
I

ALTERNATIVE PARADIGMS OF

HARDWARE SECURITY FOR ADDRESSING

THREATS OF IP PIRACY AND TROJAN

DURING HIGH LEVEL SYNTHESIS

Ph.D. Thesis

By

ADITYA ANSHUL

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
DECEMBER 2024

II

ALTERNATIVE PARADIGMS OF

HARDWARE SECURITY FOR ADDRESSING

THREATS OF IP PIRACY AND TROJAN

DURING HIGH LEVEL SYNTHESIS

A THESIS

Submitted in partial fulfillment of the

requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

by

ADITYA ANSHUL

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
DECEMBER 2024

III

INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE’S DECLARATION

 I hereby certify that the work which is being presented in the thesis entitled ALTERNATIVE

PARADIGMS OF HARDWARE SECURITY FOR ADDRESSING THREATS OF IP PIRACY

AND TROJAN DURING HIGH LEVEL SYNTHESIS in the partial fulfillment of the requirements

for the award of the degree of DOCTOR OF PHILOSOPHY and submitted in the DISCIPLINE OF

COMPUTER SCIENCE AND ENGINEERING, INDIAN INSTITUTE OF TECHNOLOGY

INDORE, is an authentic record of my own work carried out during the time period from AUGUST,

2021 to NOVEMBER 2024 under the supervision of Prof. ANIRBAN SENGUPTA, Professor, Indian

Institute of Technology Indore.

 The matter presented in this thesis has not been submitted by me for the award of any other degree

of this or any other institute.

 Signature of the student with date

(ADITYA ANSHUL)

--

 This is to certify that the above statement made by the candidate is correct to the best of my/our

knowledge.

Signature of Thesis Supervisor with date

 (Prof. ANIRBAN SENGUPTA)

IV

ACKNOWLEDGEMENTS

I would like to extend my heartfelt appreciation to everyone who contributed

to making this journey both enriching and memorable. First and foremost, I

am deeply grateful to my supervisor, Prof. Anirban Sengupta, for granting

me the privilege to work under his guidance. His unwavering support,

dedication, and belief in my potential have been invaluable throughout this

process. His mentorship not only deepened my understanding of research but

also instilled in me a strong sense of commitment and perseverance. Through

his direction, I have grown both professionally and personally, learning the

significance of work ethics, intellectual curiosity, and the patience required to

achieve meaningful academic progress.

I also owe a mention to Prof. Abhishek Srivastava and Prof. Ankhi Roy for

their valuable feedback on my research work throughout these years.

I am also grateful to Dr. Ranveer Singh, Head of the Department of

Computer Science & Engineering, for extending all necessary support to me.

My sincere acknowledgement and respect to Prof. Suhas Joshi, Director,

Indian Institute of Technology Indore, for providing me the opportunity to

explore my research capabilities at the Indian Institute of Technology Indore.

I wish to thank all the faculty members, my seniors Dr. Mahendra Rathor, Dr.

Rahul Chaurasia, and lab mates Vishal Chaurasia, Nabendu Bhui, and friends

for their continuous support.

Further, I wish to express my deepest gratitude to my wife (Soumya) and

parents (Sanjay and Poonam Tiwari), for their strong belief in me and for their

continuous support all the way. I also wish to express my gratitude to my

brothers for being the driving force of my career and for emotional support

throughout the PhD work. I am thankful to all for being with me every single

moment to keep me motivated to work for the past years.

At last, I wish to thank IIT Indore and MHRD to help financially and

providing me an opportunity to present my research at international platforms.

 Adittya Anshul

V

DEDICATED TO MY WIFE AND PARENTS

VI

ABSTRACT

The use of hardware intellectual property (IP) cores has become a key design

approach in modern electronics, particularly in electronics, computing, and

multimedia systems. This popularity stems from the ability of IP cores to

enhance performance and efficiency by accelerating application processes. In

addition, growing design complexities, shorter product lifecycles, and

increasing pressure to bring products to market faster (time-to-market factor)

have driven the adoption of reusable IP cores in modern system-on-chip (SoC)

designs. These factors, coupled with the data and computation intensive nature

of many modern applications, have made IP cores an essential component in

these designs. However, the growing reliance on third-party IP vendors and a

globally distributed design supply chain has introduced significant security

risks. As IP cores are often sourced from multiple vendors to expedite the

design process, the involvement of external parties create vulnerabilities that

can be exploited by malicious actors. An untrusted design house, particularly

in offshore locations, might steal or tamper with the IP core design, leading to

piracy or malicious alterations, compromising the integrity and safety of the

final product. On the other hand, it is also essential for the SoC integrator to

demarcate between authentic and pirated products before integration into final

SoC design to ensure the safety and security of end consumers.

Applications that rely on multimedia, digital signal processing (DSP), image

processing, healthcare, and machine learning have become more prevalent,

making IP cores even more essential in sectors like healthcare, military,

robotics, artificial intelligence, etc. These cores enable critical functions in

advanced systems, making them a fundamental part of the technological

infrastructure. As SoC designers increasingly integrate reusable IP cores

sourced from various global vendors, the complexity of the IP supply chain

amplifies security concerns. The most significant threats include IP piracy, IP

counterfeiting, unauthorized claim of IP ownership, and hardware Trojans

insertion. Given these risks, securing IP core has become a critical concern.

Designer must implement comprehensive security measures to ensure that the

hardware remains trustworthy throughout its lifecycle. Further, it is also

VII

essential to incorporate low-cost design solutions to generate an optimal

secure hardware IP core.

For complex, data-heavy applications such as image processing, DSP,

multimedia, healthcare, and machine learning, securing reusable hardware IP

cores requires specialized approaches. One solution that has gained traction is

the use of high-level synthesis (HLS) framework. This framework provides a

means to incorporate security mechanisms into IP core designs at higher

abstraction of design levels, while maintaining design flexibility and reducing

complexity. HLS allows designers to integrate robust security features with

minimal impact on the overall design cost, making it an attractive solution for

securing IP core/design. One of the key features of HLS is the design space

exploration (DSE) framework, which facilitates the generation of low-cost

secure design solutions. This thesis provides several alternative paradigm for

securing hardware IPs against IP piracy and hardware Trojan during HLS.

Towards the security of IP cores, this thesis contributes the following: (a) low-

cost multiphase encryption and low-cost crypto-chain signature base security

approaches against IP piracy and false IP ownership claim, (b) designing

enhanced security framework for hardware IPs using IP seller’s protein

molecular biometrics and facial biometric-based encryption key, (c) exploiting

statistical hardware watermarking technique using encrypted dispersion matrix

and eigen decomposition framework, (d) securing GLRT cascade hardware IP

design framework for ECG detector (e) designing voice biometric-based

hardware watermarking framework, and (f) designing HLS-based low-cost

(optimal) functional trojan-resistant hardware IP design framework.

VIII

LIST OF PUBLICATIONS (32)

PEER-REVIEWED JOURNALS (13):

1. A. Sengupta, R. Chaurasia and A. Anshul, "Robust Security of Hardware

Accelerators Using Protein Molecular Biometric Signature and Facial Biometric

Encryption Key," IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 31, no. 6, pp. 826-839, June 2023, doi: 10.1109/TVLSI.2023.3265559,

(Impact Factor: 2.8).

2. M. Rathor, A. Anshul, Anirban Sengupta, "Securing Reusable IP Cores using Voice

Biometric based Watermark", IEEE Transactions on Dependable and Secure

Computing, vol. 21, no. 4, pp. 2735-2749, July-Aug. 2024, doi:

10.1109/TDSC.2023.3315780, (Impact Factor: 7.0).

3. M. Rathor, A. Sengupta, R. Chaurasia and A. Anshul, "Exploring Handwritten

Signature Image Features for Hardware Security," IEEE Transactions on

Dependable and Secure Computing, vol. 20, no. 5, pp. 3687-3698, 1 Sept.-Oct.

2023, doi: 10.1109/TDSC.2022.3218506, (Impact Factor: 7.0).

4. A. Sengupta, A. Anshul, Secure hardware IP of GLRT cascade using color interval

graph based embedded fingerprint for ECG detector. Nature Scientific Reports, 14,

13250 (2024), doi: 10.1038/s41598-024-63533-7, (Impact Factor: 3.8).

5. A. Sengupta, A. Anshul, V. Chourasia and N. Kumar, "M-HLS: Malevolent High-

Level Synthesis for Watermarked Hardware IPs," IEEE Embedded Systems Letters,

Accepted, June 2024, doi: 10.1109/LES.2024.3416422, (Impact factor: 1.7).

6. A. Sengupta and A. Anshul, "Watermarking Hardware IPs Using Design Parameter

Driven Encrypted Dispersion Matrix With Eigen Decomposition Based Security

Framework," IEEE Access, vol. 12, pp. 47494-47507, 2024, doi:

10.1109/ACCESS.2024.3382202, (Impact Factor; 3.4).

7. A. Sengupta and A. Anshul, "A Survey of High Level Synthesis based Hardware

(IP) Watermarking Approaches," IEEE Design & Test, Accepted, 2024, doi:

10.1109/MDAT.2024.3435056, (Impact factor: 1.9).

8. A. Anshul and A. Sengupta, "A Survey of High Level Synthesis Based Hardware

Security Approaches for Reusable IP Cores," IEEE Circuits and Systems Magazine,

vol. 23, no. 4, pp. 44-62, Fourthquarter 2023, doi: 10.1109/MCAS.2023.3325607,

(Impact Factor: 5.6).

9. R. Chaurasia, A. Anshul, A. Sengupta and S. Gupta, "Palmprint Biometric Versus

Encrypted Hash Based Digital Signature for Securing DSP Cores Used in CE

Systems," IEEE Consumer Electronics Magazine, vol. 11, no. 5, pp. 73-80, 1 Sept.

2022, doi: 10.1109/MCE.2022.3153276, (Impact Factor: 3.7).

10. A. Anshul, A. Sengupta, PSO based exploration of multi-phase encryption based

secured image processing filter hardware IP core datapath during high level

synthesis, Elsevier Expert Systems with Applications, Volume 223, 2023, 119927,

doi: 10.1016/j.eswa.2023.119927, (Impact Factor: 7.5).

11. A. Anshul, A. Sengupta "Exploration of Optimal Crypto-Chain Signature Embedded

Secure JPEG-CODEC Hardware IP during High Level Synthesis", Elsevier Journal

https://doi.org/10.1016/j.eswa.2023.119927

IX

on Microprocessors and Microsystems, Volume 102, October 2023, 104916, doi:

10.1016/j.micpro.2023.104916, (Impact factor: 1.9).

12. A. Sengupta, A. Anshul, R. Chaurasia "Exploration of Optimal Functional Trojan-

Resistant Hardware Intellectual Property (IP) Core Designs during High Level

Synthesis", Elsevier Journal on Microprocessors and Microsystems, Volume 103,

November 2023, 104973, doi.org/10.1016/j.micpro.2023.104973, (Impact Factor:

1.9).

13. M. Rathor, A. Anshul, K Bharath, R. Chaurasia, A. Sengupta, Quadruple phase

watermarking during high level synthesis for securing reusable hardware intellectual

property cores, Elsevier Computers and Electrical Engineering, Volume 105, 2023,

108476, doi.org/10.1016/j.compeleceng.2022.108476, (Impact factor: 4.0).

BOOK CHAPTERS (10):

14. A. Sengupta, A. Anshul "HLS Based Fingerprinting", IET Book "High-Level

Synthesis based Methodologies for Hardware Security, Trust and IP Protection",

2024, Chapter DOI: 10.1049/PBCS084E_ch7.

15. A. Sengupta, A. Anshul "High Level Synthesis based Watermarking using Crypto-

Chain Signature Framework", IET Book "High-Level Synthesis based

Methodologies for Hardware Security, Trust and IP Protection", 2024, Chapter

DOI: 10.1049/PBCS084E_ch6.

16. A. Sengupta, A. Anshul "High Level Synthesis based Watermarking using Multi-

modal Biometric", IET Book "High-Level Synthesis based Methodologies for

Hardware Security, Trust and IP Protection", 2024, Chapter

DOI: 10.1049/PBCS084E_ch5.

17. A. Sengupta, A. Anshul "HLS based Mathematical Watermarks for Hardware

Security and Trust", IET Book "High-Level Synthesis based Methodologies for

Hardware Security, Trust and IP Protection", 2024, Chapter

DOI: 10.1049/PBCS084E_ch4.

18. A. Sengupta, A. Anshul "High-Level Synthesis based Watermarking using Protein

Molecular Biometric with Facial Biometric Encryption", IET Book "High-Level

Synthesis based Methodologies for Hardware Security, Trust and IP Protection",

2024, Chapter DOI: 10.1049/PBCS084E_ch2.

19. A. Sengupta, A. Anshul "Palmprint Biometrics Vs. Fingerprint Biometrics Vs.

Digital Signature using Encrypted Hash: Qualitative and Quantitative Comparison

for Security of DSP coprocessors", IET Book "Physical Biometrics for Hardware

Security of DSP and Machine Learning Coprocessors", 2023, Chapter

DOI: 10.1049/PBCS080E_ch6.

20. A. Sengupta, A. Anshul "Secured Design Flow using Palmprint Biometrics,

Steganography and PSO for DSP coprocessors", IET Book "Physical Biometrics for

Hardware Security of DSP and Machine Learning Coprocessors", 2023, Chapter

DOI: 10.1049/PBCS080E_ch7.

21. A. Sengupta, A. Anshul "Taxonomy of Hardware Security Methodologies: IP Core

Protection and Obfuscation", IET Book "Physical Biometrics for Hardware

Security of DSP and Machine Learning Coprocessors", 2023, Chapter

DOI: 10.1049/PBCS080E_ch9.

https://doi.org/10.1016/j.micpro.2023.104916
https://doi.org/10.1016/j.micpro.2023.104916
https://doi.org/10.1016/j.micpro.2023.104973
https://doi.org/10.1016/j.compeleceng.2022.108476
https://doi.org/10.1049/PBCS080E_ch6
https://doi.org/10.1049/PBCS080E_ch7
https://doi.org/10.1049/PBCS080E_ch7

X

22. A Anshul, R. Chaurasia, A. Sengupta "Securing Hardware Coprocessors against

Piracy using Biometrics for Secured IoT systems", IET Book "Artificial Intelligence

for Biometrics and Cybersecurity", 2023, Chapter DOI: 10.1049/PBSE020E_ch8.

23. A. Anshul, A. Sengupta "Role of Consumer Technology and Connected Electronic

Devices on SCM: A Discussion on its Usages, Impact, and Challenges", UTHM

Book "Evolution of Information, Communication and Computing System", 4(1),

1-11, 2023.

PEER- REVIEWED CONFERENCE PUBLICATIONS (9):

24. A. Sengupta, R. Chaurasia and A. Anshul, "Hardware Security of Digital Image

Filter IP Cores against Piracy using IP Seller’s Fingerprint Encrypted Amino Acid

Biometric Sample," Proceedings of 8th IEEE Asian Hardware Oriented Security

and Trust Symposium (AsianHOST), Tianjin, China, 2023, pp. 1-6, doi:

10.1109/AsianHOST59942.2023.10409476.

25. A. Sengupta, A. Anshul, S. Thakur and C. Kothari, "Fusing IP vendor Palmprint

Biometric with Encoded Hash for Hardware IP Core Protection of Image Processing

Filters," Proceedings of 35th IEEE International Conference on Microelectronics

(ICM), Abu Dhabi, United Arab Emirates, 2023, pp. 218-221, doi:

10.1109/ICM60448.2023.10378937.

26. A. Sengupta, A. Anshul, C. Kothari and S. Thakur, "Secured and Optimized

Hardware Accelerators using Key-Controlled Encoded Hash Slices and Firefly

Algorithm based Exploration," Proceedings of 35th IEEE International Conference

on Microelectronics (ICM), Abu Dhabi, United Arab Emirates, 2023, pp. 149-152,

doi: 10.1109/ICM60448.2023.10378911 .

27. A. Sengupta and A. Anshul, "Key-Driven Multi-Layered Structural Obfuscation of

IP cores using Reconfigurable Obfuscator based Network Challenge and Switch

Control Logic," Proceedings of 9th IEEE International Symposium on Smart

Electronic Systems (iSES), Ahmedabad, India, 2023, pp. 141-146, doi:

10.1109/iSES58672.2023.00038.

28. A. Anshul and A. Sengupta, "Low-Cost Hardware Security of Laplace Edge

Detection and Embossment Filter Using HLS Based Encryption and PSO,"

Proceedings of 9th IEEE International Symposium on Smart Electronic Systems

(iSES), Ahmedabad, India, 2023, pp. 135-140, doi: 10.1109/iSES58672.2023.00037.

29. A. Anshul, K. Bharath and A. Sengupta, "Designing Low Cost Secured DSP Core

using Steganography and PSO for CE systems," Proceedings of 8th IEEE

International Symposium on Smart Electronic Systems (iSES), Warangal, India,

2022, pp. 95-100, doi: 10.1109/iSES54909.2022.00030.

30. A. Anshul and A. Sengupta, "IP Core Protection of Image Processing Filters with

Multi-Level Encryption and Covert Steganographic Security Constraints,"

Proceedings of 8th IEEE International Symposium on Smart Electronic Systems

(iSES), Warangal, India, 2022, pp. 83-88, doi: 10.1109/iSES54909.2022.00028.

31. A. Sengupta, V. Chourasia, A. Anshul "HLS Scheduling Driven Encoded

Watermarking for Secure Convolutional Layer IP Design in CNN", Proceedings of

11th IEEE International Conference on Consumer Electronics (ICCE-TW),

Taichung, Taiwan, 2024, pp. 587-588, doi: 10.1109/ICCE-

Taiwan62264.2024.10674266.

https://doi.org/10.1049/PBSE020E_ch8

XI

32. A. Sengupta, V. Chourasia, A. Anshul, N. Kumar "Robust Watermarking of Loop

Unrolled Convolution Layer IP Design for CNN using 4-variable Encoded Register

Allocation", Proceedings of 11th IEEE International Conference on Consumer

Electronics (ICCE-TW), Taichung, Taiwan, 2024, pp. 589-590, doi: 10.1109/ICCE-

Taiwan62264.2024.10674385.

XII

TABLE OF CONTENTS

 ABSTRACT VI

 LIST OF PUBLICATIONS VIII

 LIST OF FIGURES XVII

 LIST OF TABLES XXII

 NOMENCLATURE XXVII

 ACRONYMS XXIX

1. Chapter 1 1

 Introduction

 1.1 Hardware Systems: ASIC/IP Core…………………………. 1

 1.2 Abstraction Levels in ASIC Design Process………….......... 4

 1.3 Introduction to HLS………………………………………... 7

 1.4 Hardware Threats and Attacks in the ASIC/IP Core Design

Flow…………………………………………………………

1.4.1 IP piracy: counterfeiting and tampering……………..

1.4.2 False claim of IP ownership…………………………..

1.4.3 Hardware trojan attack………………………………..

13

17

18

19

 1.5 Structure of the Thesis……………………………………... 20

2. Chapter 2 21

 Literature Survey: State-of-the-Art

 2.1 State-of-the-Art on Hardware IP Attacks…………………... 21

 2.2 Objective of the Thesis……………………………………... 33

 2.3 Overview of Key Contributions……………………………. 34

3. Chapter 3 38

 Exploration of Low-Cost Hardware IPs during HLS using

Multiphase Encryption and Crypto-Chain Signature

 3.1 Problem Formulation………………………………….........

3.1.1 Threat model and underlying motivation………..........

3.1.2 Input and Outputs………………………………..........

3.1.3 Target platform…………………………………..........

39

40

40

41

 3.2 Low-Cost Multiphase Encryption and Crypto-Chain

Signature based Security Methodologies…………………..

3.2.1 Overview of image processing applications/ filters

and jpeg-codec……………………………………………...

3.2.2 Low-cost secure architecture exploration using PSO-

DSE…………………………………………………………

3.2.3 Low-cost secure architecture exploration using FFA-

DSE…………………………………………………………

41

44

48

55

XIII

3.2.4 Advantages of employing PSO-DSE and FFA-DSE

for low-cost secure architecture exploration………………..

3.2.5 Multi-phase encryption-based security for image

processing filter IP cores……………………………………

3.2.6 Key-driven crypto-chain-based hardware security

methodology………………………………………………...

62

64

68

 3.3 Illustrative Example: Watermark (Signature) Embedding

Process………………………………………………………

73

 3.4 Watermark Detection Process………………………………

3.4.1 Distinguishing between genuine and pirated/fake IP

cores…………………………………………………………

3.4.2 Resolution of false IP ownership claim……………….

79

79

80

 3.5 Summary…………………………………………………… 80

4. Chapter 4 82

 Enhanced Security for Hardware IPs Using IP Seller’s Protein

Molecular Biometrics and Facial Biometric-based Encryption

Key

 4.1 Overview……………………………………………………

4.1.1 Threat model and motivation…………………………

4.1.2 Input and Outputs……………………………………..

4.1.3 Target platform………………………………………..

4.1.4 Security framework using IP seller’s protein

molecular and facial biometrics…………………………….

