS=81 then

 if count= first_count

 count <= count+1;

 ADD_EN_1 <= '1';

 ADD_EN_2 <= '1';

 MUL_EN_1 <= '1';

 REG_Y <='0';

 end if;

 :

 :

 :

 If count = last_count

 ADD_EN_1 <= '0';

 ADD_EN_2 <= '0';

 count <= '0';

Fig. 8.5(c) Portion of a HDL code

93

cycling is present in the IP core:

CSE(FUi) > CSS(FUi) (8.2)

8.4.7 Design Objective

The design objective feature extraction methodology takes executable HLS

tool’s interface as input. By examining the user interface, various design

objectives / constraints supported by that particular HLS tool such as area,

power, delay, etc. can be identified.

8.4.8 Reliability

Reliability is an advanced feature and typically found in sophisticated HLS

tools. Reliability can be incorporated in the IP core in various ways such as

security/tolerance against permanent faults [58], intermittent fault [59], or

transient fault [60], etc. In our proposed approach, we have considered recent

reliability handling techniques that uses dual modular redundancy (DMR)

such as [17], [54]. Note, there are other techniques to generate reliable IP core

end if;

 CS <= CS+1;
end if;

---------------------------------CONTROL STEP 82---------------------------
if CS=82 then

 if count= first_count
 REG_Y <='1';//output of dataset 2

available//

 count <= count+1;
 ADD_EN_1 <= '1';

 end if;

 :
 :

 :

 If count = last_count

 ADD_EN_1 <= '0';
 count <= '0';

 end if;

 CS<=CS+1;
end if;

:
:
-----------------------CONTROL STEP 4001(for 100 data set) -------
--if (clock'event and clock='1') then
 elsif(reset='1')then

 count<=0;

 end if;
end if;

--end if;

end process;

--count1 <=count;

end Behavioral;

Fig. 8.5(d) Portion of a HDL code

94

using HLS. However, the proposed approach has considered only recent DMR

based techniques.

The reliability feature extraction methodology takes datapath HDL (RTL

code) of IP core as input. Subsequently, the top level entity HDL code of the

IP core is examined to identify the presence of DMR. If a top level entity HDL

contains a comparator component that takes two input signals coming from

output register of module 1 (output register signal 1), and output register of

module 2 (output register signal 2), and its output signal is the final output of

the IP core. Then such a comparator component indicates the presence of

DMR structure, thereby indicating presence of reliability feature in the IP

core. An exemplary comparator’s port map is: port map (output register signal

1, output register signal 2, comparator output signal).

8.4.9 Loop support

The loop support feature extraction methodology takes input application file of

the executable HLS tool as input. The input file considered in this case-study

can be a control intensive application (in the form of control data graph

(CDFG)) or a data intensive application (in the form of data flow graph). The

CDFG application typically contains the maximum iterations value. However,

as DFG applications doesn’t contain any iteration information. Hence, this

property of input application can help distinguish HLS tools that supports

CDFG application from those who don’t. The feature is termed as loop

support feature. This feature tries to remove HLS tools that does not support

loop based CDFG applications. For instance, if IPID is generated for some

CDFG application such as FIR, then all the HLS tools that does not support

loop based CDFGs will be eliminated.

8.4.10 Trojan security

Similar to the reliability, trojan security is also one of the advanced features

used in highly sophisticated HLS tools. Trojan security can be understood as

detection of hardware trojans in an IP core. The typical approach to identify

hardware trojans utilizes hardware resources from at least two different

vendors and a DMR system is designed [53].

95

The trojan security feature extraction methodology takes datapath HDL file

and module library as input. Subsequently, the top level entity datapath is

examined to identify a comparator component that takes two inputs, one each

from the primary output of module 1 (as output signal 1) and module 2 (as

output signal 2). Moreover, the final output of the IP core is the output of the

comparator (comparator output signal) then dual modular redundancy is

detected. Additionally, input module library of the HLS tool is examined to

identify whether modules from more than 1 (at least 2) vendors are present or

not? If, DMR as well as presence of hardware resources from multiple vendors

are detected then, HLS tool supports trojan security feature.

The upcoming subsection describes the third and the final step of the proposed

methodology.

IP validation: Once all the features are extracted, the feature set of IPID is

compared with feature set of every competing HLS tool and ownership is

awarded to the IP vendor whose feature set matches exactly (100%) with the

feature set of the IPID. The following equation is utilized to evaluate the match

percentage (m) between feature sets of IPID and IPCTn

m=
𝑁𝑢𝑚𝑏ⅇ𝑟 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑓ⅇ𝑎𝑡𝑢𝑟ⅇ𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏ⅇ𝑟 𝑜𝑓 𝑓ⅇ𝑎𝑡𝑢𝑟ⅇ𝑠 𝑖𝑛 𝑓ⅇ𝑎𝑡𝑢𝑟ⅇ 𝑠ⅇ𝑡
∗ 100 (8.3)

In a very rare case, the feature set of more than one HLS tool will match

exactly with feature set of IPID. In such a scenario, number of features can be

increased for achieving better results. However, note that such a case is very

rare, as proposed methodology incorporates unique features along with

generic features. Further, in case if none of the competing HLS tool’s feature

set matches 100% with feature set of IPID then ownership will not be awarded

to any of the competing vendors.

8.5. Summary

The proposed approach presents a novel computational forensic engineering

based methodology for resolving false claim of ownership of DSP IP cores.

Further, the proposed methodology introduces a novel feature-set comprising

of ten features. Feature extraction rules for extracting these features were

presented. Based on these rules, feature-sets of IPID and IPCTn were obtained

96

and matched. Finally, the IP ownership was award to the claimant whose

IPCT’s feature-set matches exactly with the feature set of IPID.

The proposed approach is compared with watermarking based approaches for

resolving ownership conflicts. The proposed approach is found to be more

reliable as it incurs zero-overhead (due to lack of signature-insertion step) and

has no known attack in comparison with watermarking based approaches (as

they vulnerable to reverse engineering based attack such as signature

tampering) [5].

97

Chapter 9

Experimental Results and Analysis

This chapter discusses the experimental results and analyses of the proposed

methodologies presented in this thesis.

9.1. Results and analysis: Methodology for generating a DSP IP core

that is simultaneously secure/resilient against multi-cycle temporal

and multi-unit spatial effect of transient fault.

This section discusses the experimental results of the proposed methodology

presented in chapter 3 of this thesis. The proposed approach is implemented in

java and executed on Intel core i5 3210M processor with 3MB cache, 4GB

DDR3 primary memory and frequency of 2.5GHz. The proposed methodology

is applied on DSP IP benchmarks of [61]. Note that the proposed approach is

the first work in the literature which simultaneously provides resiliency

against multi-cycle (kc) and multi-unit (km) transient fault affected due to

single radiation strike at behavioral/architecture level. The proposed approach

simultaneously achieves temporal and spatial resiliency through a novel

unification of high level synthesis and physical level design. All prior work

that handled multiple transient fault were at lower levels such as gate-level or

transistor level. Nevertheless, comparisons to baseline duplication (non-

security DMR designs) and normal designs (no duplication & security

constraints) for chip area, delay and power has been reported in Tables 9.1,

9.2, and 9.3. The results are compared on the basis of following design metrics

a) Chip area of the multi-unit (km) transient fault resilient floorplan.

b) Delay of the multi-cycle (kc) transient fault resilient DMR schedule.

c) Power of the transient fault resilient design.

9.1.1 Area comparison

Table 9.1 shows the area comparison of proposed fault resilient design with

non-resilient design. It is easily evident that the proposed approach incurs a

modest area overhead in comparison with non-resilient design. This is because

imposing km-unit MTF resiliency constraint affects the placement of modules

within the floorplan. For example consider DCT benchmark with resource

98

constraint Xi = (7M, 4A), the floorplan which does not follow our km-unit

MTF resiliency constraint, results in a chip area of 556 sq.units. On the

contrary, the floorplan which abides by our km-unit MTF resiliency constraint

results in a chip area of 590.75sq.units. Thus, an area overhead of 34.75 sq.

units due to imposing resiliency constraint is visible. The results are compared

for large value of kc (=10) and km (=4), as large values are likely to produce

high overhead. However, as evident from the results, the proposed approach

incurs a nominal overhead even for significantly large strength of transient

fault.

9.1.2 Delay comparison

The delay comparison of the proposed approach with non-resilient design is

reported in table 9.2. The designs generated for large kc-cycle transient fault

resiliency constraint (such as kc = 10) results in delay overhead compared to

both non-transient fault resilient schedules (with and without duplication).

This is because large resiliency constraint value creates more chances of

hardware conflicts, therefore to avoid transient fault hazards operations must

be pushed in lower control step (thereby increasing delay overhead).

9.1.3 Power comparison

99

The power comparison of the proposed approach with non-resilient design is

reported in table 9.3. A small overhead is observed for some designs of the

proposed approach due to imposing of simultaneous multi-cycle & multi-fault

resiliency constraints. This is because, imposing the constraints may cause

increase in register /multiplexer count (due to possibility of a different

schedule/binding) in some cases, resulting in slightly higher power magnitude.

The power value reported includes total power due to functional units

(hardware), steering logic (multiplexer, demultiplexer, interconnects) and

storage elements. The results shows that with minimal power overhead

Benchmark

User

Resource

Constraint

Delay in ns

(Non-transient

fault resilient

design)

Delay in

ns

(10-cycle

transient

fault

resilient

DMR

design)

Delay overhead

in ns

Chip area

in sq. units

(Non-

transient

fault

resilient

DMR

design)

Chip area

in sq.

units

(4-unit

transient

fault

resilient

DMR

design)

Chip area

overhead

in

sq.units
Non-

DMR
DMR

Non-

DMR
DMR

BPF

3A, 4M 0.522 0.914 0.916 0.38 0.002 556 556 0.00

3A, 3M 0.522 0.914 0.980 0.38 0.066 316 428 112

3A, 2M 0.524 0.918 0.984 0.38 0.066 401.25 428 26.75

DCT

8A, 4M 0.522 0.720 0.720 0.20 0.000 590.75 695 104.25

7A,4M 0.524 0.722 0.786 0.20 0.198 556 695 139

6A,4M 0.58 0.788 0.788 0.20 0.000 516 625.5 109.5

EWF

4A,2M 0.90 1.172 1.172 0.27 0.000 607.25 748 47.5

3A,2M 0.97 1.364 1.366 0.39 0.002 465 654.5 189.5

2A,2M 1.03 1.752 1.944 0.72 0.192 465 561 96

FFT

8A,4M 0.39 0.46 0.46 0.07 0.000 396 562.5 49.5

8A,3M 0.46 0.65 0.658 0.19 0.008 376 454.75 47

8A,2M 0.46 0.85 0.856 0.39 0.006 262.5 428 112

FIR

8A,8M 0.57 0.64 0.644 0.07 0.004 556 764.5 0.00

7A,7M 0.58 0.64 0.646 0.06 0.006 516 625.5 40

6A,6M 0.58 0.64 0.646 0.06 0.006 516 625.5 40

JPEG

IDCT

24A,24M 0.520 0.59 0.916 0.396 0.326 1816 1972 156

20A,20M 0.522 0.654 0.98 0.458 0.326 1560 1880 320

Table 9.2. Results comparison of proposed 10-cycles, 4-units transient fault

resilient designs with non-transient fault resilient in terms of chip area and

corresponding overhead

Benchmark

User

Resource

Constraint

Chip area in sq.

units

(Non-transient

fault resilient

DMR design)

Chip area in

sq. units

(km-unit

transient

fault

resilient

design)

Chip area

overhead

in sq.units

Benchmark

User

Resource

Constraint

Chip area

in sq. units

(Non-

transient

fault

resilient

DMR

design)

Chip area

in sq.

units

 (km-unit

transient

fault

resilient

design)

Chip area

overhea

d in sq.

units

ARF
4A, 4M 556 556 0.00

EWF
4A,2M 607.25 654.75 47.5

3A, 3M 428 556 128 3A,2M 465 654.5 189.5

2A, 2M 321 321 0.00 2A,2M 465 561 96

BPF
3A, 4M 556 556 0.00

FFT
8A,4M 396 445.5 49.5

3A, 3M 316 428 112 8A,3M 376 423 47

3A, 2M 401.25 428 26.75 8A,2M 262.5 374.5 112

DCT
8A, 4M 590.75 695 104.25

FIR
8A,8M 556 556 0.00

7A,4M 556 590.75 34.75 7A,7M 516 556 40

6A,4M 516 556 40 6A,6M 516 556 40

Table 9.1. Results comparison of proposed 2-cycle, 2-unit transient fault resilient design with non-

transient fault resilient in terms of chip area and corresponding overhead

100

sometimes (while no power overhead for most cases), the proposed approach

generates DSP IP cores that are simultaneous resilient against multi-cycle and

multi-unit transient fault.

Benchmark

User

Resource

Constraint

Power in µW

(Non-transient

fault resilient

design)

Power in µW

 (10-cycle, 4-

unit

transient

fault resilient

DMR design)

Power overhead in

µW

ARF
2A 2M 9.605 10.117 0.512

3A 3M 9.022 9.278 0.256

4A 4M 8.840 8.840 0.00

BPF
3A 2M 8.110 8.110 0.00

3A 3M 8.162 9.058 0.896

3A 4M 8.572 8.956 0.384

DCT
6A 4M 14.598 14.598 0.00

7A 4M 13.821 14.077 0.256

8A 4M 12.579 12.579 0.00

EWF
2A 2M 9.394 9.522 0.128

3A 2M 11.109 11.493 0.384

4A 2M 10.911 10.911 0.00

FFT
8A 2M 8.486 8.486 0.00

8A 3M 10.308 10.308 0.00

8A 4M 9.511 9.511 0.00

FIR
6A 6M 8.322 8.322 0.00

7A 7M 8.478 8.478 0.00

8A 8M 8.928 8.928 0.00

JPEG

IDCT

20A 20M 39.398 39.398 0.00

24A 24M 36.875 36.875 0.00

Table 9.3. Power comparison results of proposed 10-cycle,

4-unit multiple transient fault resilient designs and non-

transient fault resilient DMR designs

101

9.2. Results and analysis: Methodology for generating a DSP IP core

that is simultaneously tolerant against multi-cycle temporal and

multi-unit spatial effect of transient fault.

The methodologies for generating DSP IP core tolerant against multi-cycle

and multi-unit transient fault has been discussed in chapter 4 for data intensive

applications and in chapter 5 for loop based control intensive applications.

This section presents results and analysis of both these methodologies. The

proposed methodologies are implemented in java and executed on Intel core i5

3210M processor with 3MB cache, 4GB DDR3 primary memory and

frequency of 2.5GHz. The proposed methodologies are implemented on data

intensive applications such as BPF, DCT, DWT as well as loop-based control

intensive applications such as Differential equations, FFT, FIR, and Test_case

of express benchmark suite [61]. The experimental results thus obtained are

analyzed based on following metrics

a) Fitness/cost of the explored kc-cycles, km-units tolerant design

solution.

b) Power consumption of the explored kc-cycles, km-units tolerant design

solution.

c) Rectangular chip area of the km-units fault tolerant floorplan.

d) Delay of the kc-cycles fault tolerant scheduled C/DFG TMR

As discussed earlier in the chapter 2, there is no work in the literature that

simultaneously provide tolerance against multi-cycle and multi-unit transient

fault. A prior work that closely relates to the proposed approaches is [12]. The

results of comparison of proposed approach with [12] are tabulated in table

9.4, 9.5, 9.6 and 9.7 respectively. The comparison of the proposed approach

with [12] is performed for multi-cycle kc=4 (equivalent to 400ps) [12,24] &

multi-unit km=4 (equivalent to 3072nm) [62,63,64] transient fault impact.

However, note that the proposed methodologies are applicable for any value of

kc and km.

As reported in table 9.4, the proposed approach always generates low cost

(better fitness) tolerant design solution compared to [12]. This is due to

integrated PSO-DSE framework that explores low-cost transient fault tolerant

102

design. On the other hand, [12] is not capable to obtain a low-cost design

solution due to lack of optimization framework in the tolerance algorithm,

besides being deficient in providing tolerance against spatial effects of

transient fault. Additrionally, [12] is not capable of performing pre-processing

of unrolling factor (especially filters UF with large sequential loops) and

exploring a combination of loop UF for control intensive applications. Thus

[12] provides tolerance without appropriate unrolling and produces expensive

fault tolerant solution. Further, due to lack of design space exploration

framework, the design solution of [12] never produces low cost results. For

comparison purpose, the design solution for [12] is based on the particle

encoding with mid-hardware configuration. For example, as shown in table

9.4, for DCT benchmark, the proposed approach has explored an low cost

solution having design cost of 0.37, while [12] yielded a high-cost solution

with a design cost of 0.49. Thus, relative cost improvement of 0.12 is

achieved. Similarly, cost improvements for other benchmarks are reported in

table 9.4. An average cost reduction of ~30 % is achieved for benchmarks

tabulated in table 9.4.

As evident from table 9.5, a significant reduction in power consumption of

proposed approach has been obtained with respect to [12]. The power reported

in table 9.5 is evaluated based on the following power model.

Power Model: For a given functional resource, the power consumption

(adopted from [17]) can be given as:

))()((
1

i

Max

i

i

TMRFT

T FUpFUKP 




 (9.1)

Where, p(FUi) is the power consumed by FUi (as per 15nm technology scale

open cell NanGate Library [31]); K(FUi) is the number of instances of FUi

used in the FT-TMR design and ‘Max’ indicates the index of the last FU type

used in the FT-TMR design.

The proposed approach implements PSO based DSE for generating fault

tolerant solution based on appropriate combination of loop unrolling factor

and hardware resources compared to [12] which does not perform any

optimization to handle overhead. Thus, proposed approach results in

103

significantly lesser power consumption. For example, as shown in table 9.5,

for DCT benchmark, the proposed approach has explored a fittest design

solution having power of 2.49 uW, while [12] yielded a design cost 5.05uW.

Thus, relative power reduction of 2.56uW is achieved. Similarly, power

reductions for other benchmarks are reported in table 9.5. An average power

reduction of ~57 % is achieved for benchmarks tabulated in table 9.5.