83

83

84

84

84

 4.2 Encrypted Protein Molecular Biometrics based Security

Approach……………………………………………………

4.2.1 Introduction to protein molecular amino acid

sequences……………………………………………………

4.2.2 Advantages of protein molecular biometric signatures

compared to DNA molecular biometrics……………………

4.2.3 Generation of the Proposed IP seller’s protein

molecular signature…………………………………………

4.2.4 Using IP seller’s facial biometrics to generate

encryption keys……………………………………………...

4.2.5 Generation of encrypted protein molecular biometric

signature using AES encryption…………………………….

4.2.6 Security properties of the proposed encrypted protein

molecular biometric watermark signature…………………..

86

86

87

88

90

91

92

 4.3

Demonstration: Watermark Embedding and Secure RTL

Design Generation Process………………………………….

93

 4.4 Detection of Fake/Pirated IP Versions and Resolution of

False Claim of IP Ownership……………………………….

95

 4.5 Summary…………………………………………………… 97

5. Chapter 5 98

 Securing Hardware IPs by Exploiting Statistical

Watermarking Using Encrypted Dispersion Matrix and Eigen

XIV

Decomposition Framework

 5.1 Threat Model, Motivation, and Target Platform……………

5.1.1 Threat model…………………………………………..

5.1.2 Motivation: using statistical watermarking framework

for securing hardware IPs…………………………………...

5.1.3 Target platform, Input and output…………………….

99

99

99

100

 5.2 Statistical Watermarking Using Encrypted Dispersion

Matrix and Eigen Decomposition Framework……………...

5.2.1 Overview……………………………………………...

5.2.2 Extracting secret security data from encrypted

dispersion matrix based on hardware design space

parameters…………………………………………………..

5.2.3 Extracting secret security data from encrypted

eigenvalues representing hardware design space

characteristics……………………………………………….

5.2.4 Generation and embedding of final mathematical

watermark…………………………………………………...

100

100

101

107

109

 5.3

5.4

Demonstration………………………………………………

Validation and Detection……………………………………

5.4.1 Validation of secured design………………………….

5.4.2 Resolving IP ownership conflicts and detecting IP

piracy………………………………………………………..

110

111

111

111

 5.5 Summary…………………………………………………… 113

6. Chapter 6 114

 Securing GLRT Cascade Hardware IP using IP Seller’s

Fingerprint and CIG Framework for ECG Detector

 6.1 Overview, Threat Model, and Motivation…………………..

6.1.1 Overview of ECG detector (GLRT cascade)…………

6.1.2 Threat model…………………………………………..

6.1.3 Motivation…………………………………………….

115

116

118

118

 6.2 CIG-based Secure HLS Flow Using IP Seller’s Fingerprint

for Generating Secure GLRT Cascade Hardware IP………..

6.2.1 Deriving the GLRT dataflow graph from its transfer

function……………………………………………………...

6.2.2 Creation of covert fingerprint biometric watermark

signature…………………………………………………….

6.2.3 Generation and embedding of watermarking

constraints…………………………………………………...

118

118

119

121

 6.3

Identifying Pirated GLRT Hardware IP Cores for ECG

Detectors…………………………………………………….

125

 6.4 Summary…………………………………………………… 126

7. Chapter 7 127

 Exploiting Voice Biometric-Based Watermarking Framework

for Securing Hardware IP Cores

XV

 7.1 Motivation and Benefits of Voice Biometric-Based

Watermarking Framework………………………………….

128

 7.2 Threat Model and Overview………………………………...

7.2.1 Threat model: attacker’s and defender’s capabilities…

7.2.2 Overview……………………………………………...

129

129

130

 7.3

7.4

Voice Biometric-Based Watermarking Framework………...

7.3.1 Introduction to voice biometric……………………….

7.3.2 Inputs and Outputs…………………………………….

7.3.3 Capturing and pre-processing IP seller’s voice

biometric sample……………………………………………

7.3.4 Identifying distinct voice features for watermark

signature creation…………………………………………...

 7.3.4.1 Timestamp analysis for pitch value

determination………………………………………………..

 7.3.4.2 Timestamp analysis for intensity value

determination………………………………………………..

7.3.5 Feature extraction from voice template: pitch and

intensity extraction………………………………………….

7.3.6 Creating of watermark signature from extracted voice

biometrics features and generation of its corresponding

watermarking constraints…………………………………...

Demonstration: Embedding of Watermarking Constraints…

130

130

131

132

133

133

134

135

137

137

 7.5 Detection of Voice Biometric Signature…………………… 140

 7.6 Challenges and Limitations of Voice Biometrics…………... 142

 7.7 Summary…………………………………………………… 143

8. Chapter 8 144

 HLS-Based Exploration of Low-Cost (Optimal) Functional

Trojan-Resistant Hardware IP Designs

 8.1 Problem formulation………………………………………...

8.1.1 Threat model, Motivation and advantages of

designing optimal Trojan-resistant hardware IPs…………...

8.1.2 Problem formulation…………………………………..

144

145

146

 8.2 Low-Cost Functional Trojan-Resistant Framework………...

8.2.1 Underlying assumptions………………………………

8.2.2 Low-cost Trojan-resistant TMR design framework…..

8.2.3 Exploration for low-cost Trojan-resistant TMR

scheduling using PSO-DSE…………………………………

148

148

148

153

 8.3 Demonstration: Motivational Example…………………….. 155

 8.4 Advantages and Limitations of Low-Cost Trojan Resistant

TMR Framework……………………………………………

156

 8.5 Summary……………………………………………………

157

9. Chapter 9 158

 Results and Analysis

XVI

 9.1 Experimental Results: Exploration of Low-Cost Hardware

IPs during HLS using Multiphase Encryption and Crypto-

Chain Signature……………………………………………..

9.1.1 Results in terms of security, design cost, and

implementation complexity analysis………………………..

9.1.2 Optimality analysis……………………………………

158

158

169

 9.2 Experimental Results: Enhanced Security for Hardware IPs

Using IP Seller’s Protein Molecular Biometrics and Facial

Biometric-based Encryption Key…………………………...

9.2.1 Experimental setup and benchmarks………………….

9.2.2 Security analysis: Analysis of PC and TT…………….

9.2.3 Design cost analysis…………………………………..

9.2.4 Entropy analysis………………………………………

169

169

170

172

175

 9.3 Experimental Results: Securing Hardware IPs by Exploiting

Statistical Watermarking Using Encrypted Dispersion

Matrix and Eigen Decomposition Framework……………...

9.3.1 Experimental setup and benchmarks………………….

9.3.2 Analysis of attack scenarios…………………………..

9.3.3 Security analysis: PC, TT and entropy analysis………

9.3.4 Design cost analysis…………………………………..

176

176

177

179

182

 9.4 Experimental Results: Securing GLRT Cascade Hardware

IP using IP Seller’s Fingerprint and CIG Framework for

ECG Detector……………………………………………….

9.4.1 Analysis of attack scenarios…………………………..

9.4.2 Security analysis………………………………………

9.4.3 Design cost analysis…………………………………..

183

183

186

187

 9.5 Experimental Results: Exploiting Voice Biometric-Based

Watermarking Framework for Securing Hardware IP Cores.

9.5.1 Experimental setup and benchmarks………………….

9.5.2 Effect of feature selection on voice signature size and

sensitivity analysis…………………………………………..

9.5.3 Security evaluation and comparison with prior

watermarking techniques……………………………………

9.5.4 Design cost analysis and security trade-offs………….

188

188

189

189

191

 9.6 Experimental Results: HLS-Based Exploration of Low-Cost

(Optimal) Functional Trojan-Resistant Hardware IP

Designs……………………………………………………...

9.6.1 Experimental setup and benchmarks………………….

9.6.2 Security evaluation and comparison with prior

techniques…………………………………………………...

9.6.3 Design cost and optimality analysis…………………..

193

193

194

197

10. Chapter 10 200

 Conclusion and Future Work

 10.1 Conclusion………………………………………………….. 200

 10.2 Future Work………………………………………………... 202

 REFERENCES 204

XVII

LIST OF FIGURES

Figure 1.1 Examples and applications of different data and

computation intensive hardware IPs used in consumer

electronics and multimedia systems

 3

Figure 1.2 Different abstraction level used in VLSI/digital ICs

design process

 5

Figure 1.3 Overview of HLS design flow 8

Figure 1.4 (a). Control data flow graph (CDFG) of FIR filter, (b)

Scheduled data flow graph (SDFG) of FIR filter

scheduled with one multiplier and one adder, and (c)

Scheduled data flow graph (SDFG) of FIR filter

scheduled with two multipliers and one adder

 9

Figure 1.5 Different hardware threats and attacks in the hardware

IC design flow process

15

Figure 3.1 Overview of low-cost multiphase encryption based

security methodology

42

Figure 3.2 Overview of low-cost crypto-chain signature based

security methodology

43

Figure 3.3 DFG of JPEG-CODEC for determining first pixel of the

compressed image I11
’

46

Figure 3.4 DFG of structurally transformed JPEG-CODEC for

determining first pixel of the compressed image I11
’

with registers at input, output and intermediate storage

points

47

Figure 3.5 Fig. 3.5. Details of proposed PSO based DSE

49

Figure 3.6 Proposed IP vendor selected encoding rules

55

Figure 3.7 Detailed flow diagram of the FFA-DSE algorithm

57

Figure 3.8 Details of multi-phase encryption-based hardware

security methodology

67

Figure 3.9 Detailed flow diagram of the key-driven crypto-chain

based security Methodology

71

Figure 3.10 PSO-based architecture exploration of 4(+), and 2(*)

resources used for scheduling 3*3 sharpening filter

74

XVIII

Figure 3.11 Demonstration of the proposed multi-phase encryption

methodology on sharpening filter IP core with its

corresponding outputs

76

Figure 3.12 Security constraints generation flow of the proposed

low-cost key-based crypto-chain methodology

77

Figure 4.1 Overview of proposed encrypted protein molecular

biometric based security methodology

85

Figure 4.2 Generating the protein molecular signature

corresponding to amino acid sequence of sample protein

89

Figure 4.3

Demonstration of facial biometric key generation used

for encrypting the protein molecular signature

91

Figure 4.4 Scheduled data flow graph of DCT-8 with 1(+) and 4(*)

post embedding secret constraints

94

Figure 5.1 Overview of the proposed mathematical watermarking

methodology

101

Figure 5.2 Control Data flow graph of 8-point DCT 102

Figure 5.3 Details of the proposed dispersion matrix generation

block

104

Figure 5.4 Details of the proposed eigen decomposition block

104

Figure 5.5 Details of the AES encryption block

104

Figure 5.6 Details of the proposed watermark embedding process

110

Figure 6.1 ECG wave recorded through electrode for reference

115

Figure 6.2 Proposed secure hardware IP of GLRT cascade for ECG

detector

116

Figure 6.3 GLRT DFG of proposed micro IP

117

Figure 6.4 GLRT cascade DFG of proposed macro IP

117

Figure 6.5 Proposed fingerprint digital template generation process

extracted from captured IP vendor’s fingerprint, (a)

input IP sellers fingerprint image, (b) binarized

fingerprint image, (c) thinned fingerprint image, (d)

minutiae points generation on fingerprint image, (e)

details of generated minutiae points parameters, (f)

generated fingerprint biometric based digital template.

Note: The biometric captured is of a real IP vendor

entity that is used for further processing of template

generation

120

XIX

Figure 6.6 Image matrix representing neighboring pixels of image

pixel I

120

Figure 6.7 (a) SDFG of GLRT micro IP using one adder (+) and

two multipliers (*) post embedding fingerprint

signature , (b) SDFG of GLRT cascade macro IP

scheduled using three multipliers and two adders post

embedding fingerprint

121

Figure 6.8 (a)CIG (pre and post embedding fingerprint)

corresponding to secure GLRT micro IP core, (b) CIG

(pre and post embedding fingerprint) corresponding to

secure GLRT macro IP core

123

Figure 6.9 Secure RTL design of GLRT cascade macro IP core

with CIG based embedded fingerprint

124

Figure 6.10 Secure RTL design of GLRT cascade macro IP core

with CIG based embedded fingerprint

125

Figure 7.1 Spectrogram of voice sample (voice-001) using a speech

analyser tool showing the range of pitch and intensity

with indicating (a) starting point of pitch (b) end point of

pitch

131

Figure 7.2 2-D DCT coefficient matrix “I”; Matrix elements

indicate eight- point DCT coefficients.

132

Figure 7.3 Spectrogram of voice sample (voice-001) showing jitter

(local), and shimmer (local) based on selected voice

sample

137

Figure 7.4 Scheduled data flow graph of IIR with resource

configuration of one adder (A1), one subtractor (S1) and

two multipliers (M1 & M2)

138

Figure 7.5 (a). CIG of IIR filter before embedding voice biometric

signature, and (b). CIG after embedding voice biometric

signature, where the added voice signature constraints

are highlighted using red edges

140

Figure 7.6 RTL datapath of IIR filter IP core with embedded voice

biometric based signature

142

Figure 7.7 Voice signature detection for IP authentication/

verification

143

Figure 8.1 Overview of proposed optimal Trojan defense IP

core/SoC design generation process for DSP

applications

149

XX

Figure 8.2 Illustration of the trojan resistance capability of the

proposed approach with the help of voter and 4:1

multiplexer

150

Figure 8.3 Error detection block adopted from [124]

150

Figure 8.4 Flow-chart of proposed optimal TMR based Trojan

resistant methodology

154

Figure 8.5 Scheduled data flow graph of FIR filter (TMR) with

9(*), 3(+)

156

Figure 9.1 Design cost comparison between proposed approach and

(Sengupta et al., 2019) [37], (Koushanfar et al., 2005)

[31], and (Sengupta et al., 2016) [32]

160

Figure 9.2 Convergence time and exploration time for the proposed

methodology

160

Figure 9.3 Reduction of global best solution design cost over the

iteration counts during determining low-cost

architecture configuration for proposed approach. Note:

Baseline parameters for PSO-based architecture

exploration: 𝒌𝟏, 𝒌𝟐 = 0.5; 𝝎 = linearly decreasing [0.9–

0.1]; 𝒇𝟏, 𝒇𝟐 = 2; N = 3

161

Figure 9.4 Comparison of PC between the proposed and (Sengupta

et al., 2019) [37]

162

Figure 9.5 Comparison of PC between the proposed and

(Koushanfar et al., 2005) [31]

162

Figure 9.6 Comparison of PC between the proposed and (Sengupta

et al., 2016) [32]

162

Figure 9.7 Comparison of TT between the proposed and

(Koushanfar et al., 2005) [31]

162

Figure 9.8 Comparison of TT between the proposed and (Sengupta

et al., 2016) [32]

162

Figure 9.9 Design cost evaluation of presented technique with

Watermarking [31], Steganography [37], Watermarking

[32], Palmprint biometric[44], Encrypted signature

[43], and DNA biometric [107] for JPEG-CODED

hardware IP core

164

Figure 9.10 Comparison of convergence time, exploration time and

convergence iteration count corresponding to the swarm

(population) sizes (Y) = 3, 5, and 7 for the proposed

XXI

FFA-based security approach for secured JPEG-CODEC

hardware IP core design

164

Figure 9.11 Decrement of global best cost with progressing

iterations corresponding to different swarm sizes (Y)

during computing low-overhead hardware configuration

for presented method

165

Figure 9.12 Design cost vs probability of coincidence trade-off for

proposed approach corresponding to varying signature

sizes

168

Figure 9.13 Security-design cost trade-off for 8-point DCT

corresponding to two different protein sequences for

varying security constraints

175

Figure 9.14 Design cost vs probability of coincidence trade-off for

proposed approach for varying IP vendor signature sizes

corresponding to JPEG-CODEC IP

182

Figure 9.15 Design cost vs probability of coincidence trade-off for

proposed secure GLRT cascade for varying fingerprint

signature sizes

187

Figure 9.16 Comparison of PC of the proposed approach among 5

different voice samples (15 timestamps)

190

Figure 9.17 Comparison of TT of the proposed approach among 5

different voice samples (15 timestamps)

191

Figure 9.18 Number of potential untrustworthy 3PIPs vulnerabilities

handled using proposed approach

198

XXII

LIST OF TABLES

Table 3.1 Register allocation table before and after embedding

hardware security constraints corresponding to

sharpening filter

65

Table 3.2 Square matrix representation of the key for TRIFID

cipher computation corresponding to alphabet A

66

Table 3.3 Scheduling information of JPEG-CODEC based on its

SDFG scheduled using three adders and three

multipliers

69

Table 3.4 Register allocation table corresponding to JPEG-

CODEC prior to and after implanting secret security

constraints for proposed low-cost crypto-chain

signature

78

Table 4.1 Register allocation in 8-point DCT (after embedding

encrypted protein molecular signature)

96

Table 5.1 Generation of resource configurations and its

respective area (Ad) and latency (Ld) matrix

corresponding to 8-point DCT based on IP vendor

selected four different p-bit keys

102

Table 5.2 Register allocation table pre and post embedding

generated signature

112

Table 6.1 Acquired ECG data of patient X, is age: 69Y 6M 3D,

gender: male, report date: 05/may/2023 04:27 pm from

department of non-invasive cardiology of cardiology

research laboratory

115

Table 7.1 Pitch values in hertz (Hz) Corresponding to Different

Timestamps

136

Table 7.2 Intensity values in HZ corresponding to Different

Timestamps

136

Table 7.3 Mapping Rules (Encoding Mechanism) to Generate

Hardware Security Constrains from Voice Biometric

Signature

138

Table 7.4 Register allocation of IIR filter before embedding voice

biometric based hardware security constraints

141

Table 7.5 Register allocation of IIR filter after embedding voice

biometric based hardware security constraints

141

XXIII

Table 9.1 Area, latency, cost, and resource configuration of

proposed security methodology before and after

embedding signature

160

Table 9.2 Result of the proposed approach in terms of optimality

162

Table 9.3 Results of presented technique pre and post implanting

crypto-chain signature

164

Table 9.4 Comparison of convergence and exploration time

between presented technique and [78] for generating

low-cost optimized architectural solution against

secured JPEG-CODEC IP core datapath

165

Table 9.5 Comparison of probability of coincidence (Ci) and

tamper tolerance (TO) between the proposed approach,

[44], [37], [32], [43], [31], and [107] corresponding to

JPEG CODEC

167

Table 9.6 Variation of probability of coincidence and tamper

tolerance corresponding to proposed approach w.r.t.

embedded crypto-chain signature bits into the design

for JPEG-CODEC

167

Table 9.7 Comparison of entropy between the proposed

approach, [44], [32], [43], [31], and [107]

corresponding to JPEG-CODEC

167

Table 9.8 Optimality analysis of proposed technique for JPEG-

CODEC

167

Table 9.9 Variation in PC for different size of encrypted protein

molecular signature using proposed approach

171

Table 9.10 Comparison of security in terms of PC for jpeg-codec

IP core between proposed approach and IP

fingerprinting [40]

171

Table 9.11 Comparison of PC w.r.t. related work [107]

172

Table 9.12 Variation in PC for two different encrypted protein

sequence of varying length using proposed approach

173

Table 9.13 Comparison of PC with related approaches

173

Table 9.14 Comparison of TT for JPEG-CODEC between

proposed approach and IP fingerprinting [40]

173

Table 9.15 Comparison of tamper tolerance (TT) w.r.t. related

work [107]

174

XXIV

Table 9.16 Variation in TT for two different encrypted protein

sequence of varying length using proposed approach

174

Table 9.17 Comparison of TT with related approaches

174

Table 9.18 Design cost of embedding encrypted protein molecular

signature

174

Table 9.19 Entropy of the proposed approach

175

Table 9.20 Comparison of entropy between proposed approach

and RNG techniques (crypto key based and SSL

TRNG)

175

Table 9.21 Total computational time of the proposed approach

with and without facial encryption mechanism

175

Table 9.22 Comparison of probability of coincidence (Ci) between

the proposed approach, [41], [43]

178

Table 9.23 Comparison of probability of coincidence (Ci) between

the proposed approach, [31], [40]

178

Table 9.24 Comparison of tamper tolerance (Zt) between the

proposed approach, [41], [43], [31], and [40]

178

Table 9.25 Comparison of probability of coincidence (Ci) and

tamper tolerance (Zt) with variation in signature

strength corresponding to JPEG-CODEC IP for the

proposed approach

179

Table 9.26 Results of proposed approach pre and post implanting

generated signature

181

Table 9.27 Table. 9.27: Comparison of entropy between the

proposed approach, [41], [43], [31], and [40]