Table 9.6 and 9.7 shows the area and delay value of the obtained design

solutions for the standard benchmarks. As represented in table 9.6, area of

proposed approaches is lesser than the area of [12] (for all the benchmarks) as

design solution explored through proposed approach obtains lesser number of

hardware resources and unrolling factor compared to [12], which does not

explore appropriate combination of unrolling factor and hardware as well as

does not perform preprocessing of unfit unrolling factors. Further, as shown in

table 9.7 significantly larger number of resources are utilized in [12], hence

due to higher parallelization, delay of [12] may sometimes be lesser compared

to proposed approach. Nonetheless, the overall design cost and power of [12]

is significantly higher than proposed approach due to lack of provision of

optimization technique during tolerance design.

104

Table 9.4. Cost comparison of proposed method with [12] for kc=4 & km=4

Benchmark
Design

Solution
of [12]

Design
Cost

of [12]

Design
Solution

of
proposed
approach

Design
Cost of

proposed
approach

Reduction
in Design

Cost %
Benchmark

Design
Solution
of [12]

Cost
of

[12]

Design
Solution

of
proposed
approach

Design
Cost of

proposed
approach

Reduction
in cost %

BPF 5A, 6M 0.53 3A, 2M 0.37 30.18 % DIFF_EQ
12A, 12S,
36M, 2C,

UF=8
0.30

2A, 2S,
6M, 2C,

UF=4
0.18 40 %

DCT 12A,6M 0.49 5A, 3M 0.37 24.48 % FFT
26A,12S,
24M,2C,

UF=8
0.32

4A, 5S,
4M, 2C,

UF=4
0.20 37.5 %

DWT 6A, 8M 0.57 3A, 2M 0.42 26.31 % FIR
2A, 12M,
2C, UF=8

0.41
2A, 3M,
2C, UF=4

0.28 31.7 %

 TEST_CASE
14A,12M,
2C, UF=8

0.38
4A, 5M,
2C, UF=4

0.30 21 %

Table 9.5. Comparison of power of proposed method with [12] for kc=4 & km=4

Benchmark
Design

Solution
of [12]

Power
of

[12]
(in

µW)

Design
Solution

of
proposed
approach

Proposed
power
(in µW)

Reduction
in power

%
Benchmark

Design
Solution
of [12]

Power
of

[12]
(in

µW)

Design
Solution

of
proposed
approach

Proposed
power
(in µW)

Reduction
in power

%

BPF 5A, 6M 4.84 3A, 2M 2.95 39.04 % DIFF_EQ
12A, 12S,
36M, 2C,

UF=8
23.60

2A, 2S,
6M, 2C,

UF=4
4.20 82. 20 %

DCT 12A,6M 5.05 5A, 3M 2.49 50.69 % FFT
26A, 12S,
24M, 2C,

UF=8
19.37

4A, 5S,
4M, 2C,

UF=4
4.38 77.38 %

DWT 6A, 8M 4.86 3A, 2M 1.97 59.46 % FIR
2A, 12M,
2C, UF=8

6.92
2A, 3M,
2C, UF=4

2.72 60.69 %

 TEST_CASE
14A,12M,
2C, UF=8

8.22
4A, 5M,
2C, UF=4

5.61 31.75 %

Table 9.6. Comparison of area of proposed method with [12] for kc=4 & km=4 (Note : 1 unit = 768nm)

Benchmark
Design

Solution
of [12]

Area of
[12] (in

Sq.
units)

Design
Solution of
proposed
approach

Area of
proposed
approach

(in Sq.
units)

Benchmark
Design

Solution of
[12]

Area of
[12] (in

Sq.
units)

Design
Solution of
proposed
approach

Area of
proposed
approach

(in Sq.
units)

BPF 5A, 6M 500.0 3A, 2M 406.25 DIFF_EQ
12A, 12S,
36M, 2C,

UF=8
1640.5

2A, 2S, 6M,
2C, UF=4

593.75

DCT 12A, 6M 531.25 5A, 3M 437.5 FFT
26A, 12S,
24M, 2C,

UF=8
1247.75

4A, 5S, 4M,
2C, UF=4

593.75

DWT 6A, 8M 531.25 3A, 2M 406.25 FIR
2A, 12M,
2C, UF=8

625.0
2A, 3M, 2C,

UF=4
468.75

 TEST_CASE
14A, 12M,
2C, UF=8

687.5
4A, 5M, 2C,

UF=4
593.75

Table 9.7. Comparison of delay of proposed method with [12] for kc=4 & km=4

Benchmark
Design

Solution
of [12]

Delay
of [12]
(in ns)

Design
Solution

of
proposed
approach

Delay of
proposed
approach

(in ns)

Benchmark
Design

Solution of
[12]

Delay
of [12]
(in ns)

Design
Solution of
proposed
approach

Delay of
proposed
approach

(in ns)

BPF 5A, 6M 2.1 3A, 2M 3.1 DIFF_EQ
12A, 12S,

36M, 2C, UF=8
1.7

2A, 2S, 6M,
2C, UF=4

5.8

DCT 12A, 6M 1.9 5A, 3M 3.0 FFT
26A, 12S,

24M, 2C, UF=8
4.1

4A, 5S, 4M,
2C, UF=4

8.7

DWT 6A, 8M 1.6 3A, 2M 2.5 FIR
2A, 12M, 2C,

UF=8
2.5

2A, 3M, 2C,
UF=4

3.8

 TEST_CASE
14A, 12M, 2C,

UF=8
1.8

4A, 5M, 2C,
UF=4

3.8

105

9.3. Results and analysis: Methodology for generating a low-cost, highly

secure, functionally obfuscated DSP IP core

This section discusses the experimental results of the proposed methodology

presented in chapter 6 of this thesis. The proposed approach and methodology

presented in [21] have been implemented in java and executed on Intel Core i5

3210M CPU with 4GB DDR3 primary memory and processor frequency of

2.5 GHz. The proposed methodology generates a low-cost, low-power, highly

secured functionally obfuscated IP core. The power and delay values are based

on 15 nm NanGate library [31]. The proposed approach and [21] are tested on

Express Benchmark suite [61]. The results obtained are analyzed based in

terms of the following parameters:

a. Comparison of strength of obfuscation of proposed approach with [21]

from an attacker’s perspective.

b. Power comparison of proposed approach with [21].

The strength of obfuscation parameter represents the complexity for an

attacker to reverse engineer the design netlist. The strength of obfuscation of

the proposed approach and [21] are reported in table 9.8. This is an optimistic

estimate, since for each key guess input output pattern of the circuit is also

verified. For [21] since each key gate is encoded with 1 bit, therefore number

of key gates is equal to number of encoded key bits. For example as shown in

table 9.8, the number of key bits for JPEG IDCT is 432, therefore, number of

key gates added is 432. The proposed approach is able to provide an

enhancement in the strength of obfuscation compared to [21]. For example, in

case of JPEG IDCT benchmark, the attacker has to apply 3.83 e+404 brute-

force input combinations to decipher the netlist. Similarly, for [21] the brute-

force effort is 1.1 e+130. The strength of obfuscation enhancement through

proposed approach is 3.46 e+274 times of [21].

As reported in table 9.9, the leakage power consumption of the proposed

obfuscation approach is less than the [21]. This is because proposed

obfuscation technique integrates PSO-DSE framework for exploration of low-

cost obfuscated design solution. Therefore, the design solution explored by the

proposed approach consumes less power compared to [21]. An average

106

reduction of 9.94 % in static power consumption of proposed approach is

observed compared to [21]. The obfuscated cost of the proposed approach and

[21] are reported in table 9.10. An average cost reduction of 6.35% is obtained

through proposed obfuscation approach. As discussed earlier, the low-cost

solution is obtained since the proposed approach integrates PSO-DSE

framework. Thus, even though there is marginal delay overhead due to ILBs,

however it gets optimized during overall design delay reduction through PSO-

DSE. Altogether, the proposed approach on comparison with [21] yielded a

power reduction of ~ 10 %, design cost reduction of ~ 6.5 % and security

enhancement (strength of obfuscation) of at least 4.29 e+9 times.

107

DSP Core Benchmarks [19] No. of key-

bits

encoded for

proposed

obfuscation

(r)

Strength of

obfuscation

of proposed

approach

No. of

key-bits

encoded

for [21]

(r)

Strength of

obfuscation

of [21]

Strength of

obfuscation

enhancement

of proposed

approach (by

factor of)

Name Size

IIR 9919 192 6.28 e+57 96 7.92 e+28 7.92 e+28

Mesa Horner 10842 192 6.28 e+57 80 1.2 e+24 5.19 e+33

DWT 10958 128 3.40 e+38 96 7.92 e+28 4.29 e+ 9

ARF 14833 256 1.15 e+77 112 5.19 e+33 2.23 e+43

FIR 16047 320 2.13 e+96 144 2.23 e+43 9.57 e+52

JPEG IDCT 42710 1344 3.83 e+404 432 1.10 e+130 3.46 e+274

Mesa Interpolate 48853 832 2.86 e+250 464 4.76 e+139 6.01 e+110

Table 9.8. Strength of obfuscation comparison of proposed

functionally obfuscated approach w.r.t. [21]

Benchmark

Explored

proposed

functionally

obfuscated

Design

Solution

Gate

count of

netlist

(proposed

approach)

Power of

proposed

approach

(in µW)

Design

Solution

of [21]

Gate

count

of

netlist

[21]

Power

of [21]

(in

µW)

Gate

Reduction

(in %)

Power

Reduction

(in %)