181

Table 9.28 Comparison of Entropy between Proposed Approach

and RNG Techniques (Crypto Key based) for JPEG-

CODEC

182

Table 9.29 Comparison of probability of coincidence (Ci) between

the proposed fingerprint embedded secure GLRT

cascade IP with facial biometric [40] embedded IP

design and digital signature embedded IP design [39]

185

XXV

Table 9.30 Comparison of probability of coincidence (Ci) between

the proposed fingerprint embedded secure GLRT

cascade IP with encrypted signature embedded IP

design [43] and hardware watermarking embedded IP

design [31]

185

Table 9.31 Comparison of tamper tolerance (Ti) between the

proposed fingerprint embedded secure GLRT cascade

IP with facial biometric [40] embedded IP design and

digital signature embedded IP design [39]

185

Table 9.32 Comparison of tamper tolerance (Ti) between the

proposed fingerprint embedded secure GLRT cascade

IP with encrypted signature embedded IP design [43]

and hardware watermarking embedded IP design [31]

185

Table 9.33 Design latency, area, and resource configuration of

proposed secure GLRT IP before and after embedding

fingerprint signature

187

Table 9.34 Design cost, leakage power, register count and resource

configuration of proposed secure GLRT hardware IP

before and after embedding fingerprint signature

187

Table 9.35 Variation in Signature Size (in bits) with variation in

selected number of Timestamps (Ts) or pitch and

intensity values for Voice-001

190

Table 9.36 Comparison of PC value with variation in signature

size for varying # of timestamps or pitch and intensity

values

190

Table 9.37 Comparison of probability of coincidence of proposed

with other watermarking techniques

190

Table 9.38 Comparison of tamper tolerance with variation in

signature size for varying timestamps or pitch and

intensity values

191

Table 9.39 Comparison of tamper tolerance of proposed with other

watermarking techniques [36],[40], [41], [44], [31],

and [43]

191

Table 9.40 Area(um), latency (ps) and design cost analysis of

proposed approach and comparison with related works

192

Table 9.41 Analysis of design cost tradeoff with security for the

proposed hardware security approach

192

XXVI

Table 9.42 Comparison of convergence time (msec) for generating

trojan resistant hardware designs w.r.t. swarm size ‘n’

195

Table 9.43 Comparison of exploration time (msec) for generating

trojan resistant hardware designs w.r.t. swarm size ‘n’

195

Table 9.44 Area, cost, and time of proposed TMR based design

195

Table 9.45 Comparison of the proposed approach with [45], [133]

196

Table 9.46 Comparison of the proposed approach with [53]

196

Table 9.47 Comparison of Trojan defense capability of proposed

approach and [45], [46]

197

Table 9.48 Optimality Analysis of the proposed approach 198

XXVII

NOMENCLATURE

Si/Yi/Pi Resource architecture for i
th
 particle position

Si
+
/Yi

+
/Pi

+
 New updated resource architecture of i

th
particle

SGB/YGB/PGB Global best particle position

SLBi/YLBi/PLBi Local best particle position for i
th

particle

Smax/Ymax/Pmax Maximum resource architecture for a particular benchmark

application

Aix Velocity of i
th
 particle in x

th
dimension

Aix
+
 New updated velocity of i

th
 particle in x

th
dimension

Aix
max

 Maximum velocity of i
th
 particle in x

th
dimension

I Maximum iteration count

Cf
LBi

 Local best fitness cost of i
th
 particle

nm Total control step required by multiplier in scheduled data flow graph

of DSP application

dm Delay of one multiplier

ACon IP vendor specified area constraints

T Termination criterion

X Total dimensions (hardware types)

SDFG
TMR

 Trojan resistant scheduled dataflow graph

UOG Original unit in the SDFG
TMR

ω Inertia weight

b1 and b2 Acceleration coefficients used in PSO for making a balance between

social and cognitive factor

r1 and r2 Random number used for providing stochasticity

ATMR

Total area of the TMR design

TTMR Total execution time of TMR design

AMAX Area of the design with maximum resources

TMAX Maximum execution time of design with minimum resources

W1 and W2 Weights assigned to area and time in design cost function

n Total number of particles in the population

Cf
i
 Fitness cost of i

th
 particle

na Total control step required by adder in scheduled data flow graph of

DSP application

da Delay of one adder

TCon IP vendor specified latency constraints

XXVIII

Vi Velocity of i
th
 particle

PSO-DSE Particle swarm optimization driven design space exploration

TMR Triple modular redundancy

UDP Duplicate unit (copy) of original unit in SDFG
TMR

UTP Triplicate unit (copy) of original unit in SDFG
TMR

PC/Ci Probability of coincidence

TT/Ti/Zt/TO Tamper tolerance

E Entropy

DC Design cost

PT Total duration of voice pitch

pe and ps End time and start time, respectively, on the voice pitch variation

curve

Δp and Δi Step size

IT Total duration of voice intensity

Ie and Is End time and start time of voice intensity, respectively

s(n) Input to the filtering unit

H Linear combination matrix of the representative function

VDi i
th
 Vendor

XXIX

ACRONYMS

HLS High Level Synthesis

IP Intellectual Property

DSP Digital Signal Processor

CE Consumer Electronics

IC Integrated Circuits

ASIC Application Specific Integrated Circuit

SoC System on Chip

RTL Register Transfer Level

VLSI Very Large Scale Integration

GDS Graphic Database System

DFG Data Flow Graph

CDFG Control Data Flow Graph

SDFG Scheduled Data Flow Graph

CS Control Step

CIG Colored Interval Graph

3PIP 3
rd

 party Intellectual Property

ASIC Application Specific Integrated Circuit

PSO Particle Swarm Optimization

DSE Design Space Exploration

FU Functional Unit

FFA Firefly Algorithm

SHA Secure Hash Algorithm

DCT Discrete Cosine Transform

IDCT Inverse Discrete Cosine Transform

DWT Discrete Wavelet Transform

FFT Fast Fourier Transform

FIR Finite Impulse Response

IIR Infinite Impulse Response

DFT Discrete Fourier Transform

JPEG Joint Photographic Expert Group

MPEG Moving Picture Expert Group

TMR Triple Modular Redundant

XXX

DMR Double Modular Redundant

ACO Ant Colony Optimization

BFO Bacterial Foraging Algorithm

GA Genetic Algorithm

AI Artificial Intelligence

ML Machine Learning

FPGA Field programmable gate array

THT Tree Height Transformation

VHDL Very High Speed Integrated Circuit Hardware Description Language

RE Reverse Engineering

GLRT Generalized Likelihood Ratio Test

ECG Electrocardiogram

MRI Magnetic Resonance Imaging

CT Computed Tomography

BF Blur Filter

SF Sharpening Filter

LED Laplace Edge Detection

VE/HE Vertical/Horizontal Embossment

WFB Wavelet Filter Bank

1

Chapter 1

Introduction

1.1. Hardware Systems: ASIC/IP Core

We are fortunate to be part of a generation that benefits from the

advancements in smart technology, all made possible by the relentless efforts

of scientists and researchers. In this modern era, electronic/computing systems

have been instrumental in realizing the vision of making technology smarter,

more efficient, and accessible to everyone. Today, there is an increasing

demand for systems and devices that offer rapid and cost-effective processing,

whether for applications or hardware. As a result, various consumer

electronics and computing devices, such as smartphones, smartwatches,

tablets, digital cameras, computers, and audio headsets, have become integral

to our daily lives, fulfilling both our needs and desires. Apart from consumer

electronics and multimedia systems, these computing devices are also used in

healthcare, military operations, and other real-world scenarios. Electronics and

computing devices in smart healthcare enable remote monitoring, precise

diagnostics, and personalized treatments, while in advanced military

operations, they enhance communication, surveillance, and strategic decision-

making [1] - [4].

Moreover, the need for application-specific computing is rapidly increasing in

the current technological landscape. Unlike general-purpose systems that

handle a wide range of functions, application-specific computing systems offer

tailored performance, optimized power consumption, and enhanced efficiency

for specific tasks. In the modern era, these systems provide faster processing,

reduced energy use, and lower costs by focusing on specialized applications

like image processing or data encryption, thereby improving overall

performance. As they perform several complex data and computation-

intensive tasks like image processing, audio-video processing, and more, they

are designed as application-specific integrated circuits (ASIC), also known as

hardware accelerators. The base of these devices is a system-on-chip (SoC),

which integrates various components, including functional blocks, memory

units, memory controllers, and peripherals. Rather than designing a SoC

2

entirely from the ground up, manufacturer (SoC integrator/designer) often opt

to acquire various modules or cores from third-party intellectual property (IP)

vendors/sellers. This approach, known as the core-based design paradigm, has

revolutionized the way electronic systems are developed, enabling faster

production cycles and reducing costs while maintaining high performance and

functionality. Generally, the complete design process, starting from the

procurement of different IP cores to assembly and the release of the final

product, involves multiple entities, locations, and design houses. This is

because some places can afford lower technical costs while some cheap labor,

besides time to market factor [5] - [11].

As discussed above, ASICs/hardware accelerators play a critical role in

enhancing performance and efficiency for data-intensive tasks by speeding up

the underlying processes. This is achieved by offloading specific computing

tasks to specialized hardware components, known as hardware accelerator or

IP core. An IP core is a reusable block of Boolean logic/functions, register

transfer level (RTL) design, or gate-level design organization representing the

designer’s intellectual property. Some examples of hardware accelerators/IP

cores include cryptographic IP cores for performing specialized cryptographic

operations, image processing or digital signal processing (DSP) IP cores used

for performing image processing applications (such as blurring, sharpening,

etc.), compression-decompression of images, biometric recognition tasks like

facial, fingerprint, and palmprint detection. Similarly, artificial intelligence

(AI) cores/machine learning (ML) cores are responsible for the execution of

complex AI/ML applications. In consumer electronics and computing systems,

data-intensive applications such as audio-video processing and image

compression-decompression are effectively handled by these IP cores, offering

high efficiency at reduced design costs. Fig. 1.1 highlights the examples and

applications of different data and computation-intensive hardware IPs used in

several consumer electronics and multimedia systems. IP cores execute

complex algorithms like fast Fourier transform (FFT), finite impulse response

(FIR) filtering, discrete cosine transformation (DCT), image compression and

decompression (JPEG-CODEC), etc., which are fundamental in multimedia,

machine learning, and digital signal processing applications. Due to the

3

complexities of design, cost, and time-to-market pressure, these application

frameworks are developed as dedicated reusable IP cores. This approach

reduces costs and accelerates design turnaround times. Consequently, SoC

designers incorporate reusable IP cores from various vendors, which are mass-

produced, thoroughly tested, and verified by companies around the globe,

ensuring a robust and diverse IP supply chain [12] - [14].

Understanding the design and development process of such complex systems

is crucial for researchers and users. The design cycle of these systems consists

of multiple phases and involves various entities. These phases can be

categorized based on design complexity, cost, and flexibility, making it

essential to comprehend each stage thoroughly. Additionally, the entities

involved in the design process—such as third-party IP vendors, system

integrators (SoC), and foundries (fabrication houses)—play distinct roles in

the integrated circuit (IC) design chain. Their involvement helps lower design

costs, reduces complexity, and shortens development time. However, as the

design passes through various entities in the global design supply chain

process, it also necessitates robust security measures to protect designs from

potential threats and ensure their safe use by end consumers. The participation

of diverse entities, including offshore design houses, raises concerns about

trustworthiness. Unreliable entities could engage in malicious activities, such

as IP piracy or fraudulent claims of IP ownership. There is also the risk of

FIR/IIR: Audio

devices, such as

loudspeakers

DCT: Audio

image video

compression

JPEG: Image

and video

compression

FFT: Digital

video

broadcasting

DWT: Wavelet

filters

DFT: Radar

application

Image filter IPs:

blurring, sharpening

and edge detection in

images

ML accelerators/IPs:

Detection and

classification, (such

as CNN accelerator)

Fig. 1.1 Examples and applications of different data and computation

intensive hardware IPs used in consumer electronics and multimedia

systems

4

covert malicious logic being implanted by a rouge entity in a counterfeited

product. Thus, protecting the IP rights of IP vendors/sellers is vital, along with

ensuring the safety of end-consumers. Given the significant role of

multimedia, DSP, and ML IP cores in consumer electronics, IoT devices,

smart healthcare, and mission-critical tasks, their security cannot be

compromised. Incorporating a pirated IP version into the SoCs of these

applications could jeopardize user safety and system integrity [15] - [26].

This chapter provides an overview of the foundational elements upon which

the proposed hardware security techniques are developed. The second section

outlines the different abstraction levels of the ASIC/IP core design process.

The third section delves into the high-level synthesis (HLS) process,

highlighting its significance in creating low-cost, secure reusable hardware IPs

and some examples of data intensive DSP applications. The fourth section

examines the various hardware threats and attacks in the ASIC/IP core design

process. Finally, the fifth section details the overall structure and organization

of the thesis.

1.2. Abstraction Levels in ASIC Design Process

To effectively manage the complexity of designing a hardware IP core, it is

essential to begin at a higher abstraction level within the integrated circuit (IC)

design process. This approach is advantageous because higher abstraction

levels simplify the design process, provide greater flexibility, and make it

easier to integrate cost-efficient (low-cost) architectures and robust security

mechanisms compared to lower-level design abstractions. The design

abstraction hierarchy generally consists of the following levels: (i) system

level, (ii) algorithmic/behavioral level, (iii) register transfer level (RTL), (iv)

logic/gate/netlist level, and (v) physical/layout/transistor level. Fig. 1.2

illustrates the different abstraction level used in VLSI/digital ICs design process.

The highest level in this hierarchy is the system level, where the design or

application is characterized based on input, output, and transfer functions. At

this level, key parameters such as functionality, size, speed, and power

requirements are also taken into account. The next level is the algorithmic or

behavioral level, where the design is represented in terms of its behavior. At

5

this stage, designers often use control data flow graphs (CDFG)/data flow

graphs (DFG) to depict the system's behavior. The input transfer/mathematical

function is converted into these graphical forms to serve as an intermediate

representation, enabling further transformation into subsequent design levels.

The algorithmic representation of the design is then converted into the register

transfer level (RTL) using HLS tool. RTL describes the interconnection

between different units such as arithmetic and logic unit (ALU), control unit,

storage hardware. This RTL design, referred to as "soft IP," is usually

available in the form of synthesizable code, such as schematic design files

(.bdf) or hardware description language files (.vhd/.vhdl). One significant

benefit of designing at higher abstraction levels is that integrating security

mechanism is less complex and ensures robust security across all subsequent

lower-level designs. The "soft IP" core provides a flexible foundation for chip

designers, allowing them to modify and optimize design parameters to meet

specific requirements. This flexibility is crucial for achieving a balance

between performance, power efficiency, and security, thereby making the

design process both efficient and adaptable to various technological needs.

The gate level, also known as the netlist level, represents the next stage of

design abstraction in the IP core design process. At this level, the RTL design

is converted into a gate-level design using logic or RTL synthesis. The gate

level defines the design in terms of the interconnections between various logic

cells and represents the output of the synthesis process at the logic level. The

resulting design, known as the gate-level netlist, is referred to as a "firm IP

core." Unlike the soft IP core, a firm IP core is dependent on specific

technology and is less flexible for modification. Both RTL and gate-level

Higher to

lower

abstraction

levels

Fig. 1.2 Different abstraction level used in

VLSI/digital ICs design process

System level

Algorithmic level

Register transfer level

Gate/Logic level

Physical/Layout level

6

netlist designs support further post-synthesis processes, such as placement,

routing, and deployment on reconfigurable platforms like FPGAs.

Following the gate level is the layout/physical/transistor level, which

represents an even lower level of abstraction. At this stage, the gate-level

design is transformed into a layout-level design through a process called

layout synthesis. The resulting design, known as a "hard IP core," is typically

presented in a fixed layout format, such as the graphic data system (GDS) or

layout editor format (LEF). Unlike soft IP cores, hard IP cores are not

modifiable by chip designers or system integrators. One significant drawback

of hard IP designs is their lack of portability; they cannot be used in different

foundries for which they were not originally designed. This limitation arises

because the layout design is specific to the foundry's process technology and

design rules, preventing its reuse across different manufacturing environments.

Given the greater flexibility and portability of soft IP cores, they are often

preferred over hard IP cores. Soft IP cores can be modified to suit specific

functional requirements and can be reused across various platforms and

foundries. However, this flexibility comes with a trade-off: soft IP cores are

more vulnerable to intellectual property (IP) protection risks because they can

be easily modified by system integrators. In contrast, hard IP cores, being

unmodifiable, are more secure against such risks. Therefore, IP cores are

generally designed and marketed in one of three forms: (a) soft IP cores, (b)

firm IP cores, or (c) hard IP cores, depending on the level of flexibility,

modifiability, and security required.

In addition to their classification based on abstraction levels, IP cores are also

categorized into two types based on their design sizes and computational

capabilities: micro-IPs and macro-IPs. Micro-IPs are smaller logic blocks,

such as individual logic gates, combinational circuits, and sequential circuits

(like registers and memory). In contrast, macro-IPs represent larger, more

complex logic designs and include components such as central processing

units (CPUs), digital signal processors (DSPs), and application-specific cores.

Examples of macro-IPs include cores designed for specific tasks like image

processing is joint photographer expert group (JPEG-CODEC), video

processing is moving picture expert group (MPEG), and digital filtering (finite

7

impulse response (FIR) and infinite impulse response (IIR) filters). These

macro-IPs are particularly useful for applications that require intensive

computations, such as audio processing, image compression and

decompression, digital data filtering, etc. The choice between micro-IPs and

macro-IPs largely depends on the specific requirements of the application,

including the level of computational complexity and the design size

constraints. Overall, the categorization and abstraction levels provide a

framework for selecting the appropriate IP core type, balancing flexibility,

security, performance, and application needs.

1.3. Introduction to HLS

In the IC design chain process/cycle, synthesis is a critical process that

involves transforming a design from one form to another to facilitate

verification and analysis. Given the increasing complexity, design cost, and

time constraints, it is vital for designers to start at a less complex and more

flexible level. The choice of synthesis level depends on the required

information for analysis and representation. Synthesis processes are generally

categorized into three levels: (a) high-level synthesis (HLS), (b) logic

synthesis, and (c) physical synthesis, corresponding from the highest to the

lowest level of abstraction. Among these, HLS offers the most flexibility and

the least complexity, making it a preferred starting point for many designers

[83], [87].

HLS converts a behavioral description of the design—typically a

mathematical equation representing the input-output relationship of a data-

intensive algorithm—into RTL design. This conversion involves several

phases: transformation, scheduling, binding, and the final datapath and

controller synthesis. The overview of HLS design flow is highlighted in Fig.

1.3. Transfer/mathematical function of input application, resource constraints,

and module library (containing details of area, power, latency corresponding

to used functional units, such as adders and multipliers) are the primary inputs

of HLS process. HLS begins with the transformation phase. In the

transformation phase, the mathematical or behavioral description of the design

is represented as a control data flow graph (CDFG). The CDFG is a structural

model that captures the input-output relationships and data flow of the design.

8

For example, a CDFG for a FIR digital filter is depicted in Fig. 4 (a), where

X[n], X[n-1], X[n-2], X[n-3] denote primary inputs, Z[0], Z[1], Z[2], Z[3]

denote input coefficients and ‘+’ and ‘*’ denote corresponding multiplications

and additions operations.

The scheduling phase, one of the most critical stages in HLS, transforms the

DFG into a scheduled version based on input resource constraints (number of

adders and multipliers) and scheduling algorithms. For instance, the

CDFG/DFG of an FIR filter (shown in Fig. 1.4 (a)) can be scheduled with

different resource constraints, such as one multiplier and one adder (shown in

Fig. 1.4 (b)) or two multipliers and one adder (shown in Fig. 1.4 (c)). The

scheduling algorithm used is LIST scheduling, which prioritizes operations

that do not depend on others for execution and schedules them to maximize

resource utilization (based on data dependency and input resource constraints).

Conflicts are resolved by giving priority to operations higher on the list.

Depending on the chosen resource constraints, the scheduled design may have

different execution times. For example, a design with one multiplier and one

adder may take more control steps (six CS, C0-C5) than one with two

multipliers and one adder, but it uses fewer resources. However, using more

resources can show lesser control steps (five CS, C0-C4), while resulting in a

larger design area. Therefore, it is crucial for designers to select resource

constraints that balance minimizing both design latency and area. This

selection process can also be automated through the design space exploration

(DSE) capabilities of the HLS framework.