IIR 1A, 2M, µ=4 6444 20.146 2A, 4M 7649 24.850 15.75 % 18.92 %

Mesa Horner 1A, 2M, µ=4 6641 26.080 2A, 4M 7780 28.986 14.64 % 10.02 %

DWT 1A, 1M, µ=1 5745 25.586 3A, 3M 7324 31.365 21.55 % 18.42 %

ARF 2A, 2M, µ=3 7741 39.234 3A, 4M 8495 43.967 8.87 % 10.76 %

FIR 3A, 2M, µ=4 8112 41.864 4A, 5M 9436 45.274 14.03 % 7.53 %

JPEG IDCT 11A,10M,µ=2 23370 172.523 12A,15M 23998 178.843 2.61 % 3.53 %

Mesa Interpolate 8A, 5M, µ=4 18061 132.924 13A,16M 24932 155.673 27.55 % 14.61 %

Table 9.9. Power comparison of proposed functionally obfuscated approach w.r.t. [21]

Benchmark

Proposed

functionally

obfuscated

Design

Solution

Cost of

proposed

approach

Design

Solution

of [21]

Cost

of [21]

Cost

Reduction

(in %)

IIR 1A, 2M, µ=4 0.6810 2A, 4M 0.7427 8.30 %

Mesa Horner 1A, 2M, µ=4 0.6526 2A, 4M 0.6820 4.31 %

DWT 1A, 1M, µ=1 0.7549 3A, 3M 0.7708 2.06 %

ARF 2A, 2M, µ=3 0.5259 3A, 4M 0.5281 0.41 %

FIR 3A, 2M, µ=4 0.5638 4A, 5M 0.5853 3.67 %

JPEG IDCT 11A,10M,µ=2 0.3629 12A,15M 0.4455 18.54 %

Mesa Interpolate 8A, 5M, µ=4 0.3093 13A,16M 0.3573 13.43 %

Table 9.10 Cost comparison of proposed functionally

obfuscated approach w.r.t. [21]

108

9.4. Results and analysis: Methodology for analyzing the aging effect of

NBTI stress on performance of DSP IP core

This section discusses the experimental results of the proposed methodology

presented in chapter 7 of this thesis. The proposed investigation is performed

on Altera cyclone II FPGA board EP2C20F484C7. The respective software

program Quartus II version 7.2 run on Intel® Xeon® CPU with 4GB RAM at

3.10 GHz. Fig. 9.1 shows the datapath diagram of Nand based gate level

implementation with its respective pin assignments. The gate level

implementations have been analyzed based on following criteria

a) Change in Threshold Voltage Vs. Stress Time

b) Delay Degradation Vs. Stress Time

c) Delay degradation due to NBTI Stress and No-Stress for most threatful

input vector.

d) Delay degradation due to NBTI Stress and No-Stress for different samples

of input vector.

9.4.1. Change in Threshold Voltage Vs. Stress Time

NBTI stress affects several parameters of a device including threshold voltage,

drain current, transconductance etc. In our experiments we have focused on

the effect of NBTI stress on threshold voltage of the pmos. More the NBTI

stress time, more is the increase in threshold voltage (as discussed in eqn. (7.1)

& (7.2)). This has been shown by varying the stress time for evaluating the

effect on threshold voltage. Fig. 9.2(a) shows the change in threshold voltage

observed after applying NBTI stress for 1, 2 & 3 years respectively on ARF IP

core for distinct values of stress probability. Stress probability as defined in

[65] is the fraction of the time the pmos transistor is under stress (it represents

the workload of the device). The value of stress probability is considered as

number of control steps in which a gate is under NBTI stress out of total

number of control steps.

9.4.2. Delay degradation Vs. Stress Time

Delay of the gate gets affected with change in threshold voltage (as shown in

eqn. (7.3)). Thus, when threshold voltage of the pmos increases due to NBTI

109

stress, delay of the gate (corresponding to that pmos) also increases. This

causes performance degradation of the entire datapath. However, it also

depends on the input vector applied at the gates. This is because not all input

vectors are capable of turning ON all (or majority of) the pmos in the critical

path. Depending on the input applied, the number of pmos turned ON in the

critical path changes. Thus, it is important to analyze the effect of each input

vector on the critical path of the datapath, as critical path determines the delay

of the circuit. Following process is performed to evaluate the delay of the gate

level datapath for each input vector. First, for a specific test vector, the number

of pmos in the critical path being turned ON is determined, followed by

determination of ΔVTh corresponding to a specific stress time (t). Once ΔVTh is

calculated, then the new threshold voltage (VTh
New

) corresponding to the pmos

is calculated (using eqn. (7.2)). Subsequently, the VTh
New

 is used to evaluate its

gate delay (using eqn. (7.3)). In case a test vector is applied that does not turn

a pmos of a gate ON, then the original threshold voltage corresponding to the

nmos is used to evaluate delay of the gate. If a test vector affects both pmos

and nmos of a gate, then the delay corresponding to the pmos is considered (as

it is larger). Note: On applying a test vector if number of nmos being turned

ON increases then total delay increases. This is because nmos transistors are in

series in NAND gate representation. However, if number of pmos transistor

being turned increases then delay doesn't increase as significantly as pmos

transistors are connected in parallel in NAND gate representation. Fig. 9.2 (b)

shows delay of the gate level datapath corresponding to each test (input)

vector applied. As observed, the red colored ones (1010,1000,0010,0000) are

most threatful as they all incur same maximum performance degradation. The

green colored ones (0011,1011,0111) produces least delay degradation.

Similar results were observed for other benchmarks. Table 9.11 shows delay

after 1 year of continuous NBTI stress is applied on IIR core through each of

the possible input vector combination. Similarly, the delay of ARF IP core is

reported in table 9.12.

9.4.3. Delay degradation due to NBTI Stress and No-Stress for most

threatful input vector (for varying Stress time)

110

Fig. 9.2(c) shows the delay of the gate level datapath of ARF under NBTI

stress and no-stress for most threatful input vector say ‘0000’ (i.e., the input

vector which causes maximum delay degradation as obtained in previous

section). In other words, we analyze in this section how much degradation

occurs when NBTI stress is applied due to specific input vector in contrast to

when no-NBTI stress occurs. No-stress here indicates a theoretical condition

when NBTI stress does not affect the pmos of the gate (i.e. its threshold

voltage and corresponding delay). Three possible cases have been investigated

for stress time (1 year, 2 year and 3 year) on datapath. As expected, with

increase in stress time, the delay of the datapath has increased (due to increase

in threshold voltage of corresponding pmos of the gate). However, there is no

effect on delay when no NBTI stress is considered as threshold voltage

remains same. This trend of Fig.9.2(c) is likely to remain same as increase in

stress time will always increase the threshold voltage.

9.4.4. Delay degradation due to NBTI Stress and No-Stress for most

threatful input vector (for varying Stress time)

In this section we investigate the effect of different samples of input vector on

the delay of the datapath for both NBTI stress and no-NBTI stress condition.

We have selected three samples viz. 0000(causing maximum delay

degradation), 0011 (causing minimum delay degradation) and 1101 (causing

median delay degradation) for this analysis. Fig. 9.2(d) shows the impact on

delay of the datapath for the chosen sample vectors for NBTI stress and no-

stress condition. Similar trends are observed for all the tested benchmarks.

111

Input
Vectors

Individual Control Steps Total
Delay CS 1 CS 2 CS 3 CS 4 CS 5 CS 6

0000 4731.9 4201.7 5993.8 6427.6 6427.6 6427.6 34210.2

0001 4731.9 4201.7 5993.8 6427.6 6427.6 6427.6 34210.2

0010 4729.6 3980.9 5993.8 6427.6 6427.6 6427.6 33987.1

0011 4725.1 3973.2 5756.4 6192.8 6413.9 6415.6 33477.0

0100 4731.9 4201.7 5993.8 6427.6 6427.6 6427.6 34210.2

0101 4731.9 4201.7 5993.8 6427.6 6427.6 6427.6 34210.2

0110 4729.6 3980.9 5993.8 6427.6 6427.6 6427.6 33987.1

0111 4725.1 3973.2 5756.4 6192.8 6413.9 6415.6 33477.0

1000 4727.4 4194.0 5993.8 6427.6 6427.6 6427.6 34198.0

1001 4727.4 4194.0 5993.8 6427.6 6427.6 6427.6 34198.0

1010 4731.9 3984.8 5993.8 6427.6 6427.6 6427.6 33998.3

1011 4727.4 3973.2 5756.4 6192.8 6413.9 6415.6 33479.3

1100 4713.4 4182.4 5967.2 6411.0 6412.7 6195.7 33882.4

1101 4713.4 4182.4 5967.2 6411.0 6412.7 6195.7 33882.4

1110 4713.4 3979.9 5967.2 6411.0 6412.7 6195.7 33679.9

1111 4726.5 3980.9 6193.7 6203.2 6420.1 6203.1 33727.5

Table 9.11 Delay after applying 1 year of continuous NBTI stress of IIR Benchmark

Input

Vector

CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 CS9 CS10 CS11 CS12 CS13 CS14 CS15 CS16 CS17 CS18 C19 TOTAL

0000 8446 7925 8446 9390 8655 9390 9390 7925 9390 8659 7925 9390 9390 8659 7925 9390 9390 8655 8655 167004

0001 8429 7689 8429 8911 8176 8911 8176 7689 8911 8436 7918 8911 8911 8436 7918 8911 8911 8176 8176 160034