Generation of DFG

corresponding to input

application

Scheduling of the

DFG using resource

constraints

Hardware (FUs)

allocation

Scheduled DFG

(SDFG)

Scheduling

Binding (Register

binding, FU binding,

Interconnect binding)

)

Binding

Allocation

Transformation

Datapath and controller synthesis

High-level synthesis process

Module library

Resources constraints

Input

application

Inputs

RTL datapath design

for input data-intensive application

Fig. 1.3 Overview of HLS design flow

9

The next phase, hardware allocation, involves assigning hardware resources

(such as adders and multipliers) to the operations and storage registers for the

design’s storage variables (used for storing input, intermediate and output

values). This allocation considers constraints such as design latency, design

area, and power consumption. More hardware resources reduce latency/delay

due to parallel execution but increase the design area. Conversely, minimal

hardware resources reduce area but may increase latency due to serial

execution. Subsequently, the binding phase follows, where specific operations

are assigned to particular instances of functional units, and storage variables

are mapped to registers. For example, in an FIR filter design, multipliers and

adders are allocated to specific operations, and storage variables are assigned

*

+

*

+

*

+

*

(a)

Fig. 1.4 (a). Control data flow graph (CDFG) of FIR filter, (b) Scheduled data flow graph

(SDFG) of FIR filter scheduled with one multiplier and one adder, and (c) Scheduled data

flow graph (SDFG) of FIR filter scheduled with two multipliers and one adder

,

1(+) and 1(*) 1(+) and 2(*)

Z[0]

1 2 3
4

5

6

7

Z[1] Z[2] Z[3]

X[n] X[n-1] X[n-2] X[n-3]

O[n]

O[n]

O[n]

M1 M2

A1 *

+

*

+

*

+ *

(c)

A1

A1

M2 M1

C0

C1

C2

C3

C4

S6

S1 S0

S9

S14

S12

S3
S2

S13

S4

S7

S5

S8

S11 S10

R
G Bl

Lb

Br

T S

Lg

X[n-1]

X[n-2]

X[n-3]

X[n]

Z[0]

Z[1]

Z[2]

Z[3]

M1

M1

A1

*

+

+

*

+

*

*

(b)

A1

A1 M1

M1

C0

C1

C2

C3

C4

C5

S6

S1

S0

S9

S14

S12

S3

S2

S13

S4

S7

S5
S8

S11 S10

R
G

Bl

Lb

Br

T

S

Lg

X[n-1]

X[n-2]

X[n-3]

X[n]

Z[0]

Z[1]

Z[2]

Z[3]

10

to specific registers, which are depicted using different colors. Figures 4 (b)

and (c) show scheduled data flow graph (SDFG) of FIR filter scheduled with

one multiplier and one adder and SDFG of FIR filter scheduled with two

multipliers and one adder, where S0 – S14 are the storage variables allocated to

eight different resisters (R-Lg).

After the scheduling, allocation, and binding phases, the datapath and

controller synthesis phase is performed. This phase constructs the RTL

datapath using the allocated functional units, registers, latches, and other

components such as multiplexers and demultiplexers, as determined during

binding. The controller is designed to generate control signals for different

units of the datapath based on the scheduled operations. Thus, HLS transforms

the behavioral description of a data-intensive application into an RTL design,

also known as a soft IP core. Once the RTL design is obtained, it can be

further transformed into a gate-level or netlist design through logic synthesis.

The gate-level design represents a more detailed and complex circuit than the

RTL design. Subsequently, this gate-level design is converted into a layout

design using physical synthesis, which is then sent to foundries for chip

fabrication. Designing an IP from a lower level of abstraction is generally not

preferred due to the higher complexity involved.

Security is another critical aspect of the synthesis process, particularly when

designing IP cores. Various security mechanisms, such as hardware

watermarking, steganographic constraints, and digital signatures, can be

integrated into the design during the HLS phase. These approaches embed

covert watermarking/security constraints into the design to detect unauthorized

use or piracy of IP cores, ensuring that only legitimate IP versions are

integrated into SoC systems. To further enhance security, the design can

undergo high-level transformations, a process known as structural obfuscation.

Structural obfuscation alters the design's structure without affecting its

functionality, making it difficult for adversaries to interpret the design’s

function or interconnectivity. Common high-level transformations include

loop unrolling, tree height transformation, and redundant operation elimination

[92]. These transformations prevent adversaries from reverse-engineering the

design by obscuring its functionality and architecture [20]. Implementing

11

security mechanisms at lower abstraction levels is challenging due to the

complexity and the unavailability of IPs at these levels, such as gate-level

netlists. In contrast, many DSP and multimedia applications are available in

their algorithmic descriptions and can be automatically synthesized into RTL

designs using commercial or non-commercial tools. This capability allows

designers to integrate security mechanisms with the computer-aided design

(CAD) tools of HLS to create secure IP versions for data-intensive

applications.

In summary, the synthesis process in IC design is an essential step that

involves converting designs from higher to lower levels of abstraction, starting

with HLS, which provides greater flexibility and ease of integration for

security mechanisms. By beginning at a higher abstraction level, designers can

manage complexity more effectively, optimize design parameters, and ensure

robust security, ultimately producing secure, efficient, and adaptable IP cores

for various applications.

Leveraging high-level synthesis for low-cost IP core design [32], [91]: HLS

plays a vital role in achieving low-cost IP core designs by allowing the

exploration of various resource constraints, which impact design latency and

area. Optimal resource selection during scheduling is crucial for designers and

integrating design space exploration (DSE) within HLS enables the

identification of cost-effective architectural solutions that meet area and

latency requirements. When secret hardware security constraints are

embedded, they can increase design cost, making the exploration of low-cost

resource options even more important. By incorporating security measures at

the HLS stage, security is inherently propagated to lower design levels,

ensuring protection across firm and hard IPs as synthesis progresses.

Examples and importance of DSP applications: Further, DSP co-processors

utilize various algorithms to perform specific tasks related to digital signal

processing. Commonly employed DSP algorithms include the Haar wavelet

transform (HWT), fast Fourier transform (FFT), discrete cosine transform

(DCT), discrete wavelet transform (DWT), inverse discrete cosine transform

(IDCT), and discrete Fourier transform (DFT). Each of these algorithms serves

distinct purposes in processing signals and images. The DCT is primarily used

12

to convert an image from its spatial domain to the frequency domain and

forms the core algorithm for image compression and decompression in JPEG-

CODEC co-processors. DFT and FFT, on the other hand, transform a discrete

signal from the time domain to the frequency domain, which is essential for

signal analysis in many applications. The HWT facilitates the transformation

of a signal's waveform from the time domain to the time-frequency domain,

making it effective for both lossy and lossless compression of signals and

images. DWT plays a crucial role in denoising real signals by decomposing

them into finer frequency and coarser time resolutions across different sub-

bands. DWT serves as the foundational algorithm for image compression in

JPEG2000 standards. Additionally, digital filters like FIR and IIR filters are

vital in modern electronics, finding applications in telecommunications,

speech processing, and attenuation removal for specific frequency bands. Fig.

1.1 highlights the application of several DSP applications in the real-world

scenario.

Next, machine learning IP cores are also integrated into DSP co-processors to

handle tasks related to AI and machine learning algorithms, such as pattern

recognition, classification, and predictive analytics. Meanwhile, multimedia

processors rely on multimedia algorithms, such as those used in the JPEG

compression-decompression and MPEG standards. The JPEG algorithm is

widely employed for image compression. It operates by first converting an

input image from the spatial domain to the frequency domain and then applies

quantization, which involves discarding less important frequency components,

resulting in a compressed image. This method is extensively used in fields like

medical imaging and digital photography, where storage efficiency and

transmission speed are crucial.

In summary, DSP co-processors leverage a variety of signal processing

algorithms and digital filters to manage tasks that range from image and signal

compression to machine learning, contributing to a broad spectrum of

applications in telecommunications, multimedia processing, and beyond.

Next, to generate an application-specific processor for data-intensive tasks, the

synthesis process begins with the algorithmic or behavioral description of the

application as input [12], [91]. This description can take various forms, such

13

as C/C++ code, a transfer function, or a mathematical equation representing

the input-output relationship. For instance, the algorithmic description of a

FIR filter can be expressed as a mathematical function [81]:

𝑂[𝑛] = ∑ 𝑍[𝑘] ∗ 𝑋[𝑛 − 𝑘]𝑁
𝑘=0 (1.1)

Where, N represents the order of the FIR filter. Further, the mathematical

equation based on the order of FIR filter, can be represented as follows:

𝑂[𝑛] = 𝑍[0] ∗ 𝑋[𝑛] + 𝑍[1] ∗ 𝑋[𝑛 − 1] + 𝑍[2] ∗ 𝑋[𝑛 − 2] + ⋯ + 𝑍[𝑁] ∗

𝑋[𝑛 − 𝑁] (1.2)

Where, X[n] to O[n] denote the current input and output, and X[n-1], X[n-2]

denote the previous input values and, 𝑍[0], 𝑍[1], … , 𝑍[𝑁] denote the FIR’s

input coefficients. This transfer function or mathematical equation is

converted into its corresponding CDFG.

1.4. Hardware Threats and Attacks in the ASIC/IP Core

Design Flow

As discussed above, the semiconductor design and manufacturing process is a

complex global network involving various offshore entities, such as third-

party intellectual property (3PIP) vendors, system integrators, and

foundry/fabrication houses. This network is designed to accelerate the design

process, reduce cost, and shorten the time to market. Within this framework,

IP cores are often provided by multiple IP vendors, based on specific design

requirements. These IPs are then supplied to a SoC integrator for integration

into an SoC design or sent directly to foundry houses for fabrication as

standalone integrated circuits (ICs). Once integrated at the SoC integrator, the

design is passed to the foundry houses for fabrication. This sequential,

unidirectional flow—from IP vendor to SoC integrator and then to foundry

house—illustrates the asymmetric nature of the business model. Multiple IP

vendors may provide different IP designs, and multiple foundries may handle

the fabrication, which introduces various vulnerabilities to hardware security

threats within the IC design supply chain process [15]-[26], [27]-[36], [53],

[54].

14

The involvement of multiple entities across different stages of the

semiconductor supply chain exposes it to significant risks, including the

infiltration of counterfeit components. Historical cases underscore the severity

of these vulnerabilities. For instance, in 2007 and 2008, the United States

Customs and Border Protection (CBP), in collaboration with European Union

Customs, conducted joint operations to enforce intellectual property rights.

These operations resulted in the seizure of hundreds of thousands of

counterfeit ICs and computer network components. However, these seizures

likely represented only a fraction of the counterfeit products that entered the

market during that period.

In 2010, a notable incident involved VisionTech, a company whose owner and

administrative manager were charged with trafficking counterfeit

semiconductors. They were responsible for importing thousands of shipments

of counterfeit components into the United States, primarily targeting the U.S.

Navy and defense contractors. This conspiracy, which spanned nearly five

years, highlighted the potential for rogue brokers to severely compromise

national security and jeopardize countless lives. VisionTech’s actions were

estimated to have caused substantial damage to 21 semiconductor companies

by supplying counterfeit components, demonstrating the far-reaching impacts

of counterfeit products within the supply chain.

The financial implications of counterfeit components are staggering. In 2012,

a report by the market research firm iHS iSuppli estimated that counterfeit

products/elements resulted in multibillion-dollar losses to the global

electronics supply chain. In 2016, the European Union (EU) and Dutch

customs conducted an operation targeting semiconductor imports from Hong

Kong and China, seizing over one million counterfeit devices in just a few

weeks. The 2018 report by the world semiconductor council (WSC) further

emphasized the critical nature of the issue, noting that counterfeit components

significantly undermine both security and economic stability. Pirated parts not

only compromise the reliability of customer applications but also cost

semiconductor companies billions of dollars annually in efforts to ensure the

authenticity and reliability of their products. Despite the efforts to combat

counterfeiting, accurately assessing the full impact of counterfeit

15

semiconductors remains challenging. Nonetheless, the available data and

reports make it clear that counterfeit components pose a serious threat to the

integrity of the global IC supply chain. This raises profound concerns about

the trustworthiness of the supply chain, as the presence of counterfeit

components can lead to severe financial losses, security vulnerabilities, and

risks to human safety. The complexity of the semiconductor supply chain,

combined with the involvement of multiple global entities, underscores the

urgent need for enhanced security measures and stricter enforcement of

intellectual property rights to protect against the proliferation of counterfeit

components [20], [89], [90]. Fig. 1.5 shows the different hardware threats and

attacks in the hardware IC design flow process [20].

The red/pink-colored component depicted in Fig. 1.5 belongs to the

untrustworthy sector of the hardware design supply chain process from an SoC

integrators perspective, and orange colored component belongs to

untrustworthy sector from an IP vendor’s perspective. Moreover, the green-

colored components signify the trusted sector. The input consists of system

specifications, which are the behavioral descriptions of the intended hardware

design, as illustrated in Fig. 1.5 These specifications are then progressed

Input hardware/system specification

Layout to integrated circuit fabrication

Design integration in HLS framework

 Transfer function/DFG

of application

RTL synthesis

Netlist level

attack

IC level

attack

Gate level synthesis

Layout/physical level synthesis

System-on chip (SoC) design house

Fetching multiple 3rd party IP cores

RTL

datapath

IC manufacturing unit

Trusted

Untrusted

from SoC

integrator

perspective

Design netlist

Library Untrusted

from IP

vendor

perspective

GDS II File

Final consumer electronics and multimedia

product

IP piracy and

false claim of

IP ownership

RE

False claim of

ownership

Hardware

Trojan

insertion

Overproduction

Fig. 1.5 Different hardware threats and attacks in the hardware IC design flow process

Hardware design chain process

16

through the hardware design process. This process entails acquiring various

intellectual property cores or designs from multiple third-party IP vendors,

followed by the integration of these imported cores into a single chip carried

out by System-on-Chip (SoC) integrator. The necessity for involving multiple

third-party entities was discussed earlier. After integration, a corresponding

register transfer level (RTL) file is generated, which subsequently undergoes

synthesis to transform it into a gate-level design file, also known as a netlist

file. This netlist file is subsequently transmitted to fabrication and

manufacturing facilities. As depicted in Fig 1.5, hardware attacks are

categorized into three main types: (a) IP piracy and false claim of IP

ownership can be potentially performed illegally by an adversary in the SoC

integrator house, (b) netlist level attacks that can be potentially performed by

an adversary in the foundry (fabrication house), and (c) backdoor hardware

Trojan insertion through 3
rd

 party IP (3PIP) cores, (d) Integrated Circuit (IC)

level attacks that can be potentially performed by an adversary in the foundry

or open market. If an adversary gains access to the design netlist file, they

could potentially execute attacks such as reverse engineering, and the insertion

of hardware Trojan into the design file. Additionally, throughout the

fabrication process and post-fabrication stage, an adversary situated within the

fabrication facility might initiate attacks such as overproduction (exceeding

the licensed IP limit) and false IC ownership claim. The dashed lines within

Fig 5 delineates the various types associated with potential locations of attacks

within the design supply chain process. Conversely, the solid lines, depicted in

black color, represents the comprehensive hardware design flow from

specification to IC manufacturing.

The different types of possible attacks are as follows: (a) IP piracy

(counterfeiting and cloning), (b) reverse engineering (RE), (c) hardware

Trojan insertion (insertion of malicious logic), (d) fraudulent claim of IP

ownership, and (e) overproduction (producing more than the licensing limit).

Counterfeited and cloned IPs may contain malicious logic, which can cause

severe problems to both end consumers and IP vendors. Moreover, these

counterfeited IPs may not be rigorously tested as the genuine ones and may

cause various erroneous behavior such as (i) leakage of sensitive information,

17

(ii) improper functional output, (c) excessive heat dissipation, and (d) loss of

esteem for IP vendor and SoC integrator. Further, an adversary can covertly

insert malicious logic (hardware Trojan) into the design by carefully

inspecting the design through reverse engineering the netlist file. These Trojan

remain dormant until triggered, thus escaping the standard detection process.

Additionally, IPs/integrated circuits (ICs) can be fraudulently claimed or

overproduced over the original licensing limit. Therefore, securing these IP

cores against such hardware threats is essential to protect IP vendors. Further,

the details on IP piracy, false claim of IP ownership and hardware Trojan

attack is discussed below.

1.4.1. IP piracy: counterfeiting and tampering

The elaborate process of design and distribution of hardware IPs is highly

vulnerable to a multitude of security risks, largely due to the intricate network

of multiple third-party entities and units participating in the global design

supply chain process. One significant area of concern revolves around the

piracy of hardware IP design once they are transferred from an IP seller to a

buyer (typically a SoC integrator). The risk arises when a malicious actor

within the SoC integrator's organization endeavors to illicitly/unlawfully

replicate/pirate the original design, subsequently marketing it either under the

same or a different brand name. This not only complicates the authentication

of genuine products but also leads to financial losses for the original IP seller.

Furthermore, within a rogue foundry, an attacker might unlawfully pirate the

IP without the designer's knowledge or consent. From the opposite

perspective, it is also crucial for the SoC integrator to isolate

pirated/counterfeited hardware IP designs before integration into the final

product to uphold the safety and reliability standards for end-users. A SoC

integrator can acquire IP cores either directly from an IP vendor or through a

broker who acts as an intermediary between the IP designer and the SoC

integrator. However, in some cases, rogue IP suppliers, motivated by national

interests or the desire for illicit profit, may introduce counterfeit or pirated

components into the design supply chain. These fake components,

masquerading as genuine, can negatively impact both the consumer electronics

(CE) system integrators and the end users. Ensuring security against IP piracy

18

is critical for several reasons: first, counterfeit designs are often not subjected

to the rigorous testing necessary to guarantee reliability and safety. Second,

these counterfeit IPs may contain hidden malicious logic, such as hardware

Trojans, which compromise the security and functionality of the devices.

When such infected IPs or ICs are integrated into CE systems, they become

unreliable and pose significant safety risks to consumers.

Moreover, the issue of IP counterfeiting becomes evident when individuals

within a rogue foundry, in collaboration with new or secondary IP sellers,

engage in the unauthorized replication or imitation of the original IP design.

This illicit activity not only undermines the IP rights of the original IP seller

but also poses grave risks to consumers. The compromised quality and

performance of counterfeit products, often stemming from the use of inferior

materials or outdated technology, have a detrimental impact on the overall

functionality and reliability of the systems in which they are incorporated.

Moreover, the proliferation of counterfeit components tarnishes the reputation

of authentic IP sellers, casting doubt on the integrity of their products and

services. This erosion of trust can have far-reaching consequences, particularly

in critical sectors such as military systems, aviation, automotive industries,

and beyond. These vital applications rely heavily on the authenticity and

quality of the components they integrate, making them especially vulnerable

to the repercussions of IP counterfeiting. Furthermore, the ease with which

intentional hardware Trojans or malicious logic can be incorporated into

counterfeit/pirated IPs exacerbates the security risks inherent in the integrated

design supply chain system. This presents a significant challenge for ensuring

the integrity and safety of the products and systems reliant on these

components [20], [21], [31]-[41].

1.4.2. False claim of IP ownership

In the IC supply chain, an adversary/deceitful IP buyer, possibly within the

SoC integrator and foundry houses, may fraudulently claim ownership of an

IP, causing substantial financial loss to the original IP owner/seller. This false

claim of ownership is a growing security concern. Traditional IP protection

methods like trademarks, industrial design rights, patents, and copyright, are

not effective for reusable IP designs. Therefore, safeguarding the ownership

19

rights of the actual IP owner is crucial. To address this, embedding a

designer’s signature (watermark) covertly within the IP core during its design

process can be an effective strategy. This hidden signature serves as proof of

ownership, enabling the original IP vendor to verify their rights and counteract

fraudulent ownership claim by the adversary [20], [21], [40], [41].

Hardware watermarking serves as an essential tool to secure the hardware

design from hardware security threats. The importance of hardware

watermarking in the field of hardware IP core protection includes (a)

protection from IP piracy: hardware watermarking serves as a detective

countermeasure against IP piracy and false IP ownership assertion. By

embedding a unique watermark, the original seller/vendor/designer can assert

their ownership and identify any instances of piracy, (b) enhancing design

integrity: embedding a watermark within a hardware design also ensures the

integrity of the design by making it difficult for malicious actors to alter the

hardware without affecting the watermark. Any tampering with the watermark

would indicate a potential breach or unauthorized modification, (c) enabling

traceability and accountability: watermarked hardware can be traced back to

the original designer or manufacturer, which is essential for accountability in

the global supply chain. This traceability helps in maintaining a transparent

and secure supply chain, reducing the risk of counterfeit components being

introduced, and (d) fostering trust in the market: the use of hardware

watermarking enhances trust among stakeholders, including manufacturers,

designers, and end-users. When the authenticity and ownership of hardware

can be reliably verified, it fosters a trustworthy market environment where

high-quality and original designs are valued.

1.4.3. Hardware trojan attack

Hardware Trojans can be embedded by malicious actors at any stage of the

chip design process, posing significant threats to the functionality and

reliability of electronic systems. Research has demonstrated that functional

hardware Trojans can lead to incorrect outputs, compromising the safety and

dependability of the end product. When these Trojans are covertly inserted

into real-time hardware systems of custom computing devices, they can cause

unpredictable and unreliable behavior. From an attacker’s perspective, the

20

motivations behind Trojan attacks are varied and may include a) damaging a

company’s reputation and market standing to gain a competitive advantage,

and b) causing the malfunction of electronics used in critical infrastructure,

which could disrupt safety and mission-critical applications. Therefore, it is

the responsibility of system integrator to develop a Trojan free or resistant

hardware design, as the third-party IP vendors supplying IPs for integration

may contain functional hardware trojans in them. These Trojans can remain

dormant and activate only under specific conditions, detecting and isolating

them during the testing phase of the DSP hardware IP core is extremely

challenging, complicating the defense against such attacks [25], [53], [57].

1.5. Structure of the Thesis

The chapters of this thesis are structured as follows: Chapter 2 reviews the

state-of-the-art techniques relevant to the proposed research. Chapter 3

presents the proposed exploration of low-cost hardware IPs during HLS using

multiphase encryption and crypto-chain signature framework. Chapter 4

introduces an enhanced security framework for hardware IPs using IP seller’s

protein molecular biometrics and facial biometric-based encryption key.

Chapter 5 describes the proposed method for securing hardware IPs by

exploiting statistical watermarking using encrypted dispersion matrix and

eigen decomposition framework. Chapter 6 discusses the proposed security

framework for securing GLRT cascade hardware IP using IP seller’s

fingerprint and CIG framework for ECG detector. Chapter 7 outlines a novel

security methodology by exploiting voice biometric-based watermarking

framework for securing hardware IP cores. Chapter 8 proposes an HLS-based

exploration of low-cost (optimal) functional trojan-resistant hardware IP

designs. Chapter 9 presents the experimental results of the proposed

techniques and compares them with existing state-of-the-art methods. Finally,

Chapter 10 concludes the thesis and outlines potential directions for future

research.

21

Chapter 2

Literature Survey: State-of-the-Art

Over the past few years, various hardware security techniques have been

developed to address threats to IP cores during the IC design process. This

chapter reviews these state-of-the-art techniques and identifies their

limitations, forming the foundation for the proposed hardware security

methods tailored for hardware IPs in this thesis. The first section covers the

state-of-the-arts in countering IP piracy and false IP core ownership claim, as

well as hardware Trojan detection methods. The second section outlines the

objectives of the thesis, followed by a discussion of the key contributions

made in this thesis in section three.

2.1. State-of-the-Art on Hardware IP Attacks

As discussed in the previous chapter, the incorporation of pirated IP versions

into system in the hardware SoC designs can result in several significant

consequences: (i) it can pose safety risks to end consumers, (ii) the system

may malfunction (unreliable functioning) due to hidden malicious logic, such

as hardware Trojans, within the IP. These compromised IPs or ICs are

unreliable and unsafe when used in consumer electronics, (iii) they may create

security vulnerabilities, particularly in critical applications like military

systems , medical diagnostics, aerospace, etc., (iv) they can lead to financial

losses for the original IP vendors/designers and tarnishes the reputation of the

original IP vendor. Thus, detecting and isolating pirated/counterfeited IP

versions is essential to maintaining system integrity and safety. Section 1.4.1

of Chapter 1 discusses the threat of IP piracy/counterfeiting in detail.

Additionally, protecting the rights of original IP vendors against false

ownership claims is equally important. Section 1.4.2 of Chapter 1 discusses

the threat of false IP ownership claim in detail. Moreover, the presence of

hardware Trojans in IP designs is regarded as a significant threat, as they can

lead to various security issues. Among these, the most alarming is the risk of

incorrect functional computation. Section 1.4.3 of Chapter 1 discusses the

threat of hardware Trojan in detail. In the literature, various detective control

22

mechanisms are explored to combat the challenges of IP piracy and resolve

disputes over false IP ownership claims, emphasizing the need for robust

security measures to safeguard intellectual property rights. Additionally,

various hardware Trojan detective mechanism have been explored in the

literature.

Detective control mechanism against IP piracy and false IP ownership

claim: To prevent the integration of pirated IP versions into multimedia,

electronics and computing systems, various security techniques have been

developed in the past. The techniques for hardware security against IP piracy

and false IP ownership claim include hardware watermarking [31] - [35], [36],

[42], [93] steganography [37], encryption based security approaches [38],

[39], [43], and biometrics-based security techniques [40], [41], [44]. Apart

from security, there also exists some works on generating low-cost hardware

designs, such as [32], [45], [46] - [49].

As discussed in the introduction section, one common approach at this level is

hardware watermarking, which embeds a unique identifier into the design to

secure IP designs. Koushanfar et al. [31] discusses a dynamic watermarking

methodology for DSP IP cores using a binary variable (0/1) encoding process.

This is achieved by adding watermarking constraints (additional edges) into a

color interval graph (CIG) of the hardware design, which represent the IP

vendor's watermark. Initially, the author's signature data is processed through

the MD5 cryptographic hash function. This hash is then encrypted using the

designer's RSA public key. The resulting cipher is inputted into the RC4

stream cipher, which creates a pseudorandom keystream. This keystream is

combined with the original signature data using a bitwise ex-or operation to

generate the ciphertext signature data. Lastly, this ciphertext is embedded as

additional watermark constraints in the design. Post-generation of

watermarking constraints, they are embedded during the register allocation

phase of HLS process using CIG framework. The embedded

watermarking/security constraints provides detective countermeasure against

IP piracy and false IP ownership claim.

Next, Sengupta and Bhadauria [32] proposed hardware watermarking

approach with a quadruple variable encoding mechanism by exploiting the

23

register allocation phase of HLS process. This approach uses multi-variable

(quadruple variable) signature encoding, which enhances robustness by

employing a complex encoding process with four watermarking variables,

resulting in multiple constraints for embedding into the design. To optimize

the process, Particle Swarm Optimization (PSO) is used to balance latency and

area overhead, achieving a cost-effective solution. The embedded security

constraints enable the detection of piracy and resolution of false IOP

ownership claim in case of an ownership conflict, providing a reliable means

of safeguarding IP. Another notable approach by Hong and Potkonjak [33]

involves using a watermarking technique where the vendor’s signature or

covert mark is encoded as a set of design and timing constraints and embedded

into the IP core during behavioral synthesis. Detection of pirated IPs is

facilitated by identifying the presence of the vendor's watermark, thereby

ensuring that only authorized versions of the IP are used.

Next, Gal and Bossuet [34] developed a watermarking technique based on

mathematical relations between input/output data and initial internal values at

certain timing values. This watermark not only protects the IP owner's rights

but also ensures that the design meets user constraints related to latency and

area. To minimize overhead in terms of area, delay, power consumption, and

design time, the watermark is integrated automatically during the behavioral

synthesis phase using the HLS tool. This method leverages "temporally free"

output slots to embed watermarking constraints. The watermark in [34]

comprises of mathematical relationships among the IP’s input data, initial

internal values, and output data, referred to as sub-marks. These sub-marks are

indistinguishable from normal output data, making the watermark invisible to

IP buyers, integrators, and users, and undetectable during static analysis. Two

watermarking algorithms are proposed in [34]: (i) a low-cost watermark and

(ii) a costless watermark. The low-cost version randomly selects internal

computation values and transfers them to free output slots, while the costless

version further reduces the set of internal values. The technique is effective for

applications like digital signal, image, and video processing but is unsuitable

for data security applications due to potential security breaches from exposed

internal data. This method allows the integration of security features without

24

significantly impacting the performance of the design. Subsequently,

Karmakar and Chattopadhyay [35] explored IP protection through a

combination of watermarking and logic encryption. They examined

vulnerabilities in existing logic encryption techniques and proposed the use of

cellular automata to watermark finite state machine designs. This approach not

only enhances the security of the IP but also adds a layer of protection against

unauthorized modifications and use.

A three-phase watermarking-based security technique is proposed by Sengupta

et al. [36] for securing IP designs. [36] involves multi-variable signature

encoding, using seven variables to generate and embed the watermark into

three different phases of HLS process, to secure the design against IP piracy

and illegal IP ownership claim. The vendor's signature is embedded during

three separate phases of the HLS process: the scheduling phase, the hardware

allocation phase, and the register allocation phase. Initially, operations are

sorted in ascending order within each control step (CS). During the first phase,

non-critical operations (starting from CS-1) are shifted to the next CS for each

occurrence of signature bit γ, ensuring data dependency and hardware

constraints are maintained. This generates a modified timing table for non-

critical operations. In the second phase, functional units (FUs) are reallocated

based on the encoding rules α and β, creating an updated hardware allocation

table. Storage variables in the SDFG are then allocated. A register allocation

table (RAT) is then generated from the SDFG. Watermarking constraints,

determined by the IP seller’s selected encoding digits i, I, T, and !, are

embedded into the RAT/CIG. Finally, the RAT of the triple-phase

watermarked hardware IP core is generated using HLS. This phased approach

ensures that the watermark is deeply integrated and uniformly distributed into

the design, making it difficult to remove or alter.

Next, Roy and Sengupta [93] developed a multi-level watermarking technique,

specifically designed to secure DSP IP cores against piracy. This approach

involves embedding hardware security constraints that correspond to the

vendor's signature at multiple design abstraction levels, including high-level

and register transfer level. The process begins by accepting the CDFG of the

DSP application and performing key tasks such as scheduling based on

25

resource constraints, allocation, and resource binding. Afterward, the RTL

design is obtained using an HLS framework, which includes components like

multiplexers, demultiplexers, and registers. The vendor's signature is then

decoded to generate watermarking constraints, which are embedded by

adjusting the hierarchy of multiplexers and demultiplexers and encoding

register sharing. The resulting multilevel watermarking-based RTL design

provides a comprehensive and robust solution for securing IP cores against

piracy and false IP ownership claim.

Next, Chen and Schafer in [42] have discussed a practical watermarking

method for commercial HLS tools. The approach exploits pragma directives

for embedding watermark signature in the functional unit allocation phase of

HLS process. The process begins by taking the initial behavioral description to

be watermarked and transforming it to highlight all operations requiring a

functional unit (FU). Next, the expanded behavioral description is synthesized

to determine the scheduling of operations across clock cycles. This yields a

scheduling report and an FU constraint file from the HLS process. The core

watermarking step involves creating a distinct FU binding solution, ensuring

the resulting RTL code is unique. Since the watermark relies on FU binding, it

remains undetectable. Inputs for this step include the expanded C code, HLS

scheduling report, FU constraint file, and the watermark key. The output is a

modified C code with pragmas linking operations to specific FUs. The

objective is to follow the sequence defined by the watermark key and balance

FU usage to minimize multiplexer area. Finally, the uniquely watermarked C

code is synthesized to produce the watermarked RTL code with a distinct FU

binding pattern. The primary weakness of this approach is its limited security

strength due to lesser watermark strength.

Further, Sengupta and Rathor [37] introduced a hardware steganography-

based technique aimed at detecting pirated DSP IP versions before their

integration into electronics and computing systems. [37] generates stego-

constraints based on design data, secret stego-keys, thresholding parameter,

and mapping rules. Further, it embeds these generated stego-constraints in the

form of secret information into target hardware. The complex process of

stego-constraints generation using secret stego key that renders the

26

steganography approach stronger than watermarking. This method embeds

covert stego-marks directly into the hardware IP design without relying on any

external signature. The amount of covert digital evidence (stego-constraints)

embedded is controlled by a thresholding parameter set by the designer. The

process begins with accepting the CDFG of the hardware application, which is

then transformed into a scheduled data flow graph (SDFG). Next, the

corresponding CIG is constructed, and stego-constraints (artificial edges) are

determined for insertion into the CIG. Swapping pairs are identified for each

stego-constraint, and the maximum entropy is calculated. A subset of stego-

constraints are selected based on a threshold value chosen by the designer,

and added to the CIG, resulting in a secured design with embedded stego-

constraints. Next, Yu and Zhu [38] presented a hardware description language

(HDL) design-level IP watermarking approach using SHA1 and RSA. In [38],

a specialized watermark module is introduced into the original HDL code,

replacing a specific set of stable register data. This watermark remains intact

through the synthesis, placement, and routing stages, providing resistance

against forgery and removal attack also.

Moreover, Sengupta et al. [39] proposed a digital signature-based approach for

providing detective countermeasure against piracy and false IP ownership

claim, utilizing encrypted-hash techniques to secure reusable IP cores. Authors

in [39] employed the RSA cryptosystem and SHA-512 hash computations to

generate security constraints. The process begins by taking the CDFG of the

hardware application and IP vendor-specified resource constraints as inputs.

Based on this, the input CDFG undergoes scheduling, and the resulting SDFG

is input into a phase-1 encoding process, which generates a bitstream using

specific encoding rules. This bitstream is then processed through the SHA-512

hashing algorithm, resulting in a bitstream digest of the DSP application. The

generation of this digest involves various computations, including circular

right shifts, left shifts, and modulo additions on 64-bit arguments. In the

subsequent post-processing phase, the generated bitstream is divided into

equal-sized blocks and converted into their equivalent decimal values. These

decimal values are then encrypted using the IP owner's private key through

RSA encryption, enhancing the security of the embedded digital signature.

27

The encrypted data is converted back into a binary bitstream during further

post-processing steps. This encrypted bitstream is then used as input for the

phase-2 encoding process, which generates covert security constraints that

correspond to the digital signature's strength—a parameter chosen by the IP

designer, balancing security needs with design cost considerations. Finally,

these covert security constraints are embedded during the register allocation

phase of the HLS process, resulting in a secured reusable hardware IP core

with an embedded digital signature. Next, Castillo et al. [43] presented an

encryption-based hardware watermarking approach using MD5 and SHA-

crypto algorithm. This method involves embedding the bits of a digital

signature directly at the HDL design level, utilizing resources already present

within the original system. It also incorporates a secure signature extraction

process that necessitates only minor adjustments to the existing system.

Further, the biometric-based hardware watermarking techniques are the most

recent one, which includes the use of IP vendor’s/seller’s biometric traits, to

generate and embed a robust watermark. Hardware watermarking [31], [32],

[33], [34], [35], [36], [38], [39], [42], [43], [93] methodologies involve

embedding a seller's signature into hardware IP design. Adversaries might be

able to forge and replicate the watermark to evade detection or make false

ownership claim. Further, regular watermarking and steganography techniques

are not capable of producing large-size signature strength, which in turn leads

to a lack of sufficient uniform distribution of the watermark constraints during

embedding. Weak distribution is prone to removal by an attacker, thereby

compromising security. Therefore, using the IP seller's biometric traits for

sophisticated watermarking ensures a unique and tamper-resistant watermark

signature of large strength, facilitating seamless detection of piracy and

verification of genuine ownership. Biometric-based watermarking offers

several advantages over traditional methods, including uniqueness, robustness,

and stronger security. Authors in [41], [44], and [41] have exploited IP seller’s

facial, palmprint, and fingerprint biometric information, respectively to

generate a robust watermark. Initially, a high-resolution image of the IP

seller’s facial and palmprint biometric is captured using digital cameras.

Similarly, a fingerprint biometric scanner is used to capture the image of an IP

28

seller’s fingerprint. Subsequently, the captured biometric image is subjected to

the IP seller’s specified grid size and spacing to extract the precise feature

nodal and minutiae points. Additionally, the fingerprint image is subjected to

various preprocessing steps such as FFT enhancement, binarization, and

thinning to improve the quality of the image, which facilitates a smooth

extraction of minutiae feature points. Post-generation of nodal points, the

corresponding features are generated on the facial and palmprint biometric

image. Similarly, the minutiae points (comprising of bifurcation and ridge

ending points) are generated on the fingerprint image. The coordinates

corresponding to each nodal and minutiae point are extracted for feature

dimension computation Similarly, the parameters corresponding to fingerprint

minutiae feature points, such as x-coordinate, y-coordinate, ridge angle, and

minutes type (i.e., ridge ending and bifurcation), are extracted. Post feature

dimension computation, all decimal values are converted into their binary

equivalents, which are further concatenated as per IP seller’s concatenation

fashion to generate the final corresponding facial, palmprint, and fingerprint

biometric watermark signatures. The generated individual biometric

watermark signature is converted into watermarking constraints using

mapping/embedding rules. Finally, the determined watermarking constraints

are implanted into the hardware design as the IP seller’s digital evidence

during the register allocation phase of the HLS process. The implanted digital

evidence provides a detective countermeasure against IP piracy and an

instance of false assertion of IP ownership. Overall, by embedding security

measures directly into the design process, these aforementioned techniques

provide security/detective countermeasure against IP piracy and false IP

ownership claim. Each approach offers a unique way to integrate security into

different phases of the IC design process.

In addition to security-focused designs, several studies [32], [45], [46], [47],

[48], [49] have explored methods for generating low-cost hardware designs

through design space exploration (DSE). These works often emphasize

optimizing factors such as power performance, power-delay tradeoffs, and

multi-objective optimization to develop cost-effective solutions. For instance,

the study in [45] used HLS methodologies aimed at creating low-power

29

designs on FPGAs, concentrating on throughput constraints without

addressing area-delay tradeoffs for secure designs. Other research, such as

[46], applied machine learning techniques for DSE but did not focus on

generating secure, low-cost architectures for image processing cores. Tools

like Autopilot for HLS [47] and approaches such as simulated annealing [48]

have also been utilized to explore power-performance tradeoffs, though these

methods often overlook tradeoffs involving design area, latency, and security.

Additionally, the bacterial foraging-driven DSE approach discussed in [49]

targets the creation of low-cost designs for fault-tolerant hardware systems,

further highlighting the diverse approaches to achieving efficient hardware

designs.

Detective control mechanism against hardware Trojans: Further, over the

years, various methods have been developed to detect hardware Trojans in

ICs, with some approaches focusing on Trojan detection without necessarily

making the designs resistant to such threats. For example, research by

Sengupta and Mohanty [45] explored low-cost scheduling strategies during

HLS to develop DSP IP cores that can detect Trojans but cannot prevent them.

Another approach by Sengupta et al., [46] used property checking techniques,

where specific properties of the IP are verified to ensure they meet expected

behaviors. If discrepancies are found, they may indicate the presence of a

Trojan.

Next, code-coverage analysis, as proposed by Hu [47], is another technique

used for hardware Trojan detection. This method identifies suspicious signals

in the RTL design by analyzing which signals remain stable during coverage

testing. Since Trojans typically activate only under specific conditions, these

stable signals are flagged as potential indicators of malicious hardware.

Additional test vectors can then be applied to further investigate uncovered

parts of the design. However, this approach can be time-consuming and may

not definitively distinguish all Trojans from other anomalies. To refine this

method, Bushnell and Agrawal [48] employed equivalence analysis, which

helps reduce the number of flagged suspicious signals, although it introduces

runtime overhead and may still misclassify some non-Trojan signals (as not all

suspicious signals are Trojans).

30

Some researchers have developed system-level Trojan detection techniques,

such as those presented by Tehranipoor and Koushanfar [49], while others

have explored lower-level detection methods [50], [51]. A notable technique

proposed by Wang et al., [52] involves using multiple supply transient current

integration to detect Trojans by monitoring abnormal current variations in the

IC. Once detected, Trojans are isolated from the system through a defined

isolation process. Another strategy, concurrent error detection (CED), was

utilized by Rajendran et al., [53], although it relied on multiple sets of third-

party IP (3PIP) vendors for identifying Trojans, which complicates

implementation and still does not render the system Trojan-resistant.

Despite the advances in Trojan detection, most of these methods only focus on

identifying the presence of Trojans without enhancing the resistance of the

hardware against such attacks. To further improve hardware security,

researchers have explored various other mechanisms, including the use of

approximate circuits to reduce the risk of Trojan insertion [54], obfuscating

triple modular redundancy (TMR) techniques [55], and neutralizing Trojans in

Supervisory Control and Data Acquisition (SCADA) systems [56]. In [54], a

gate-level approximation circuit scheme was proposed, demonstrating its

effectiveness on ISCAS C-series benchmark circuits by reducing the

likelihood of Trojan insertion. The obfuscated TMR approach discussed in

[55] was also applied to C-series benchmark circuits, enhancing Trojan

detection coverage by camouflaging low-observable signals. The work in [56]

focused on securing SCADA systems commonly used in industrial control

applications, employing TMR on select pathways to neutralize potential

hardware Trojans. Additionally, [57] explored functional camouflage to design

adversarial hardware that covertly inserts Trojans in low-centrality locations

within the circuit, making them harder to detect. Moreover, [58] utilized

equivalence checking based on finite state machines with datapath (FSMD) to

identify Trojans that cause functional changes in the hardware.