0010 8446 7925 8446 9390 8655 9390 9390 7925 9390 8659 7925 9390 9390 8659 7925 9390 9390 8655 8655 167004

0011 8429 7666 8429 8670 7937 8671 8671 7666 8675 8432 7913 8889 8889 8432 7913 8889 8889 7677 7677 158425

0100 8419 7438 8419 9390 8655 9390 9390 7438 9390 8173 7912 9390 9390 8173 7438 9390 9390 8655 8655 164502

0101 8428 7696 8428 8911 8176 8911 8911 7696 8911 8427 7911 8911 8688 8427 8123 8911 8911 8176 8176 160739

0110 8419 7438 8419 9390 8655 9390 9390 7438 9390 8173 7912 9390 9390 8173 7438 9390 9390 8655 8655 164502

0111 8418 7675 8418 8887 7930 8890 8663 7675 8668 8424 7903 8676 8453 8424 7903 8676 8676 8204 8204 158776

1000 8446 7925 8446 9390 8655 9390 9390 7925 9390 8659 7925 9390 9390 8659 7925 9390 9390 8655 8655 167004

1001 8429 7689 8429 8911 8176 8911 8176 7689 8911 8436 7918 8911 8911 8436 7918 8911 8911 8176 8176 160034

1010 8446 7925 8446 9390 8655 9390 9390 7925 9390 8659 7925 9390 9390 8659 7925 9390 9390 8655 8655 167004

1011 8429 7666 8429 8670 7937 8671 8671 7666 8675 8432 7913 8889 8889 8432 7913 8889 8889 7677 7677 158425

1100 8390 7911 8390 9350 8423 9350 9157 7911 9157 8646 7905 9378 9378 8646 7911 9378 9378 8419 8419 165504

1101 8409 7426 8409 8952 8217 9335 8952 8952 8952 8414 8414 8952 8952 8414 8107 8952 8952 8217 8217 163205

1110 8390 7911 8390 9350 8423 9350 9157 7911 9157 8646 7905 9378 9378 8646 7911 9378 9378 8419 8419 165504

1111 8415. 7683 8415 9367 8631 9367 9365 7899 9367 8411 7898 9367 9367 8411 8108 9367 9367 8632 8632 166079

Table 9.12 Delay after applying 1 year of continuous NBTI stress on ARF benchmark

112

Fig.9.1 Nand based gate level implementation of FIR datapath on FPGA board

113

c a

15.8

16

16.2

16.4

16.6

16.8

17

1 year 2 years3 years

D
el

ay
 (

in
 m

s)

Time (in years)

No Stress NBTI

14.5

15

15.5

16

16.5

17

0011 1101 0000

D
e

la
y

(i
n

 m
s)

Input Vectors

No Stress Stress

0

10

20

30

40

50

60

70

80

1 year 2 years 3 years

C
h

an
ge

 in
 t

h
re

sh
o

ld
 v

o
lt

ag
e

(i
n

 m
V

)

Time (in years)

a=1/19 a=2/19 a=3/19 a=4/19 a=5/19

a=6/19 a=7/19 a=8/19 a=9/19 a=10/19

a=11/19 a=12/19 a=13/19 a=14/19 a=15/19

a=16/19 a=17/19 a=18/19 a=1

15.4

15.6

15.8

16

16.2

16.4

16.6

16.8

0
0

1
1

1
0

1
1

0
1

1
1

0
0

0
1

1
0

0
1

0
1

0
1

1
1

0
1

0
1

0
0

0
1

1
0

1
1

0
0

1
1

1
0

1
1

1
1

1
0

1
0

1
0

0
0

0
0

1
0

0
0

0
0

D
el

ay
 in

 (
m

s)

Input vector

d b

Fig. 9.2 Effect of NBTI stress on ARF Benchmark

(a) Change in threshold voltage with stress time,(b) Delay of the datapath corresponding to each

input vector applied, (c) Stress Vs No-Stress for 0000, (d) Delay wrt Stress Vs. no-Stress

114

9.5. Results and analysis: Computational forensic engineering for

resolving ownership conflict of DSP IP core generated using high

level synthesis

The proposed approach and [13] were both implemented in java and run on

Intel Core-i5-460M CPU with 3MB L3 cache memory; 4GB DDR3 memory

at 2.5 GHz. The proposed approach containing 10 unique highly specialized

design features in the ‘feature set’ (encompassing feature types of objectives,

application type, data bit type, performance and datapath structure) have been

investigated and tested on three major types of digital application specific IP

cores. For example, benchmarks ARF, BPF & DCT are data intensive type

application specific IPs; FFT & FIR are control intensive (loop based) type

application specific IPs and JPEG IDCT is condition based data intensive type

application specific IP cores [61]. Therefore the ‘feature set’ of the proposed

approach is enough and applicable on all type of digital application specific IP

cores. However, as mentioned in chapter 8, the proposed approach does not

apply to IP cores of general purpose applications. It is only applicable for any

type of application specific IP cores such as from signal processing and

multimedia. The HLS tools selected for generating results for the proposed

approach, are diverse in nature. For comprehensive analysis we have chosen

seven academic/industrial tools (i.e. n = 7, from IPCT 1 to IPCT 7) with

varying design objectives, varying DSE frameworks and varying properties as

listed below:

1. Hybrid PSO-GA based HLS tool [52].

2. Fault tolerant based HLS tool [12].

3. Fault secure based HLS tool [17].

4. Watermarking based HLS tool [13].

5. Trojan security based HLS tool [53].

6. PSO based HLS tool [33].

7. BFOA based HLS tool [54].

+

+

*

+

REG Y

A B C D E

+

+

*

+

REG Y

A B C D E

Control Step

1

2

:
:

39
40
41
42

43

:
:

80

81

82

Fig. 8.6 Pipelining feature in IP with resource configuration (2A, 1M)

115

Testing proposed CFE for ownership resolution for n = 7 is sufficient as the

seven HLS tools are quite diverse and unique in nature. The same HLS tools

are suitable for different IP cores as long as they are digital application

specific IP by nature. Other HLS tools available in the literature mostly

contain similar properties, frameworks or design objectives. Thus, addition of

more HLS tools for testing may incur redundancy. However, the current seven

HLS tools chosen for testing also comprises of HLS tools of similar

characteristics. For example, HLS tool 1 (IPCT 1), HLS tool 5 (IPCT 5) and

HLS tool 7 (IPCT 7) have several characteristics common in them. As shown

in Table 9.13 for ARF benchmark, these three tools share eight common

characteristics, but still the proposed approach was capable of identifying the

legal owner successfully. Table 9.13 shows that HLS tool 5 (IPCT 5) has 100

% matching with given IPID. Additionally, as our results confirm that ten

features in the feature set is sufficient to resolve IP ownership conflict for HLS

tools. This is because all ten features in the set are unique though diverse and

cover all the key aspects of HLS tools ranging from objectives (area, delay,

power, Trojan security, fault reliability), application type (loop based/non-loop

based), data bit type (data width), performance (scheduling type, chaining,

multi-cycling, pipelining) and datapath structure (resource type used). Tables

9.13 to 9.16 shows the feature-set of proposed CFE approach generated with

respect to each competing HLS tool for various benchmarks. The results

indicate the matching percentage of feature-set of each competing HLS tools

(corresponding to each IP vendor) with feature-set of IPID. The HLS tool

whose IP feature-set matches 100 % with the feature-set of IPID is considered

as the rightful owner. For example in table 9.13, the feature set decided for

both IP to be identified (IPID) and competing IP tool vendors (IPCT n) are:

(scheduling algorithm, resource type, chaining, bus width support, pipelining,

multi-cycling, design objective, reliability, Trojan security, loop support). The

proposed feature extraction step determines the details of features for IPID &

IPCT1… IPCT7. For ARF benchmark in table 9.13, for instance in IPID, the

presence of ‘chaining’ feature was detected (thus denoted as ‘Yes’) and

information of scheduling algorithm is indicated as ‘LIST’. Similarly, details

of remaining features after extraction is also indicated. As evident the feature

extraction of all IP core from each competing HLS tool is extracted. However,

116

feature set of only IP core generated by HLS tool 5 (IPCT5) matches

completely with IPID. Similarly, results for other benchmarks have been shown

in table 9.13 to 9.16. Table 9.15 shows a case in which the IPID’s feature-set

doesn’t match with any of the feature-set of the competing IP tools i.e.

matching percentage is less than 100%. Therefore, in such a scenario the legal

ownership of the IPID cannot be awarded to any of the claimants. Further, there

is possibility more than one competing IP vendor tool to have 100 % matching

percentage. However, in our experiment we didn’t encounter a scenario.

Nevertheless, in such a scenario, further analysis through CFE is needed

through addition of more features in the current feature-set (i.e. beyond the

features in the current set). Table 9.17 shows the feature extraction time of

each of the features of the feature set by proposed CFE approach. In other

words, the features of the feature set are illustrated in increasing order of time

complexity. This shows that the extraction time taken for ‘loop support’ is

least, while for ‘scheduling algorithm’ is highest. Further, this also shows that

all the ten features of the feature set are extracted within acceptable runtime

(in order of only few milli-seconds).

Additionally, the possibility of false positive and false negative does not arise

in the proposed results as the rightful IP owner is systematically determined

through several digital forensic evidences acquired during/after high level

synthesis design process. This is an inherent property of computational

forensic engineering performed on high level synthesis based IP cores.