Machine learning (ML) has also been leveraged for real-time hardware Trojan

detection, as highlighted by Kulkarni et al., [59], which presents an ML-based

methodology that improves the accuracy of Trojan detection in many-core

designs. Further, Kulkarni et al., [60] introduced a discrepancy analysis (DA)

31

based security approach that automatically detects hardware bugs, while

Abderehman et al., [61] proposed a C/C++ to RTL equivalence checking

framework specifically for HLS verification. Moreover, Fern and Cheng [62]

utilized a simulation-based assertion set completeness analysis to uncover

hardware Trojans and address verification blind spots. A reconfigurable

assertion checker-based security framework was also suggested by Alsaiari

and Gebali [63] for detecting hardware Trojans within SoC designs. Overall,

while numerous Trojan detection techniques have been developed, many still

focus primarily on detection rather than prevention or resistance. There

remains a need for more robust, integrated solutions that can secure hardware

IP cores against both the insertion and activation of Trojans, ensuring

comprehensive protection throughout the design and manufacturing processes.

Limitations: In hardware watermarking techniques [31], [32], [33], [34], [35],

[36], [42], [93], the generated signatures rely on factors like the number of

variables, their combinations, watermark signature length, and encoding rules.

This dependency on intermediate factors makes watermarking susceptible to

attacks, as these elements can be easily compromised. On the other hand,

hardware steganography [37] offers a signature-free method to protect

hardware IP cores, providing stronger security with lower design overhead

compared to watermarking. However, steganography also has its

vulnerabilities; an adversary could potentially exploit stego-keys, encoding

methods, and threshold entropy value, undermining the security of the system.

The primary weakness of the above methods [31]-[38] lies in their limited

security variables, such as private keys, encoding algorithms, and signature

combinations. These factors can be targeted by adversaries to replicate or

regenerate signatures, compromising the security of hardware IP cores against

piracy. Additionally, these methods do not focus on creating cost-effective

(low-cost), secure RTL IP datapath architecture. Apart from all of the above

limitations, these watermarking approaches leads to generation of limited

watermarking (security) constraints, which in turn decreases the robustness of

the security methodology.

Next, the digital signature based approaches [38], [39], [43] involves

generating digital signatures (watermark) through encryption algorithms, such

32

as MD5, SHA, SHA-512, and RSA cryptosystem, and encodings. While these

approaches use intricate calculations/computations to prevent

watermark/signature replication, their reliance on standard encryption

algorithms still make them vulnerable to key-based attacks. In case of a

leaked/forged encryption key, the overall security can be compromised. The

attacker can easily regenerate the exact watermarking constraints with the help

of compromised encryption key and encoding rules. These approaches have

also a primary limitation of limited watermarking constraints generation, apart

from generation of a low-cost secure RTL design. Additionally, the hardware

watermarking and digital signature/encryption based security approaches do

not integrate/embed any unique natural identity of original IP seller with the

hardware design.

The biometric-based approach [40] for generating accurate fingerprint

signatures involves an image enhancement phase using FFT, which adds

complexity and also requires an optical scanner to capture the IP vendor’s

fingerprint. This method is also susceptible to inaccuracies due to injuries or

external factors that can affect the accurate fingerprint generation.

Alternatively, facial [41] and palmprint [44] biometric approaches use

naturally unique IP vendor’s facial and palmprint features to generate

signatures. While these methods embed the IP vendor’s natural identity into

the design, they still fall short in providing robust security because they

generate fewer watermarking constraints. Consequently, despite leveraging

unique biometric features, these approaches do not fully ensure the protection

of hardware IP cores, leaving room for potential security breaches. A more

resilient strategy that combines enhanced security measures with biometric

uniqueness is needed to overcome these limitations and offer comprehensive

protection against piracy and unauthorized use.

In summary, more comprehensive and resilient approaches are needed to

safeguard hardware IPs effectively from unauthorized replication and

exploitation. Security approaches that have capability to generate massive

watermark strength along with IP vendor’s natural uniqueness are the need of

the hour, as they are able to provides robust digital evidence (author credibility

proof) against IP piracy and false claim IP ownership. Further, they must also

33

depict higher withstand ability against standard threats of ghost insertion

search attack (watermark collision), tampering attack (brute force), forgery

attack and watermark removal attack.

Further, existing research on Trojan detection, such as in [45] and [46],

addressed detection but lacks comprehensive resistance strategies against

hardware Trojans. Further, [47]-[53] also discussed Trojan detection;

however, fails to provide complete Trojan resistance. Next, [54] and [55] do

not focus on functional hardware Trojan isolation within DSP hardware IP

cores, particularly in the context of third-party IP (3PIP) cores. Moreover,

these works do not explore the development of optimized (low-cost), secure

architectures resistant to Trojans. [55] falls short in handling DSP hardware

IPs, while [56] struggles with managing the design overhead caused by

triplication logic. Although the approaches in [57]-[63] present various Trojan

detection techniques, they do not extend to providing Trojan resistance,

particularly in DSP hardware circuits. This highlights a significant gap in the

field: the need for more robust and integrated solutions that not only detect but

also resist functional Trojan insertions and activations, ensuring complete

protection of hardware IP cores throughout the design and manufacturing

lifecycle.

2.2. Objective of the Thesis

The objective of the thesis is to develop novel alternative paradigms of

hardware security for addressing threats of IP piracy and Trojan during HLS.

This is achieved by setting out the following goals and objectives:

1. To explore low-cost secure hardware IP design during HLS using

multiphase encryption and crypto-chain signature.

2. To develop enhanced security framework for hardware IPs using IP

seller’s protein molecular biometrics and facial biometric-based encryption

key.

3. To develop a statistical watermarking framework using encrypted

dispersion matrix and eigen decomposition framework for securing

hardware IPs.

34

4. To develop a secure GLRT cascade hardware IP using IP seller’s

fingerprint and CIG framework for ECG detector.

5. To develop a voice biometric-based watermarking framework for securing

hardware IP cores.

6. To develop an HLS-based, low-cost (optimal) functional trojan-resistant

hardware IP designs security framework.

2.3.Overview of Key Contributions

 A novel low-cost security framework for hardware IP design during HLS

using multiphase encryption and crypto-chain signature. (Publications:

#10, #11, #15, #28, #30)

- Proposes a novel low-cost exploration framework of secured image

processing filter IP core datapath architecture for detective control

against IP piracy during HLS.

- Exploits PSO based design space exploration process for performing

design area-delay tradeoff of secured image processing filter IP core

datapath.

- The proposed approach explores low-cost optimized design architecture

of filter IP core datapath that embeds robust security constraints based on

the proposed multi-phase encryption algorithm at zero design cost

overhead. The proposed approach demonstrates the exploration and

embedding of low-cost resource configuration and watermarking

constraints on sharpening filter.

- It also proposes a firefly based design space exploration to determine an

optimal JPEG-CODEC IP core datapath after performing the design area-

delay tradeoff.

- Presents low-cost hardware security approach to explore optimal

architecture (design) for JPEG-CODEC IP core datapath that contains

secret watermarking/security constraints.

- The secret security constraints are generated using the proposed key-

driven crypto-chain based security methodology/algorithm. It explores a

35

secured JPEG-CODEC IP core datapath capable of providing detective

control against IP piracy and fraudulent claim of IP ownership using the

HLS framework.

- Presents the optimality analysis of the proposed low-cost multi-phase

encryption algorithm and proposed low-cost key-driven crypto-chain

based security methodology.

 A novel enhanced security framework for hardware IPs using IP seller’s

protein molecular biometrics and facial biometric-based encryption key.

(Publications: #1, #18, #24)

- Proposes a novel molecular biometric-based hardware security

approach based on protein molecule sequence to secure hardware IP

cores.

- In the proposed approach, an IP vendor selected protein sequence

comprising of 20 unique amino acid combinations, is used for

molecular signature generation.

- The generated signature (watermark) is then encrypted through AES

using an encryption key generated with the facial biometric of authentic

IP vendor. Thus, the proposed approach incorporates two classes of

biometrics of IP vendor to ensure highly robust and unique

authentication.

 A novel statistical watermarking framework using encrypted dispersion

matrix and eigen decomposition framework for securing hardware IPs.

(Publications: #6, #17)

- Proposes an HLS based watermarking methodology using design

parameter driven encrypted dispersion matrix with eigen decomposition

based security framework for protecting hardware IP cores.

- Presents a security framework that extracts the characteristics of the IP

vendor selected design space parameters and the design space’s

characteristics in terms of IP vendor chosen resource configuration

values and exploits them as unique features to act as digital evidence

for securing hardware IP cores.

36

- Exploits HLS design methodology for embedding the mathematical

watermark signature, generated using dispersion matrix, Eigen

decomposition, and AES encryption block, during the register

allocation phase. It also demonstrates the complete end-to-end

watermarking algorithm and its embedding on an 8-point DCT

hardware IP core.

- Depicts stronger security with a lower probability and higher tamper

tolerance value at minimal design cost overhead.

- Presents security analysis of the generated template against forgery,

ghost signature search and brute-force/tampering attack.

 A novel secure GLRT cascade hardware IP design using IP seller’s

fingerprint and CIG framework for ECG detector. (Publications: #4)

- Presents the design methodology of GLRT hardware IP core for ECG

detector for the first time in the literature.

- Presents secure GLRT hardware IP core for ECG detector using

fingerprint biometric-based security methodology during HLS.

- Presents CIG framework and RTL datapath of a secure GLRT hardware

micro IP core and secure GLRT hardware cascade IP core.

- Discusses the security of life-critical critical medical hardware systems

for first time in literature.

 A novel voice biometric-based watermarking framework for securing

hardware IP cores. (publications: #2)

- Proposes a novel contactless voice biometrics-based hardware

watermarking technique for robust IP core authentication and

verification. This is the first voice biometric-based hardware IP

protection technique.

- Presents a security framework for generating a unique voice signature

digital template using distinct voice features such as jitter and shimmer

along with pitch and intensity values.

37

- Present a feature extraction scheme for extracting different pitch and

intensity values at different timestamps from the spectrograph of the

voice sample.

- Present a scheme of encoding voice signature template into covert

hardware security/watermarking constraints based on four-fold

mapping.

- Presents the HLS design methodology of embedding a voice signature

during the register allocation phase to generate secured IP cores. It

demonstrates the embedding of voice signature on IIR filter.

- Depicts stronger security with a lower probability and higher tamper

tolerance value at minimal design cost overhead.

- Presents security analysis of the generated template against forgery,

side channel attack (SCA), ML-attacks, ghost signature search and

brute-force/tampering attack.

 A novel HLS-based, low-cost (optimal) functional Trojan-resistant

hardware IP designs security framework. (Publications: #12)

- Presents a novel exploration framework of optimized Trojan resistant

(capable of detection and isolation both) hardware design architecture

during HLS process.

- Exploits particle swarm optimization-driven design space exploration

(PSO-DSE) to determine an optimal hardware IP core datapath after

performing the design area-delay tradeoff.

- Proposes a Trojan-resistant design flow for the reusable hardware IP

core using TMR-based distinct multivendor allocation policy.

38

Chapter 3

Exploration of Low-Cost Hardware IPs during HLS

using Multiphase Encryption and Crypto-Chain

Signature

The widespread use of electronics and multimedia devices, such as

smartphones, digital cameras, and IoT devices, underscores the importance of

efficient data processing and management technologies. Key among these are

JPEG-CODEC and image processing filters, which play pivotal roles in

enhancing the functionality and performance of these devices. JPEG-CODEC,

a popular compression-decompression standard, enables efficient storage and

transmission of multimedia content by significantly reducing the file sizes of

images and videos without compromising essential quality. This is particularly

crucial in scenarios where storage space and bandwidth are limited, such as in

digital cameras and medical imaging equipment like MRI and CT scanners. In

medical applications, the JPEG-CODEC facilitates the handling of high-

resolution images by compressing them, thus optimizing storage and

streamlining the transfer of critical data for remote diagnosis and treatment.

Further, image processing filters are equally important, as they perform a

range of functions that are essential for extracting meaningful information

from images. These filters are used for tasks such as noise reduction, edge

detection, and image enhancement, which are critical in applications spanning

from military and robotics to advanced medical imaging and biometric

systems. For instance, they help in analyzing medical images for disease

diagnosis or in identifying objects in automated systems [72] - [76]. The

development of these technologies as dedicated, low-cost reusable hardware

IP cores using HLS and DSE enhances their performance and cost-efficiency,

making them integral components in the modern digital ecosystem. By

optimizing (using DSE) these hardware designs, it is possible to meet the

stringent requirements of speed, power efficiency, and accuracy that are

demanded in real-world applications.

Further, with the globalization of the digital design process, these hardware IP

cores face significant security challenges, including IP piracy, counterfeiting,

39

and false IP ownership claim. These threats can lead to unpredictable device

behaviors, such as incorrect pixel computation in medical imaging or data

leaks, posing risks to users and manufacturers. Therefore, it is essential to

prioritize security alongside performance and cost optimization during the

design of these IP cores using high-level synthesis frameworks to ensure

reliable and secure hardware solution. The details on the involved threat model

is discussed in the first section of this chapter.

Previous research has explored the design of hardware accelerators for image

processing, including FPGA-based solutions [64] - [67] and those utilizing

convolutional neural networks (CNNs) [68] - [71] for convolutional tasks.

However, these studies have not presented a dedicated low-cost design

framework for JPEG-CODEC and image processing filters, beside addressing

the security challenges, such as IP piracy, associated with dedicated hardware

accelerators for image processing filters. Further, several state-of -the-art

watermarking techniques and their limitation has already been discussed in

the previous chapter. The proposed low-cost security (watermarking)

approaches involves multi-layer security through usages of several IP vendor

selected key values, apart from the generation of greater watermarking

constraints. Moreover, the proposed approaches incorporates design space

exploration block along with security block to generate a low-cost optimized

hardware architecture.

This chapter presents the proposed two low-cost security approaches for

generating low-cost secure image filters and JPEG-CODEC RTL datapath.

The first section of the chapter outlines the problem formulation, threat model

and undelaying motivation. The second section discusses the details of

proposed low-cost multiphase encryption and crypto-chain signature based

security methodologies. Following this, the third section illustrates the

embedding of the proposed watermarking constraints with relevant examples.

The fourth section then covers the process of watermark detection. Lastly, the

fifth section provides the chapter's conclusion.

3.1. Problem Formulation

40

3.1.1 Threat model and underlying motivation

Both JPEG-CODEC and image processing filter IP cores face significant

security threats, including piracy, counterfeiting, cloning, and fraudulent IP

ownership claim. These vulnerabilities arise particularly when multiple third-

party entities are involved in the design process, making it easier for adversary

in the SoC integrator and fabrication houses, to pirate and resell the original

IPs or fraudulently claim ownership. Such actions not only lead to revenue

loss for the original IP vendors but also pose risks to end consumers, as pirated

IP cores may not undergo rigorous testing and could contain malicious logic.

The presence of malicious logic inside a pirated/counterfeited IP version may

lead to incorrect pixel computation value (causing severe consequences for

end patient in case of medical imagining system), unpredictable device

behavior (such as excessive heat dissipation, etc.), and leakage of sensitive

information. The designed dedicated reusable IP core is susceptible to piracy

when an IP vendor sells the IP core/design to the customer (SoC integrator).

Here, a potential adversary or threat actor may be an SoC integrator who may

pirate the original design and resell it under the same brand name, making it

challenging to make a clear distinction between the authentic and the pirated

one. Further, adversary can also claim the ownership of the IP design. Thus,

ensuring robust security measures (detective countermeasure) to protect these

IP cores is essential. Further, a low-cost design is also crucial to generate an

optimized design within given design (area and latency/delay) constraints.

3.1.2. Input and Outputs

The primary inputs are (a) input image pixel matrix, (b) transfer and

computation function obtained through image filter kernel coefficients, (c)

particle swarm optimization (PSO) initialization parameters (such as swarm

size, random number, social and cognitive factors, acceleration coefficients,

termination criterion, and inertia weight), (d) module library, (e) LIST

scheduling algorithm, (f) different IP vendor selected key values for multi-

phase encryption, (g) truncation length, (h) keys for TRIFID cipher

computation, (g) encoding rules, (i) transfer function of JPEG-CODEC, (j)

firefly algorithm (FFA) initialization parameters (such as attractiveness

parameter, step size control parameter, design constraints, absorption

coefficients, and population size), (k) IP vendor selected keys for crypto-chain

41

algorithm, (l) bit-padding and embedding rules, and (m) mapping/embedding

rule. And the final outputs consists of low-cost secure RTL datapath

corresponding to image processing filter and JPEG-CODEC application.

3.1.3 Target platform

The proposed security methodologies can be seamlessly integrated with any

electronic design automation (EDA) tools. The techniques can easily be

combined with HDL, or any high-level language used for IP generation within

design tools.

3.2. Low-Cost Multiphase Encryption and Crypto-Chain

Signature based Security Methodologies

Fig. 3.1 depicts the overview of the low-cost multi-phase encryption based

security methodology and Fig. 3.2 depicts the overview of low-cost crypto-

chain signature based security methodology. As shown in Fig. 3.1, the

proposed multi-phase encryption-based hardware security methodology for

protecting image processing filter IP cores involves several key steps. First,

the input image and target filter kernel are provided to the approach to

generate a secure hardware accelerator design. The image is then converted

into its pixel values, which are used along with filter kernel coefficients to

formulate the mathematical function of the target image filter IP core. This

function is converted into a data flow graph (DFG), which undergoes

structural transformations like loop unrolling and tree height transformation to

enable parallel pixel computation and improve performance by reducing

latency. Next, a heuristic-based architectural exploration, using PSO, is

employed to identify a low-cost resource configuration from various potential

designs. The inputs for this exploration include the transformed DFG, PSO

parameters, and a module library, producing an optimal low-cost

configuration. This configuration, along with the transformed DFG, is input

into the scheduling, allocation, and binding block of the HLS process,

resulting in a SDFG. An initial RAT is generated using the SDFG, and multi-

phase encryption-based security constraints are embedded into the RAT,

producing a secure RAT. The design cost is then calculated, and the global

best solution is identified using PSO. Finally, a low-cost secured hardware

accelerator datapath is generated through HLS, embedding security constraints

42

to provide detective countermeasure against piracy while effectively

performing various image processing functions.

Next, as shown in Fig. 3.2, the proposed approach for generating a low-cost

secure JPEG-CODEC IP design employs the firefly algorithm-based DSE and

proposed key-driven crypto-chain hardware security methodology. The

methodology comprises two main components: (a) a firefly-based architecture

exploration block, which identifies an optimal secured architecture for the

Input image pixel

matrix

Output

image pixel

matrix

Filter kernel

coefficients
Transfer/ computation

function

DFG

Structural

modifications Structurally

transformed DFG

Scheduling, allocation, and

binding

Module

library

PSO-based architecture

exploration

Resource configuration

Initial register allocation phase

Security embedded register allocation table

Secured image processing filter hardware

accelerator design (RTL form)

Multi-phase encryption-

based hardware security

Input image

Filtered image

Fig. 3.1 Overview of low-cost multiphase encryption based

security methodology

Acceleration

coefficients

Key for TRIFID

cipher computation

AES forward S-box

Truncation length

Encryption key values

Encoding rules

LIST scheduling

algorithm

Terminating criterion
Particle (swarm)

initialization

Security constraints

Datapath synthesis

Blurred

image
Sharpened

image Output

Input

LU THT

Inertia weight

43

JPEG-CODEC IP core, and (b) a key-driven crypto-chain hardware security

module. The process begins by feeding the JPEG-CODEC algorithmic

description into the system, from which a corresponding mathematical

function is derived. This function is then converted into a DFG or CDFG. The

CDFG undergoes structural transformation using the tree height

transformation (THT) technique, which reduces latency by allowing parallel

evaluation of sub-computations, thereby enhancing performance. The

transformed DFG is fed into the firefly-based architecture exploration block to

find an optimal low-cost resource configuration. This configuration, along

with the transformed DFG, is then input to the scheduling, allocation, and

binding unit of the HLS framework, using the LIST scheduling algorithm to

manage control steps and allocate functional units (FUs) and registers.