Table 9.18 shows the advantages of proposed CFE approach for IP core

protection over watermarking based IP protection approach [13] in terms of

storage overhead (i.e. number of registers required in final design). As evident

from table 9.18, for watermarking approach [13], significant storage registers

are required in final IP design. This is because signature insertion is done at

the register allocation step of architectural synthesis. The presence of this

signature is evaluated during signature detection stage for IP protection (by

resolving false claim of vendor ownership). On the contrary, the proposed

approach as shown in table 9.18 does not require embedding any vendor

signature thus resulting into zero register during implementation (i.e. no

design hardware overhead). The proposed CFE approach provides

117

greater/stronger reliability and protection as it is almost non-vulnerable to any

threats due to no existence of reverse engineering step as well as vendor

signature like in case of watermark based approaches.

Benchmark: ARF (28 nodes)

IP features
Schedule
algorithm

Resource
type

chaining
Bus

width
support

Data
pipelining

Multi-
cycling

Design
objective

Fault
Reliability

Loop
support

Trojan
Security

Match
percent

IPID LIST A, M Yes 32 bit No Yes

Area -
Execution

time / Power-
Execution

time

No DFG No NA

IPCT 1
(Hybrid PSO-
GA HLS [52])

LIST A, M Yes 16 bit No Yes
Area-Power-

Latency
No DFG No 80

IPCT 2
[Fault secure

HLS [17])
LIST A, M, C No 16 bit No Yes

Area -
Execution

time / Power-
Execution

time

Yes DFG No 60

IPCT 3
(Watermark-

HLS [13])
LIST A, M, C, S No 32 bit No No

Area -
Execution

time / Power-
Execution

time

No DFG No 70

IPCT 4
(Trojan

Secure-HLS
[53])

LIST A, M, C, S No 16 bit No No

Area -
Execution

time / Power-
Execution

time

No DFG Yes 50

IPCT 5
(BFOA-HLS

[54])
LIST A, M Yes 32 bit No Yes

Area -
Execution

time / Power-
Execution

time

No DFG No 100

IPCT 6
(Fault

Tolerant-HLS
[12])

LIST A, M, C, S No 16 bit No No
Area -

Latency
Yes DFG No 40

IPCT 7
(PSO-HLS

[33])
LIST A, M Yes 8 bit Yes Yes

Area -
Execution

time / Power-
Execution

time

No DFG No 80

Table 9.13. Feature-set of IPID and IPCT for ARF benchmark

(Note: IPCT n = IP core generated by competing HLS tool by vendor ‘n’)

118

Benchmark: FFT (36 nodes)

IP features
Scheduling

algorithm

Resource

type
chaining

Bus

width

support

Data

pipelining

Multi-

cycling

Design

objective

Fault

Reliability

Loop

support

Trojan

Security

Match

percent

IPID
LIST A, M, C No 16 bit No Yes

Area -

Execution time

/ Power-

Execution time

Yes

Yes

(CDFG

& DFG)

No NA

IPCT 1
(Hybrid PSO-
GA HLS [52])

LIST A, M Yes 16 bit No Yes
Area-Power-

Latency
No

No

(DFG

ONLY)

No 50

IPCT 2
[Fault secure

HLS [17])

LIST A, M, C No 16 bit No Yes

Area -

Execution time

/ Power-

Execution time

Yes

Yes

(CDFG

& DFG)

No 100

IPCT 3
(Watermark-

HLS [13])

LIST A, M, C, S No 32 bit No No

Area -

Execution time

/ Power-

Execution time

No

Yes

(CDFG

& DFG)

No 60

IPCT 4
(Trojan

Secure-HLS
[53])

LIST A, M, C, S No 16 bit No No

Area -

Execution time

/ Power-

Execution time

No

Yes

(CDFG

& DFG)

Yes 60

IPCT 5
(BFOA-HLS

[54])

LIST A, M Yes 32 bit No Yes

Area -

Execution time

/ Power-

Execution time

No

No

(DFG

ONLY)

No 50

IPCT 6
(Fault

Tolerant-HLS
[12])

LIST A, M, C, S No 16 bit No No Area - Latency Yes

No

(DFG

ONLY)

No 60

IPCT 7
(PSO-HLS

[33])

LIST A, M, C Yes 8 bit Yes Yes

Area -

Execution time

/ Power-

Execution time

No

Yes

(CDFG

& DFG)

No 60

Table 9.14. Feature-set of IPID and IPCT for FFT benchmark

119

Benchmark: FIR (23 nodes)

IP features
Scheduling

algorithm

Resourc

e type
chaining

Bus

width

suppor

t

Data

pipelining

Multi-

cycling

Design

objective
Reliability

Loop

support

Trojan

Security

Match

percent

IPID
LIST A, M,C Yes 8 bit No Yes

Area - Execution

time / Power-

Execution time

No

Yes

(CDFG

& DFG)

Yes NA

IPCT 1
(Hybrid PSO-
GA HLS [52])

LIST A, M Yes 16 bit No Yes
Area-Power-

Latency
No

No

(DFG

ONLY)

No 50

IPCT 2
[Fault secure

HLS [17])

LIST A, M, C No 16 bit No Yes

Area - Execution

time / Power-

Execution time

Yes

Yes

(CDFG

& DFG)

No 60

IPCT 3
(Watermark-

HLS [13])

LIST
A, M, C,

S
No 32 bit No No

Area - Execution

time / Power-

Execution time

No

Yes

(CDFG

& DFG)

No 50

IPCT 4
(Trojan

Secure-HLS
[53])

LIST
A, M, C,

S
No 16 bit No No

Area - Execution

time / Power-

Execution time

No

Yes

(CDFG

& DFG)

Yes 60

IPCT 5
(BFOA-HLS

[54])

LIST A, M Yes 32 bit No Yes

Area - Execution

time / Power-

Execution time

No

No

(DFG

ONLY)

No 60

IPCT 6
(Fault

Tolerant-HLS
[12])

LIST
A, M, C,

S
No 16 bit No No Area - Latency Yes

No

(DFG

ONLY)

No 20

IPCT 7
(PSO-HLS

[33])

LIST A, M, C Yes 8 bit No Yes

Area - Execution

time / Power-

Execution time

No

Yes

(CDFG

& DFG)

No 90

Table 9.15. feature-set of IPID and IPCT for FIR benchmark

120

Benchmark: JPEG_IDCT (112 nodes)

IP features
Schedule

algorithm

Resourc

e type
chaining

Bus

width

support

Data

pipelin

e

Multi-

cycling

Design objective Reliability
Loop

support

Trojan

Security

Match

percent

IPID
LIST A, M Yes 8 bit Yes Yes

Area - Execution

time / Power-

Execution time

No DFG No NA

IPCT 1
(Hybrid PSO-GA HLS

[52])

LIST A, M Yes 16 bit No Yes
Area-Power-

Latency
No DFG No 70

IPCT 2
[Fault secure HLS

[17])

LIST A, M, C No 16 bit No Yes

Area - Execution

time / Power-

Execution time

Yes DFG No 50

IPCT 3
(Watermark-HLS

[13])

LIST
A, M, C,

S
No 32 bit No No

Area - Execution

time / Power-

Execution time

No DFG No 50

IPCT 4
(Trojan Secure-HLS

[53])

LIST
A, M, C,

S
No 16 bit No No

Area - Execution

time / Power-

Execution time

No DFG Yes 40

IPCT 5
(BFOA-HLS [54])

LIST A, M Yes 32 bit No Yes

Area - Execution

time / Power-

Execution time

No DFG No 80

IPCT 6
(Fault Tolerant-HLS

[12])

LIST
A, M, C,

S
No 16 bit No No Area - Latency Yes DFG No 30

IPCT 7
(PSO-HLS

[33])

LIST A, M Yes 8 bit Yes Yes

Area - Execution

time / Power-

Execution time

No DFG No 100

Table 9.16. feature-set of IPID and IPCT for JPEG_IDCT benchmark

121

Table 9.17. Average time consumed (ms) for feature extraction through proposed CFE approach

Benchmarks
Loop

support

Design

objective

Resource

type

Bus

width

support

Multi-

cycling

Fault

Reliability

Trojan

Security
chaining

Data

pipelining

Scheduling

algorithm

ARF 0.3 1.2 3.1 7.2 23.5 46.3 48.7 80.5 74.6 374.5

BPF 0.7 1.5 4.9 9.3 19.1 52.2 51.3 70.2 54.8 256.7

DCT 0.8 2.4 5.7 12.8 19.6 49.8 57.8 68.7 88.5 231.1

FFT 0.9 2.8 4.7 10.3 28.5 68.1 52.0 89.5 88.8 407.0

FIR 0.6 4.7 5.9 10.7 13.6 35.9 72.9 76.8 69.2 240.1

JPEG_IDCT 1.3 10.9 18.3 48.7 89.5 153.3 203.7 283.8 452.3 1903.0

Benchmark

Watermarking IP

protection HLS

approach [13]

Proposed CFE based

IP protection HLS

approach

Storage registers Storage registers

ARF 11 0

BPF 11 0

DCT 11 0

FFT 10 0

FIR 11 0

JPEG_IDCT 25 0

Table 9.18. Advantages of proposed CFE approach over

watermarking [13] for IP protection during HLS

122

Chapter 10

Conclusion and Future work

10.1. Conclusion

This thesis has presented novel methodologies for generating reliable and

secure IP cores. The following objectives were accomplished

 Proposed a methodology that integrates ‘high level synthesis’

framework with ‘physical design’ framework for generating a DSP IP

core that is simultaneously secure/resilient against multi-cycle

temporal and multi-unit spatial effect of transient fault. The transient

fault resiliency is achieved with a nominal design overhead.

 Proposed a methodology for generating a DSP IP core that is

simultaneously tolerant against multi-cycle temporal and multi-unit

spatial effect of transient fault for data intensive applications. The

proposed approach is the first technique in the literature that considers

simultaneous tolerance against temporal and spatial effect of single

event transient. The proposed approach presents novel transient fault

tolerance-aware floor-planning rules. Further, it integrates PSO-DSE

framework for exploring low-cost design solution.

 Proposed a methodology for generating a DSP IP core that is

simultaneously tolerant against multi-cycle temporal and multi-unit

spatial effect of transient fault for control intensive applications. The

proposed approach achieves a design cost improvement of ~27% along

with power reduction of ~61% compared to the state-of-the-art.

 Proposed a methodology for generating a low-cost, highly secure,

functionally obfuscated DSP IP core. The proposed methodology

presents a novel IP functional locking block termed as ILB. The

proposed ILBs inherits security properties that enhances strength of

obfuscation of the IP cores. Further, Security comparison of proposed

approach with state-of-the-art, shows a minimum security

enhancement of 4.29 e+9 times for the tested benchmarks.

123

 Proposed a methodology for analyzing the aging effect of NBTI stress

on performance of DSP IP core. It presents performance comparison of

stressed v/s not-stressed states of IP cores. Further, it presents a

technique to identify input vector that causes maximum performance

degradation due to NBTI stress on DSP IP core. The proposed

approach can be utilized to detect the presence of accelerated aging

attack on IP core.

 Proposed a novel computational forensic engineering methodology for

resolving ownership conflict of DSP IP core generated using high level

synthesis. The proposed approach presents a set of ten novel features

that can distinguish an IP core from another IP core generated using

different high level synthesis tools. Further, the proposed approach

presents feature extraction rules/algorithms for each of the ten features

of the feature-set. The comparison of proposed approach with state-of-

the-art (watermarking based) approach for resolving ownership

conflicts shows that the proposed approach incurs zero-overhead and

zero-performance degradation.

10.2. Future work

In future, various reliability aware methodologies for resolving reliability

concerns such as electromigration, intermittent faults, etc. can be devised for

DSP cores using high level synthesis framework. In a similar manner, low

energy/power security aware methodologies can be devised for ensuring

protection against hardware Trojan, IP piracy, IP overbuilding, etc. using high

level synthesis.

124

REFERENCES

[1] Mack, C. A. (2011). Fifty years of Moore's law. IEEE Transactions on

semiconductor manufacturing, 24(2), 202-207.

[2] Consumer Technology Association (CTA) report 2018 https://lsc-

pagepro.mydigitalpublication.com/publication/?i=495372&ver=html5

[3] Sengupta, A. (2016). Evolution of the IP Design Process in the

Semiconductor/EDA Industry [Hardware Matters]. IEEE Consumer

Electronics Magazine, 5(2), 123-126.

[4] Sengupta, A. (2016). Cognizance on Intellectual Property: A High-Level

Perspective [Hardware Matters]. IEEE Consumer Electronics

Magazine, 5(3), 126-128.

[5] Sengupta, A. (2016). Intellectual property cores: Protection designs for

CE products. IEEE Consumer Electronics Magazine, 5(1), 83-88.

[6] Sengupta, A. (2016). Soft IP Core Design Resiliency Against Terrestrial

Transient Faults for CE Products [Hardware Matters]. IEEE Consumer

Electronics Magazine, 5(4), 129-131.

[7] Gajski, D. D., Wu, A. C. H., et al (2000). Embedded tutorial: essential

issues for IP reuse. In Proceedings of the 2000 Asia and South Pacific

Design Automation Conference (pp. 37-42). ACM.

[8] McFarland, M. C., Parker, A. C., & Camposano, R. (1990). The high-

level synthesis of digital systems. Proceedings of the IEEE, 78(2), 301-

318.

[9] McFarland, M. C., Parker, A. C., & Camposano, R. (1988, June).

Tutorial on high-level synthesis. In Proceedings of the 25th ACM/IEEE

Design Automation Conference (pp. 330-336). IEEE Computer Society

Press.

[10] Omana, M., Papasso, G., Rossi, D., & Metra, C. (2003, July). A model

for transient fault propagation in combinatorial logic. In On-Line Testing

Symposium, 2003. IOLTS 2003. 9th IEEE(pp. 111-115). IEEE.

[11] Andjelkovic, M., Krstic, M., Kraemer, R., Veeravalli, V. S., &

Steininger, A. (2017, November). A Critical Charge Model for

Estimating the SET and SEU Sensitivity: A Muller C-Element Case

https://lsc-pagepro.mydigitalpublication.com/publication/?i=495372&ver=html5
https://lsc-pagepro.mydigitalpublication.com/publication/?i=495372&ver=html5

125

Study. In Asian Test Symposium (ATS), 2017 IEEE 26th(pp. 82-87).

IEEE.

[12] Inoue, T., Henmi, H., Yoshikawa, Y., & Ichihara, H. (2011, July). High-

level synthesis for multi-cycle transient fault tolerant datapaths. In On-

Line Testing Symposium (IOLTS), 2011 IEEE 17th International (pp. 13-

18). IEEE.

[13] Koushanfar, F., Hong, I., & Potkonjak, M. (2005). Behavioral synthesis

techniques for intellectual property protection. ACM Transactions on

Design Automation of Electronic Systems (TODAES), 10(3), 523-545.

[14] Amrouch, H., Krishnamurthy, P., Patel, N., et al (2017, October).

Emerging (un-) reliability based security threats and mitigations for

embedded systems: special session. In Proceedings of the 2017

International Conference on Compilers, Architectures and Synthesis for

Embedded Systems Companion (p. 17). ACM.

[15] Sinanoglu, O., Karimi, N., Rajendran, J., Karri, R., Jin, Y., Huang, K., &

Makris, Y. (2013, May). Reconciling the IC test and security dichotomy.

In Test Symposium (ETS), 2013 18th IEEE European (pp. 1-6). IEEE.

[16] Wu, K., & Karri, R. (2001, November). Algorithm level re-computing: a

register transfer level concurrent error detection technique.

In Proceedings of the 2001 IEEE/ACM international conference on

Computer-aided design (pp. 537-543). IEEE Press.

[17] Sengupta, A., & Sedaghat, R. (2015). Swarm intelligence driven design

space exploration of optimal k-cycle transient fault secured datapath

during high level synthesis based on user power–delay

budget. Microelectronics Reliability, 55(6), 990-1004.

[18] Wu, K., & Karri, R. (2004). Fault secure datapath synthesis using hybrid

time and hardware redundancy. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 23(10), 1476-1485.

[19] Rusu, C., Bougerol, A., Anghel, L., Weulerse, C., Buard, N.,

Benhammadi, S., ... & Gaillard, R. (2007, July). Multiple event transient

induced by nuclear reactions in CMOS logic cells. In On-Line Testing

Symposium, 2007. IOLTS 07. 13th IEEE International (pp. 137-145).

IEEE.

126

[20] Miskov-Zivanov, N., & Marculescu, D. (2010). Multiple transient faults

in combinational and sequential circuits: A systematic approach. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 29(10), 1614-1627.

[21] Yasin, M., Rajendran, J. J., Sinanoglu, O., & Karri, R. (2016). On

improving the security of logic locking. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 35(9),

1411-1424.

[22] Rajendran, J., Pino, Y., Sinanoglu, O., & Karri, R. (2012, June). Security

analysis of logic obfuscation. In Proceedings of the 49th Annual Design

Automation Conference (pp. 83-89). ACM.

[23] Roy, D., & Sengupta, A. (2017). Low overhead symmetrical protection

of reusable IP core using robust fingerprinting and watermarking during

high level synthesis. Future Generation Computer Systems, 71, 89-101.

[24] Lisboa, C. A., Erigson, M. I., & Carro, L. (2007, May). System level

approaches for mitigation of long duration transient faults in future

technologies. In Test Symposium, 2007. ETS'07. 12th IEEE

European (pp. 165-172). IEEE.

[25] Heijmen, T. (1994). Radiation-induced soft errors in digital

circuits. energy, 7, 19.

[26] Rossi, D., Omana, M., Toma, F., & Metra, C. (2005, October). Multiple

transient faults in logic: An issue for next generation ICs?. In Defect and

Fault Tolerance in VLSI Systems, 2005. DFT 2005. 20th IEEE

International Symposium on (pp. 352-360). IEEE.

[27] Martin, R. C., Ghoniem, N. M., Song, Y., & Cable, J. S. (1987). The size

effect of ion charge tracks on single event multiple-bit upset. IEEE

Transactions on Nuclear Science, 34(6), 1305-1309.

[28] Sengupta, A. (2015). Exploration of kc-cycle transient fault-secured

datapath and loop unrolling factor for control data flow graphs during

high-level synthesis. Electronics Letters, 51(7), 562-564.