Subsequently, a RAT is generated based on the SDFG. The key-driven crypto-

Truncation length

Security constraints embedded register

allocation table

HLS (Scheduling,

allocation, and binding)

Initial register allocation table (RAT)

Datapath synthesis

Firefly algorithm based

architecture exploration

Key-driven crypto-chain

based hardware security

methodology

Mathematical or transfer function of JPEG-CODEC

Output: Secured JPEG-CODEC

hardware accelerator design (RTL form)

Transformed DFG

Input: JPEG-CODEC in form of its algorithmic description

DFG (data flow graph)

Module library

corresponding to

JPEG-CODEC

Firefly

initialization

Terminating

criterion

Absorption

coefficient ('γ’)

Step size control

parameter ('α’)

Attractiveness

parameter (‘β’)

Design

constraints

Resource configuration

LIST scheduling

algorithm

Structural

transformation

Extracting transfer function

Scheduling

information obtained

through transformed

DFG

Covert security constraints

Encoding rules

Keys to drive

cryptography

based methodology

Bit padding and

embedding rules

Fig. 3.2 Overview of low-cost crypto-chain signature based security

methodology

44

chain module then produces secret security/watermarking constraints, which

are embedded during the register allocation phase (in the RAT) to secure the

JPEG-CODEC IP core against hardware threats. The firefly algorithm

continues to explore configurations until the optimal, secure architecture is

found, resulting in the generation of a secure and optimized JPEG-CODEC IP

core RTL datapath design. The details are discussed in the following

subsections.

3.2.1. Overview of image processing applications/ filters and jpeg-codec

The filter kernel coefficients of the target image processing filter IP core and

input image pixels are used to derive the mathematical function, which is used

to generate the DFG of the respective filter IP core. The mathematical kernel

function with filter kernel coefficients corresponding to some important image

processing filter IP cores such as blur filter (BF), sharpening filter (SF),

laplace edge detection filter (LED), vertical embossment filter (VE), and

horizontal embossment filter (HE) are given as:

For the sake of demonstration, we have considered SF here. The derived

function corresponding to SF using sharpening filter kernel coefficients

(KernelSF) and input image pixels for performing two parallel pixel

computations (by exploiting loop unrolling (LU) transformation) is mentioned

in equations (1) and (2), respectively.

O0 = [(I00*(-1)) + (I01*(-1)) + (I02*(-1))] +[(I10*(-1)) + (I11*(9)) + (I12*(-1))]

+[(I20*(-1)) + (I21*(-1)) + (I22*(-1))] (3.1)

O1 = [(I01*(-1)) + (I02*(-1)) + (I03*(-1))] +[(I11*(-1)) + (I12*(9)) + (I13*(-1))]

+[(I21*(-1)) + (I22*(-1)) + (I23*(-1))] (3.2)

Here, I00-I23 are input image pixel values. The final DFG is generated using

equations (3.1) and (3.2), which further undergo another structural

transformation, viz. tree height transformation (THT), to optimize schedule

45

latency. The obtained structurally modified SDFG of SF is scheduled based on

the output of heuristic-based architecture exploration, viz., four adders and two

multipliers using LIST scheduling. Note: heuristic-based architecture

exploration is explained in the next subsection. An initial RAT is designed

using obtained SDFG, which is further used to extract the designer's secret

information required to generate secret hardware security constraints based on

the proposed multi-phase encryption algorithm.

The JPEG-CODEC application is responsible for performing JPEG

compression on the images and is commonly used in several multimedia and

consumer electronic devices. The input of the JPEG-CODEC application is a

pre-processed image. Mathematically a grayscale image is represented using a

pixel intensity matrix ranging from 0 to 255, where 0 denotes pure black, and

255 denotes pure white (this scale is for 8-bit depth grayscale images).

Further, 'F' denotes a generic 2D- discrete cosine transform (DCT) matrix

used to process input grayscale images. As 'F' is an 8×8 matrix and can

process a maximum of 8×8 pixel values at one time. Further, fn indicates the

elements of the F matrix. Therefore, the input image data is divided and

grouped into 8×8 matrix blocks. 'Z' represents an 8×8 matrix block of the input

image in a generic form. The relationship between Wij and Zst variables is

defined in equations (3.4), (3.5), and (3.6). The standard quantization matrix

(Q) is also an important input component. Next, each pixel intensity value

from the input 8×8 matrix block is subtracted with 128 as discrete cosine

transform coefficient matrix can only handle pixel values from range -128 to

127. Moreover, the JPEG algorithm comprises of steps such as zigzag

scanning and run-length encoding to generate a compressed image from an

46

input image. Similarly, the process for decompression is the reverse of the

compression process algorithm. The first compressed image pixel data is

represented using equation (3.3) [77].

I11 = (f4 * W11 + f4 * W12 + f4 * * W13 + f4 * W14 + f4 * W15 +f4 * W16 + f4 * W17

+ f4 * W18) (3.3)

where, W11, W12, W13, ……W18 is evaluated as follows:

W11 = (f4 * Z11 + f4 * Z21 + f4 * * Z31 + f4 * Z41 + f4 * Z51 +f4 * Z61 + f4 * Z71 +

f4 * Z81) (3.4)

W12 = (f4 * Z12 + f4 * Z22 + f4 * * Z32 + f4 * Z42 + f4 * Z52 +f4 * Z62 + f4 * Z72 +

f4 * Z82) (3.5)

Similarly,

W18 = (f4 * Z18 + f4 * Z28 + f4 * * Z38 + f4 * Z48 + f4 * Z58 +f4 * Z68 + f4 * Z78 +

IP1 IP2

IP3

IP4

IP5

IP6

IP7

IP8

*

+

+

+

+

+

+

+

129

z11 z12 z83 z84 z85 z86 z87 z88

q

z81 z82 z13 z14 z15 z16

130

131

132

133

134

135

136

z17 18 ----- ----- ----- ----- ----- ----- ----- -----

* *

*

*

*

*

*

*

*

+

+

+

 +

 +

 +

 +

1 2 3 4 5 6 7 8

9

10

11

12

13

14

15

f4 f4 f4 f4 f4 f4 f4 f4 z11 z21 z31 z41 z51 z61 z71 z81

16

Q1

Micro IP1_out

First pixel of compressed image I11
’

Fig.3.3. DFG of JPEG-CODEC for determining first pixel of the

compressed image I11
’

47

f4 * Z88) (3.6)

Next, the remaining pixel value output is computed in a similar fashion. A

control data flow graph corresponding to the untransformed JPEG image

compression IP core is shown in Fig. 3.3. There are eight micro IP

components (namely from IP1 to IP8) in Fig. 3. Moreover, Fig. 3.3 contains a

zoomed image of one of the micro IP cores. Fig. 3.3 also highlights the

quantization operation as each final generated output is multiplied with 'Q'.

JPEG algorithm uses different quantization matrixes to generate better results.

Now, tree height transformation is applied to the initially generated DFG of

the JPEG-CODEC IP core to obtain a structurally transformed DFG

corresponding to the original one. This structural transformation (i.e., THT)

induces several interconnection-level changes while preserving the original

functionality. As explained in the overview section, this produces a

structurally different but functionally equivalent design. The final structurally

transformed DFG of JPEG-CODEC IP core is shown in Fig. 3.4. Further, the

obtained structurally transformed DFG is scheduled using the resource

IP1 IP2

IP3

IP4

IP5

IP6

IP7

IP8

*

+

+

+

+

+

+

+

129 130 131 132

133 134

135

z11 z12
z13 z14 z85 z16 z17 z18

136

q

z81 z82 z83 z84 z15 z86 z87 z88 ---- ---- ---- ---- ---- ---- ----

Fig. 3.4. DFG of structurally transformed JPEG-CODEC for

determining first pixel of the compressed image I11
’ with registers

at input, output and intermediate storage points

First pixel of compressed image I11
’

Q263

Q71

Q7

Q70

Q6

Q69

Q5

Q68

Q4

Q67

Q3

Q66

Q2

Q65

Q1 Q0

Q64

Q135 Q262

Q261 Q260

* *

*

*

*

*

*

*

*

+

+

+

+

+

+

+

1 2 3 4 5 6 7 8

65 66 67 68

97 98

113

f4
f4 f4 f4 f4 f4 f4 f4 z11

z21 z31 z41 z51 z61 z71 z81

121

Q1

Micro IP1_out

48

configuration generated as output of firefly-based resource exploration (for

example, three adders and three multipliers) and LIST scheduling algorithm.

Post generation of scheduled DFG (SDFG), bitstreams corresponding to each

IP vendor/designer specified encoding rules are generated using scheduling

information (i.e., control step and operation numbers in SDFG). These

bitstreams are fed as input to key-driven crypto-chain-based security block to

produce the final signature that is subsequently converted to hardware security

constraints using IP vendor chosen embedding/mapping rules.

3.2.2. Low-cost secure architecture exploration using PSO-DSE

Fig. 3.5 highlights the details of PSO-DSE. The process of PSO-based

architecture exploration is as follows: At first, the swarm population (N) and

its dimensions (d), corresponding to resource types, are initialized (assuming

N=3 and d=2 for adder and multiplier resource types). The first particle

position (P1) of the swarm is initialized with the maximum number of resource

configurations (functional resources) possible corresponding to the image

processing filter (taken from the module library). Similarly, the second particle

position is initialized with the minimum number of functional resources

possible. The third position is initialized with the average of the first and

second particle position values. The initial velocity (Vi) corresponding to all

particle positions is assumed to be zero. Next, the initial design cost (in terms

of area and latency) is computed for all particles, and respective local best

(Plbi) and global best (Pgb) are evaluated. The particle having minimum design

cost is termed as Pgb. The functions used for the calculation of design area

(AIP), design execution latency (L), and design cost (quality of results – QoR)

are shown in equation numbers (3.7), (3.8), and (3.9), respectively.

𝐴𝑟𝑒𝑎 (𝐴𝐼𝑃) = ∑ (𝐴(𝑋𝑖) ∗ (𝑋𝑖))
2

𝑖=1
 (3.7)

Where 𝐴(𝑋𝑖) indicates the area of a resource type (𝑋𝑖) and (𝑋𝑖) shows the

number of instances utilized for a particular resource type.

Latency (L) = (𝐶𝑀 ∗ 𝐿𝑀) + (𝐶𝐴 ∗ 𝐿𝐴) (3.8)

𝐷𝑒𝑠𝑖𝑔𝑛 𝑐𝑜𝑠𝑡 = 𝑤1 ∗ (
(𝐴𝐼𝑃−𝐴𝐶)

𝐴𝑚𝑎𝑥
) + 𝑤2 ∗ (

(𝐿−𝐿𝐶)

𝐿𝑚𝑎𝑥
) (3.9)

Where w1=0.5 and w2=0.5 are designer-defined weighing factors that provide

49

equal weightage to design area (AIP) and execution latency (L) during design

cost function evaluation. ‘CM’, ‘CA’, ‘LM’, and ‘LA’ are control steps required

using multiplier, control step required using adder, latency of a multiplier, and

latency of an adder, respectively. Further, 𝐴𝑚𝑎𝑥 and 𝐿𝑚𝑎𝑥 represents

maximum design area and maximum latency. And AC and LC are IP vendor

defined area and latency constraints.

Further, new particle positions (Pi
+
) are determined based on computed new

velocity (Vi
+

using inertia weight). The function used for computing new

particle position and new velocity is shown in equations (3.10) and (3.11).

𝑃𝑖
+ = 𝑃𝑖 + 𝑉𝑖

+ (3.10)

Start

Input: Control data flow graph (CDFG) of the target image

filter core (such as blur filter, sharpening filter, etc.) and

module library

Initialization of particle dimension (types of functional

resources), initial particles positions (Pi), velocities (Vi),

z=1, and PSO parameters (such as inertia weight, social

and cognitive factor, and random numbers)

Initial fitness (design cost (Cf=f(AIP,L,Pi))) is computed for

all particles (Pi) and determination of local (Plb) and global

best (Pgb) particle

Determination of new particle

position (Pi
+) using velocity and

previous position ((Pi
+)

=f(Pi,Vi))

Determination of new cost (Cfi
+) corresponding to Pi

+

Execute velocity

clamping and

AETP

Pi
+ updating

Cf
lbi= Cfi

+ and

Plb
i=Pi

If

Cfi
+<Cf

l

bi

Perform mutation on local best particles (Plb
i) to diversify

the obtained solutions and update global best (Pgb)

accordingly

Output: Secured filter IP core with Low-cost resource

architecture (constraints) using PSO-driven DSE and

multi-layered encryption

z<N

T?

From constraints

embedding block

To secret design data

generation block

Fig. 3.5. Details of proposed PSO based DSE

50

𝑉𝑖
+ = 𝜔𝑉𝑖 + 𝑓1𝑘1[𝑃𝑙𝑏𝑖 − 𝑃𝑖] + 𝑓2𝑘2[𝑃𝑔𝑏 − 𝑃𝑖] (3.11)

Where ‘𝜔’ is inertia weight, ‘𝑓1 𝑎𝑛𝑑 𝑓2 ’ are social and cognitive factors and

‘𝑘1 𝑎𝑛𝑑 𝑘2 ’ are random numbers.

Again, the design cost corresponding to all new particle positions is

calculated. If the newly computed design cost is less than previously

computed, then the respective local and global bests are updated. Next,

velocity clamping and adaptive end terminal perturbation (AETP) are

performed to keep computed velocity and particle positions in the desirable

range. At last, the mutation is performed amongst particle positions to

diversify during design space searching. After mutation, the design cost is

computed again, and respective local and global bests are updated in case of

lower design cost. The process is repeated until the terminating criterion (T) is

not achieved. The algorithm gets terminated if either the algorithm does not

show any further improvement till ten consecutive runs, or the max run limit

(assuming I=50) is exhausted [78]. Fig. 3.2 illustrates the integration of PSO-

based architecture exploration with multi-phase encryption to yield low-cost

secured image processing filter IP core datapath. The pseudo-code of PSO

based architecture exploration is as follows:

Input: N = Swarm size, Max_ITR = the maximum number of iterations, dim

(d) = the number of dimensions, Pi = i
th

 particle in swarm, Vi = velocity of i
th

particle, Pgb = global best particle, Plbi = local best i
th

 particle, 𝜔 = inertia

weight, f1 and f2 = social and cognitive factors, k1 and k2 = random numbers,

Pi
+
 = new particle position, Vi

+
 = new velocity, AETP = adaptive end terminal

perturbation, minadder and minmulti = the minimum number of adder and

multiplier available in respective libraries of IP cores, maxadder and maxmulti

= the maximum number of adder and multiplier available in respective

libraries of IP cores, PMax = particle position with the maximum number of

adder and multipliers, PMin = particle position with the minimum number of

adder and multipliers.

Output: Pgb (global best particle).

 FOR each particle Pi in N

 FOR each dimension d in dim

51

 P0 = PMax

 P1 = PMin

 P2 = Average (PMax, PMin)

 FOR i in range (3, N)

 ἀx = Rand (minadder, maxadder)

 ἀy = Rand (minmulti, maxmulti)

 IF (i%2 ==0):

 Pi = ┌((minadder, maxadder)/2)┐ + ἀx ,

┌((minmulti, maxmulti)/2)┐ - ἀy

 ELSE:

 Pi = ┌((minadder, maxadder)/2)┐ - ἀx ,

┌((minmulti, maxmulti)/2)┐ + ἀy

 END IF

 END FOR

 END FOR

 Vi = 0 // initially

 END FOR

 Iteration I = 1

 DO

 FOR each particle Pi

 Calculate design cost value according to equation

𝐷𝑒𝑠𝑖𝑔𝑛 𝑐𝑜𝑠𝑡 = 𝑡1 ∗ (
(𝐴𝐼𝑃 − 𝐴𝐶)

𝐴𝑚𝑎𝑥
) + 𝑡2 ∗ (

(𝐿 − 𝐿𝐶)

𝐿𝑚𝑎𝑥
)

 IF the current design cost value of Pi is lesser than Pgb

 Set Pgb  current Pi

 END IF

 END FOR

52

 FOR each particle Pi

 FOR each dimension d in dim

 Calculate velocity (Vi) according to the equation

 𝑉𝑖
+ = 𝜔𝑉𝑖 + 𝑓1𝑘1[𝑃𝑙𝑏𝑖 − 𝑃𝑖] + 𝑓2𝑘2[𝑃𝑔𝑏 − 𝑃𝑖]

 Perform velocity clamping if required

 Update Pi according to the equation below

 𝑃𝑖
+ = 𝑃𝑖 + 𝑉𝑖

+ // Particle position updating

 Perform AETP if required

 END FOR

 END FOR

 Calculate design cost value for updated particles

 FOR each particle Pi

 IF the current design cost value of Pi is lesser than Pgb

 Set Pgb  current Pi

 END IF

 END FOR

 FOR each particle Pi

 Perform mutation on Pi

 Perform AETP if required

 END FOR

 Calculate design cost value for updated mutated particles

 FOR each particle Pi

 IF the current design cost value of Pi is lesser than Pgb

 Set Pgb  current Pi

 END IF

 END FOR

53

 r = r+1

WHILE Terminating condition is not achieved

Next, the pseudo-code of mutation used in PSO based architecture exploration

is as follows:

Input: Plb = local best architecture (resource)configuration

Output: New local best configuration after mutation, Plbi

 FOR each particle Pi in N

 IF (i%2 ==0): //Left rotation

 FOR t=1 to d

 temp = Pt

 Pt = Pt +1

 Pt +1 = temp

 t++

 END FOR

 END IF

 IF (i%2 ==1):

 FOR t=1 to d

 temp = Pt

 Pt = Pt ± R // R is a random number between

[1,3]

 t++

 END FOR

 END IF

 i++

 END FOR

Further, the pseudo-code of AETP operation used in PSO based architecture

exploration is as follows:

54

Input: Architectural configuration violating design space boundary given in

respective library files

Output: New architectural configuration within the design space boundary

// When Pi violates the design space boundary

WHILE (Pi<LW)

 Pi = Pi +J

WHILE (Pi<UP)

 Pi = Pi -J

/* J is a value between the minimum and maximum architectural configuration

given in respective library files. “LW” and “UP” is lower and upper boundary

limit (architectural configuration value) given in the respective library file of

the image processing filter application*/.

The necessary and sufficient condition for the particle to eventually settle at

the equilibrium, subsequently enabling the PSO algorithm to converge when

the value of f1 and f2 (given in eq. 3.11)lies between the range of [1,4] and the

value of inertia weight (𝜔) lies between [0.9,0.1]. This has been

mathematically established by [78]. Further, the value of inertia weight must

not be a constant value throughout the exploration process and must be

linearly decreasing in every iteration throughout the exploration process. This

has been empirically established in [78], [79]. In the context of the current

problem, the population size of PSO for p=3,5,7 and terminating criterion (T

= the algorithm runs for ten iterations if there is no improvement in the results

or it will run for fifty iterations before termination) are sufficient for achieving

optimal solution in an acceptable convergence and exploration time. This has

been established in the literature [78], [79].

Advantage of population-based algorithm for solving multi-objective

problem over single solution-based or hybrid algorithm: Since, the target

problem in this chapter deals with generation of optimal secured image

processing filter IP core datapath used in modern embedded systems, therefore

it results in multitude of application mapping possibilities that exhibit high

variance in performance metrics such as security, design area, and latency.

55

The architecture exploration process in the context of the problem requires

optimized solutions for conflicting design objectives such as area vs latency vs

security; where the optimized solution is in terms of resources needed for

allocation, binding each task of the application to resources, and determining a

feasible schedule for execution of tasks. This results into an intractable NP

complete problem which is potentially suitable for resolution using population

based algorithm like PSO. Population based heuristics like PSO are

exploration oriented as they allow better diversification in whole search space

compared to single solution based meta heuristics that only have the power to

intensify the search in local regions. Single solution based heuristics such as

simulated annealing algorithm requires extensive exploration time due to

heavy number of iterations. Further, hybrid algorithms are also very

computationally heavy as they often need to switch from one algorithm to

another during the iterative process of architecture exploration.

3.2.3. Low-cost secure architecture exploration using FFA-DSE

The Firefly-driven design search exploration (FFA-DSE) equips the proposed

methodology with the ability to prune undesirable designs (higher cost or

lower fit) based on IP vendor-specified design objectives such as latency

(delay) and area to explore the optimal secured design architecture of JPEG-

IP vendor selected encoding rules

Fig. 3.6. Proposed IP vendor selected encoding rules

En_1: The output bit is ‘0’ if the control step number and the

operation number in SDFG are both even, otherwise output bit is

‘1’
En_2: The output bit is ‘0’ if the control step number and operation

number in SDFG are having same parity, otherwise output bit is ‘1’

En_3: The output bit is ‘0’ if the control step number and the

operation number in SDFG are both odd, otherwise output bit is ‘1’

En_9: The output bit is ‘0’ if the control step number in SDFG is

equal to 2nd odd sequence of operation no., otherwise output bit is

‘1’

En_7: The output bit is ‘0’ if GCD of the control step number and

the operation number in SDFG is ‘1’, otherwise output bit is ‘1’

En_8: The output bit is ‘0’ if the (operation number) mod

(corresponding control step number) is ‘0’, otherwise output bit is

‘1’

En_5: The output bit is ‘0’ if the control step number and the

operation number in SDFG are both prime, otherwise output bit is

‘1’
En_6: The output bit is ‘1’ if the control step number and the

operation number in SDFG are both prime, otherwise output bit is

‘0’

En_4: The output bit is ‘0’ if the control step number and operation

number in SDFG are of different parity, otherwise output bit is ‘1’

56

CODEC IP core. The IP vendor chosen encoding rules and the detailed flow of

the proposed FFA-based architectural exploration is highlighted in Fig. 3.6

and 3.7. The main inputs to the proposed methodology are as follows: (a)

absorption coefficient ('γ'), (b) terminating criterion, (c) firefly initialization

parameter, (d) design constraints, (e) module library corresponding to JPEG-

CODEC (containing necessary information such as DFG, area, and delay

values), (f) step size control parameter ('α'), (g) design cost parameters, and (h)

attractiveness parameter ('β').