[29] Dubrova, E. (2013). Fault-tolerant design (pp. 55-65). New York:

Springer.

127

[30] Kshirsagar, R. V., & Patrikar, R. M. (2009). Design of a novel fault-

tolerant voter circuit for TMR implementation to improve reliability in

digital circuits. Microelectronics Reliability, 49(12), 1573-1577.

[31] Martins, M., Matos, J. M., Ribas, R. P., et al (2015, March). Open cell

library in 15nm FreePDK technology. In Proceedings of the 2015

Symposium on International Symposium on Physical Design(pp. 171-

178). ACM.

[32] Sengupta, A., & Mishra, V. K. (2014). Automated exploration of

datapath and unrolling factor during power–performance tradeoff in

architectural synthesis using multi-dimensional PSO algorithm. Expert

Systems with Applications, 41(10), 4691-4703.

[33] Mishra, V. K., & Sengupta, A. (2014). MO-PSE: Adaptive multi-

objective particle swarm optimization based design space exploration in

architectural synthesis for application specific processor

design. Advances in Engineering Software, 67, 111-124.

[34] Zhang, J. (2016). A Practical Logic Obfuscation Technique for

Hardware Security. IEEE Trans. VLSI Syst., 24(3), 1193-1197.

[35] Torrance, R., & James, D. (2009). The state-of-the-art in IC reverse

engineering. In Cryptographic Hardware and Embedded Systems-CHES

2009 (pp. 363-381). Springer, Berlin, Heidelberg.

[36] Koushanfar, F. (2011, May). Integrated circuits metering for piracy

protection and digital rights management: An overview. In Proceedings

of the 21st edition of the great lakes symposium on Great lakes

symposium on VLSI (pp. 449-454). ACM.

[37] Alkabani, Y., Koushanfar, F., & Potkonjak, M. (2007, November).

Remote activation of ICs for piracy prevention and digital right

management. In Proceedings of the 2007 IEEE/ACM international

conference on Computer-aided design (pp. 674-677). IEEE Press.

[38] Tehranipoor, M., & Koushanfar, F. (2010). A survey of hardware trojan

taxonomy and detection. IEEE design & test of computers, 27(1).

[39] Mahapatra, S., Goel, N., Desai, S., Gupta, S., Jose, B., Mukhopadhyay,

S., ... & Alam, M. A. (2013). A comparative study of different physics-

based NBTI models. IEEE Transactions on Electron Devices, 60(3),

901-916.

128

[40] Grasser, T., Rott, K., Reisinger, H., Waltl, M., Schanovsky, F., &

Kaczer, B. (2014). NBTI in nanoscale MOSFETs—The ultimate

modeling benchmark. IEEE Transactions on Electron Devices, 61(11),

3586-3593.

[41] Mahapatra, S., Huard, V., Kerber, A., Reddy, V., Kalpat, S., & Haggag,

A. (2014, June). Universality of NBTI-From devices to circuits and

products. In Reliability Physics Symposium, 2014 IEEE

International (pp. 3B-1). IEEE.

[42] Gös, W. (2011). Hole trapping and the negative bias temperature

instability. (PhD Thesis), Technische universität wien, Austria,

December 2011

[43] Wang, Y., Chen, X., Wang, W., Balakrishnan, V., Cao, Y., Xie, Y., &

Yang, H. (2009, March). On the efficacy of input vector control to

mitigate NBTI effects and leakage power. In Quality of Electronic

Design, 2009. ISQED 2009. Quality Electronic Design (pp. 19-26).

IEEE.

[44] Firouzi, F., Kiamehr, S., & Tahoori, M. B. (2011, May). A linear

programming approach for minimum NBTI vector selection.

In Proceedings of the 21st edition of the great lakes symposium on Great

lakes symposium on VLSI (pp. 253-258). ACM.

[45] Gonzalez, R., Gordon, B. M., & Horowitz, M. A. (1997). Supply and

threshold voltage scaling for low power CMOS. IEEE Journal of Solid-

State Circuits, 32(8), 1210-1216.

[46] Sengupta, A., Sedaghat, R., & Zeng, Z. (2010). A high level synthesis

design flow with a novel approach for efficient design space exploration

in case of multi-parametric optimization objective. Microelectronics

Reliability, 50(3), 424-437.

[47] Reece, T., & Robinson, W. H. (2016). Detection of hardware trojans in

third-party intellectual property using untrusted modules. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 35(3), 357-366.

[48] Bhunia, S., Hsiao, M. S., Banga, M., & Narasimhan, S. (2014).

Hardware Trojan attacks: threat analysis and

countermeasures. Proceedings of the IEEE, 102(8), 1229-1247.

129

[49] Roy, D., & Sengupta, A. (2017). Low overhead symmetrical protection

of reusable IP core using robust fingerprinting and watermarking during

high level synthesis. Future Generation Computer Systems, 71, 89-101.

[50] Wong, J. L., Kirovski, D., & Potkonjak, M. (2004). Computational

forensic techniques for intellectual property protection. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 23(6), 987-994.

[51] Franke, K., & Srihari, S. N. (2008, August). Computational forensics:

An overview. In International Workshop on Computational

Forensics (pp. 1-10). Springer, Berlin, Heidelberg.

[52] Ram, D. H., Bhuvaneswari, M. C., & Logesh, S. M. (2011, July). A

novel evolutionary technique for multi-objective power, area and delay

optimization in high level synthesis of datapaths. In A Novel

Evolutionary Technique for Multi-objective Power, Area and Delay

Optimization in High Level Synthesis of Datapaths. IEEE.

[53] Rajendran, J., Zhang, H., Sinanoglu, O., & Karri, R. (2013, July). High-

level synthesis for security and trust. In On-Line Testing Symposium

(IOLTS), 2013 IEEE 19th International(pp. 232-233). IEEE.

[54] Sengupta, A., & Bhadauria, S. (2015). Bacterial foraging driven

exploration of multi cycle fault tolerant datapath based on power-

performance tradeoff in high level synthesis. Expert Systems with

Applications, 42(10), 4719-4732.

[55] Coussy, P., Gajski, D. D., Meredith, M., & Takach, A. (2009). An

introduction to high-level synthesis. IEEE Design & Test of

Computers, 26(4), 8-17.

[56] Coussy, P., & Morawiec, A. (Eds.). (2008). High-level synthesis: from

algorithm to digital circuit. Springer Science & Business Media.

[57] Gajski, D. D., Dutt, N. D., Wu, A. C., & Lin, S. Y. (2012). High—Level

Synthesis: Introduction to Chip and System Design. Springer Science &

Business Media.

[58] Yu, S. Y., & McCluskey, E. J. (2001). Permanent fault repair for FPGAs

with limited redundant area. In Defect and Fault Tolerance in VLSI

Systems, 2001. Proceedings. 2001 IEEE International Symposium

on (pp. 125-133). IEEE.

130

[59] Constantinescu, C. (2008, January). Intermittent faults and effects on

reliability of integrated circuits. In Reliability and Maintainability

Symposium, 2008. RAMS 2008. Annual (pp. 370-374). IEEE.

[60] Gomaa, M. A., & Vijaykumar, T. N. (2005, June). Opportunistic

transient-fault detection. In Computer Architecture, 2005. ISCA'05.

Proceedings. 32nd International Symposium on (pp. 172-183). IEEE.

[61] Express benchmark suite, University of California San Diego, 2016,

https://www.ece.ucsb.edu/EXPRESS/benchmark/

[62] Baumann, R. (2013, July). Landmarks in terrestrial single event effects.

In IEEE NSREC Short Course.

[63] Li, X. (2005). Tolerating Radiation-Induced Transient Faults in Modern

Processors DISSERTATION. In PhD Diss. University of California

Irvine.

[64] Gaillard, R. (2011). Single event effects: Mechanisms and classification.

In Soft Errors in Modern Electronic Systems (pp. 27-54). Springer,

Boston, MA.

[65] Wang, W., Wei, Z., Yang, S., & Cao, Y. (2007, November). An efficient

method to identify critical gates under circuit aging. In Proceedings of

the 2007 IEEE/ACM international conference on Computer-aided

design (pp. 735-740). IEEE Press.

[66] Violante, M., Meinhardt, C., Reis, R., & Reorda, M. S. (2011). A low-

cost solution for deploying processor cores in harsh environments. IEEE

Transactions on Industrial Electronics, 58(7), 2617-2626.

[67] Sarkar, S., & Shinde, S. (2005, September). Effective IP reuse for high

quality SOC design. In SOC Conference, 2005. Proceedings. IEEE

International (pp. 217-224). IEEE.

[68] Xie, Y., & Hung, W. L. (2006). Temperature-aware task allocation and

scheduling for embedded multiprocessor systems-on-chip (MPSoC)

design. Journal of VLSI signal processing systems for signal, image and

video technology, 45(3), 177-189.

[69] Saleh, R., Wilton, S., Mirabbasi, S., Hu, A., Greenstreet, M., Lemieux,

G., ... & Ivanov, A. (2006). System-on-chip: Reuse and

integration. Proceedings of the IEEE, 94(6), 1050-1069.

https://www.ece.ucsb.edu/EXPRESS/benchmark/

131

[70] Sait, S. M., & Youssef, H. (1999). VLSI physical design automation:

theory and practice (Vol. 6). World Scientific Publishing Company.