Assuming that initially, the firefly population (Y) and its corresponding

dimensions (d) are set at Y=3. A higher magnitude population size may also be

assumed. The value of ‘d’ indicates the number of hardware resource types.

For example, d = 2 when the number of hardware resource types comprises of

adder and multiplier. The value of ‘d’ will change depending on the number of

hardware resource types used for a given application. In the proposed

approach, firstly, the design constraints for the area (Acons) and latency (Lcons)

are validated to be within the range of minimum and maximum value of area

and time (latency) corresponding to JPEG-CODEC IP core (i.e., Amin < Acons <

Amax and Lmin < Lcons < Lmax). The initial firefly potions are initialized on

meeting the valid design constraints requirement, as depicted in Fig. 2. The

first firefly position (Y1) is set with the maximum quantity of functional units.

Likewise, the 2
nd

 firefly position is set with minimum functional units. The 3
rd

firefly position is indicated with the average of the 1
st
 and 2

nd
 firefly positions.

Next, positions for the rest of the fireflies are initialized based on the formula

discussed in the FFA-based architecture exploration pseudo code (discussed

below in this sub-section). After the initialization of the firefly positions, an

initial design cost (fitness value) is evaluated corresponding to each firefly

position using the design cost function (with respect to area and latency).

Note: We have considered area and latency specifications parameters for the

evaluation of design cost in our proposed approach. After determining the

initial design cost, the respective local and global best positions are updated.

The local best (Ylbi) positions are the initial positions of fireflies, and the initial

global best (Ygb) position is the firefly position with the minimum design cost

value (fittest solution) among all. The equations for the determination of area,

57

latency, and design cost are same as that of PSO-DSE (described in (3.7),

Start

Input: Control data flow graph (CDFG) of JPEG-

CODEC IP core, its respective module library, and

design constraints

Initialization fireflies positions (Yt), t=1, and firefly

algorithm parameters (such as absorption coefficient,

step size control parameter, etc.)

New fitness (design cost) computation (F+)

corresponding to Yt
+

FYlbt=FYt

and

FYlbt=Yt

Ygb = Min(FY1,Fy2….,Fyn)

New firefly position (Y+)

determination using firefly

exploration algorithm,

Yt+1=Funcn(Y+, α, γ)

Determination of brighter firefly (having minimum

fitness), Ygb= Min(Fy1,Fy2….,Fyn)

 Absorption

coefficient

(γ) finetuning

 Step size

parameter (α)

finetuning

 Boundary

outreach

algorithm

Initial fitness determination of fireflies

Error! Invalid

design

constraints

SDFG corresponding to optimal output resource

configuration

HLS driven Firefly based architecture

Exploration (FFA-DSE block)

If

FYt<FYlbt

t<n

T?

d<D

Design

constrain

ts

validatio

n

Fig. 3.7. Detailed flow diagram of the FFA-DSE

algorithm

Y

Y

N

Y

Y

HLS

Output SDFG and initial generated CDFG based

on firefly positions to proposed security module

for security constraints generation

58

(3.8), and (3.9)).

Further, new firefly positions (Y
t+1

) are computed using the absorption

coefficient (γ), control step size parameter (α), and attractiveness parameter

(β). If the newly generated firefly position exceeds the boundary limit (i.e.,

minimum and maximum resource value corresponding to each resource type).

In that case, the boundary outreach algorithm is executed to bring that

particular firefly position within acceptable limits. The new firefly positions

are evaluated using equations (3.12), (3.13), and (3.14), respectively [80],

[82], [94].

 (3.12)

Here, new firefly positions are determined by adding a drift factor to the

original firefly position.

 (3.13)

 (3.14)

where 'Yi
t+1

 is the new firefly position, 'Yi
t
' is the previous firefly position, 'Yi'

and 'Yj' are positions of 'i
th

' and 'j
th

' firefly, respectively. 'γ', 'α' and 'β' are

above-defined hyperparameters (tuning parameters). 'β0' is attractiveness at

zero distance and 'Yij' is the cartesian distance between 'Yi' and 'Yj' fireflies.

After determining new firefly positions, the new design cost corresponding to

each firefly position is computed. Here, the boundary outreach algorithm

(BOA) is executed if the generated new firefly positions violate boundary

limits. The Pseudo code of BOA is explained below. Post-design cost

computation, if the new design cost is lesser than the previously computed

design cost for any firefly position, the local best corresponding to all such

fireflies is updated. And, again, the firefly with minimum design cost is

declared the global best firefly. The complete process is executed till the

terminating criterion is not satisfied. The terminating criterion (T) for our

proposed work is that the algorithm will either run until there is no

improvement in design cost till fifteen iterations or run for a maximum of fifty

iterations [80]. Finally, an optimal architecture configuration corresponding to

59

JPEG-CODEC IP core is obtained as the output. The obtained optimal

resource configuration is forwarded to security constraints embedding block

for further embedding of generated security constraints to generate a secure

JPEG-CODEC hardware IP design.

Parameter Tuning for customizing FFA to solve DSE in HLS: The necessary

and sufficient conditions (or values of different hyperparameters) for the

fireflies to ultimately settle at the equipoise, consequently empowering the

firefly algorithm to converge, are adopted from [80], [82], [94]. The value of

'β0', 'γ', 'αx', 'αy', and rand are 1, 0.5, maximum value of the first dimension,

maximum value of the second dimension, and 1.5, respectively [80], [82],

[94]. Moreover, the value of the absorption coefficient ('γ') and control step

size parameter ('α') must not be kept as a constant value. They should be

linearly decreasing in nature, as discussed above in this sub-section and

established in [80]. The pseudo-code of FFA based architecture exploration is

as follows:

Input: Y = firefly population size, dim (d) = total dimensions (i.e.,

#resources), Yk =k
th

 particle in firefly population, Ygb = global best firefly

position, Ylbk = local best k
th

 firefly, Yk
t+1

 = new firefly position, BOA =

boundary outreach algorithm, T = terminating criterion, least_add and

least_mult = the minimum (least) quantity of resources (i.e., adder and

multiplier) present in the library of JPEG-CODEC application, highest_add

and highest_multi = the maximum (highest) quantity of resources present in

the library of JPEG-CODEC application, YMax = firefly position with the

highest quantity of resources, YMin = firefly position with the least number of

resources, β = attractiveness parameter, γ = absorption coefficient, and α =

control step size parameter.

Output: Ygb (global best firefly position).

 FOR each firefly position Yk in Y

 FOR every dimension d in dim

 Y0 = YMax

 Y1 = YMin

60

 Y2 = Average (YMax, YMin)

 FOR k in range (3, N)

 u = Rand (least_add, highest_add)

 v = Rand (least_multi, highest_multi)

 IF (k % 2 ==0):

 Yk = ┌((least_add, highest_add)/2)┐ +

u ,┌((least_multi, highest_multi)/2)┐ - v

 ELSE:

 Yk = ┌((least_add, highest_add)/2)┐ - u

, ┌((least_multi, highest_multi)/2)┐ + v

 END

 END

 END

 END

 Iteration p = 1

 DO

 FOR each firefly Yk

 Compute the design cost value as per the equation

below:

𝐷𝑒𝑠𝑖𝑔𝑛 𝑐𝑜𝑠𝑡 (𝐹𝑌𝑘) = 𝑡1 ∗ (
(𝐴𝐼𝑃 − 𝐴𝐶)

𝐴𝑚𝑎𝑥
) + 𝑡2 ∗ (

(𝐿 − 𝐿𝐶)

𝐿𝑚𝑎𝑥
)

 IF the present design cost (Yk < Ygb)

 Set Ygb  current firefly Yk

 END

 END

 FOR every firefly Yi

 FOR every dimension d in dim

61

 Compute new firefly positions as per the

equation below:

 Update firefly positions accordingly

 Execute BOA if essential

 END

 END

 Design cost computation corresponding to newly obtained

fireflies

 FOR each firefly Yk

 IF the present design cost (Yk < Ygb)

 Set Ygb  present Yk

 END

 END

 p = p+1

WHILE stopping criterion is not met

Further, the boundary outreach algorithm (BOA)’s pseudo-code is as follows:

Input: Resource configuration exceeding design space periphery as specified

in the library file

Output: Modified architecture (resource) configuration within the periphery

of the design space

// When Yi exceeds the design space periphery

WHILE (Yi<Low_Lim)

 Yi = Yi +H

WHILE (Yi<Up_Lim)

 Yi = Pi -H

62

/* H specifies a magnitude between the least and highest resource

configuration in the library file. "Low_Lim" and "Up_Lim" is lower and upper

boundary limit (resource configuration) specified in JPEG-CODEC’s library

file */.

3.2.4. Advantages of employing PSO-DSE and FFA-DSE for low-cost

secure architecture exploration

Heuristic based architecture exploration has been employed to perform design

space pruning based on area-latency tradeoff. The heuristic employed in our

work is particle swarm optimization (PSO) and firefly algorithm (FFA) for

architecture exploration. It is performed to determine a low-cost resource

architecture among numerous potential competitive designs.

Particle swarm optimization shows more benefits as compared to other

metaheuristics algorithms such as genetic algorithm (GA) [95], [96], bacterial

foraging algorithm (BFOA) [97], ant colony optimization algorithm (ACO)

[98], etc. PSO depicts the ability to achieve a global optimal solution in an

acceptable amount of time (fewer iterations) and provides a clinical balance

between exploration and exploitation time compared to GA, BFOA, ACO, etc.

[78]. The PSO algorithm's implementational complexity is lesser than GA,

BFOA, ACO, etc. [78]. It is tough to achieve the best solution using a genetic

algorithm because of its premature convergence problem [99]. GA takes a

higher number of iterations in case of higher variables and constraints [100].

The time complexity of GA is higher as compared to the PSO algorithm [100].

Further, the bacterial foraging optimization algorithm also has the drawback of

getting stuck into the local optimum because of weak connections among

bacteria. BFO provides a poor balance between exploration and exploitation

time because of its fixed step size [97]. Next, the ant colony optimization

algorithm has the limitation of falling into the local optimum trap [101].

Additionally, the involvement of pheromone laying activity (which is further

used by ants as a communication medium) increases the implementation

complexity of the ACO algorithm [98]. The PSO algorithm comprises various

hyperparameters (also known as tuning parameters), which provide a clinical

balance between exploration and exploitation tradeoff, which is missing in the

case of GA, BFOA, ACO, etc.[79]. Further, the reasons for employing PSO

63

over other heuristics in the context of the design space exploration problem

addressed in the chpater are the following: (a) it incorporates a parameter

named inertia weight, which considers the magnitude of the previously

computed velocity and supports in escaping local minima, (b) it provides a

clinical balance between exploration and exploitation process with the help of

linearly decreasing value of inertia weight from 0.9 to 0.1 (bigger steps at the

beginning and smaller later) [78], and (c) it includes various other

hyperparameters such as social and cognitive factor, which reduces the

convergence time of reaching the optimal/ near-optimal solutions. All of these

features are not present in [96], [97], and [101]. Therefore, due to its inherent

capability of escaping local minima and achieving a fitter solution (design cost

in terms of area and latency) at lower convergence time, PSO-based

architecture exploration is used for design space searching of secured low-cost

image processing filter IP core.

Advantages of integrating PSO-driven DSE:

a. The advantages of PSO-DSE over different other design space

exploration algorithms (such as genetic, bacterial foraging algorithm,

etc.) are as follows: PSO-DSE considers the magnitude of the

previously computed velocity with the help of a parameter called

inertia weight, while genetic algorithm-driven DSE (GA-DSE) [95],

[96] and bacterial foraging-driven DSE (BFO-DSE) [97] do not

consider the momentum of prior iterations, which increases the

probability of getting stuck in the local minima during architecture

exploration.

b. PSO-DSE creates a balance between exploitation and exploration time

with the help of linearly decreasing the value of inertia from 0.9 to 0.1.

The algorithm takes more significant steps at the beginning and smaller

steps on reaching higher fitness solutions, which is missing in GA-

driven DSE and BFO-driven DSE. This also enhances the chance of

reaching global optimal solution.

c. The inclusion of various other factors (hyperparameters), such as social

and cognitive factors in PSO-DSE, helps achieve higher fitness

64

solution within a very low exploration time. On the contrary, there is

no such provision in GS-DSE and BFO-DSE.

Key benefits of employing FFA for performing DSE in HLS:

a. FFA comprises of various hyperparameters such as step-size control

parameter and absorption coefficient. These parameters control

randomness throughout design search exploration, ultimately resulting

in better convergence time to the optimal solution. The value for both

parameters linearly decreases from larger to smaller as the DSE

algorithm proceeds. This is because the distance between the current

and global best firefly position is large in the initial exploration phase.

Therefore, larger steps are required in the initial phases, and step size

decreases upon nearing the global optimal solution.

b. FFA works similar to the divide and conquers approach. FFA-DSE is

based on the attraction parameter, where attractiveness is inversely

proportional to the distance between fireflies. This enables FFA to

divide its population into subgroups, where different subgroup swarms

around different local optimums, and a final optimal solution are

obtained among them.

c. The linearly decreasing value of the step size control and absorption

coefficient parameters enables FFA to maintain steady stability

between diversification (exploration) and intensification (exploitation).

Therefore, because of the ability to escape local optimum to attain a global

optimal solution in lesser iterations (or at lower convergence time), FFA is

employed for DSE of key-driven crypto-chain based secured JPEG-CODEC

IP core. The methodology of FFA-based hardware resource exploration is

explained subsequently.

3.2.5. Multi-phase encryption-based security for image processing filter

IP cores

Goal: The multi-phase encryption algorithm is applied to the extracted secret

information from the initial RAT to generate the final encrypted signature,

which is further used to generate hardware security constraints. The steps

65

involved in the multi-phase encryption-based hardware security algorithm are

described below.

Details of the algorithm: First, all storage variable pairs (Rx, Ry) allocated on

the same-colored register are listed using Table 3.1 (with black and indigo-

colored storage variables). Next, all the indices values (x, y) of the storage

variable pairs (of the initial RAT) are converted into their hexadecimal

equivalents. The final generated indices value in hexadecimal equivalents is

the secret information used for encryption. Fig. 3.8 depicts the complete multi-

phase encryption algorithm in detail. The first step of multi-level encryption is

to generate an initial state matrix with the help of secret information based on

the IP vendor selected encryption key (K1). A particular row of the state

matrix can contain a maximum of four elements. The initial state matrix

formation depends on a two-bit key value, as highlighted in Fig. 3.8. In the

next phase, the bit manipulated state matrix is generated using AES forward S-

box. All elements of the initial state matrix are substituted with their AES

forward S-box equivalents. Next, row-diffusion is performed based on the IP

vendor selected encryption key (K2) in the subsequent phase. Each row has a

different key for row diffusion in the bit-manipulated state matrix. Therefore,

 C0 C1 C2 C3 C4 C5 C6

Red(R) R0 R22 R22 R32 R34 R35 R36

Green (G) R1 R23 R23 R33 R39 R40 R41

Indigo (I) R2 R24 R24 R37 - - -

Blue (BL) R3 R25 R25/

R28

R38 R34 - R36

Yellow (Y) R4 R26 R26/

R27

R26 R26 R26 -

Black (B) R5 R26 R27/

R26

R26 R26 R26 -

Violet (V) R6 R25 R28/

R25

- - - -

Pink (P) R7 - R29 - - - -

Lime (LI) R13 R13 R13 R13 R13 - -

Olive (O) R8 R8 R30 - - - -

Aqua (A) R9 R31 R31 R31 R31 R31 -

Teal (T) R10 R10 - - - - -

Gray (G) R11 R11 - - - - -

Maroon (M) R12 R12 - - - - -

Silver (S) R14 R14 - - - - -

Khaki (K) R15 R15 - - - - -

Lavender (L) R16 R16 - - - - -

Crimson (C) R17 R17 - - - - -

Wheat (W) R19 R19 - - - - -

Beige (B) R18 R18 R18 R18 R18 - -

Magenta (M) R20 - - - - - -

Orange (O) R21 R24 R24 - - - -

Table 3.1: Register allocation table before and after embedding

hardware security constraints corresponding to sharpening filter

A.

66

row-diffusion depends on the 2*N bits encryption key (K2) (where N is the #

rows in the state matrix). Subsequently, in the next phase, digit equivalents

corresponding to unique alphabets (A-F) are computed using TRIFID cipher

(using IP vendor selected encryption keys) and alphabetic substitution (using

IP vendor selected encryption key (K3)). The three properties of the TRIFID

cipher are fractionation, substitution, and transposition, which help to impart

confusion and diffusion in the multi-phase encryption algorithm. For

computing the TRIFID cipher, first IP vendor selects a 27-bit unique key value

for all unique alphabets in the state matrix. Then, the key value is arranged in

a three-square matrix of size 3*3 each. The output of the TRIFID cipher is a

state "tuv" (where 't' is row number, 'u' is column number, and 'v' is the matrix

number corresponding to the respective alphabet). The determined state value

("tuv") is fed as input to the alphabetic substitution phase to finally generate

digit equivalence based on the IP vendor selected encryption key (K3). E.g.,

TRIFID cipher computation and its digit equivalent corresponding to the

alphabet 'A' is explained below.

Let the IP vendor selected key for the alphabet ‘A’ = EDRFTV$QA

WSZMXNCBGYHUJIKOLP.

Table 3.2 depicts a square matrix representation of the IP vendor selected key

for TRIFID cipher computation corresponding to alphabet A. Here, row

number (t) is 3, column number (u) is 3, and square matrix (v) number is 1.

So, the state corresponding to "A" is 331. Now, let the assumed IP vendor

selected key for alphabetic substitution corresponding to the alphabet 'A' is

"100". From the alphabetic substitution rules in Fig. 3.8, the calculated digit

equivalent corresponding to the alphabet 'A' is '6'. Similarly, alphabetic

substitution is performed for all remaining alphabets using TRIFID cipher

computation and IP vendor selected encryption key (K3). After determining

digit equivalence, all alphabet values in the state matrix are substituted with

their digit equivalents. Further, the obtained state matrix is transposed. Then,

Square matrix 1 Square matrix 2 Square matrix 3

E D R W S Z Y H U

F T V M X N J I K

$ Q A C B G O L B

Table 3.2: Square matrix representation of the key for TRIFID

cipher computation corresponding to alphabet A

67

all elements are concatenated to generate an encrypted byte sequence using the

byte concatenation rule based on the IP vendor selected encryption key (K4).

Finally, all elements are converted into binary equivalents to generate the final

encrypted signature and truncated based on the IP vendor selected truncation

length. The generated encrypted signature is further used to generate hardware

security constraints based on the IP vendor selected encoding rule (if the

Generation of scheduled data flow graph

(SDFG) based on initialized particle

position (resource constraints), CDFG of

target application, and allocation of storage

variables in SDFG

Generation of register allocation table

(RAT) using SDFG of target

application

List all storage variables into pairs which

are allocated to same color registers

Initial state matrix generation: Generation of a

state matrix by selecting a subset X’ from set X of

secret design data based on encryption key 1 (K1)

Bit manipulation: Conversion of each element of

state matrix to its corresponding AES-128-bit s-box

equivalents

Row diffusion: Execution of row-diffusion among

the elements of bit-manipulated state matrix based

on encryption key 2 (K2)

TRIFID cipher computation: TRIFID cipher

corresponding to each unique alphabet of row-

diffused state matrix is computed based on IP

vendor selected unique key corresponding to

different alphabets

Alphabetic substitution: Compute alphabetic

substitution to determine digit equivalent to each

unique alphabets of state matrix based on

encryption key 3 (K3) and output of TRIFID cipher

Generation of final signature based on IP vendor

selected truncation length and further generation of

hardware security constraints based on IP vendor

selected embedding rule

Matrix transposition: The final obtained matrix

after alphabetic substitution is transposed

Byte concatenation: Each element of final

generated transposed state matrix is concatenated

column wise based on encryption key 4 (K4) and

converted into its binary equivalents

Embedding the generated multi-layered encryption

and secret design data-based hardware security

constraints into the register allocation table (RAT)

of target image processing filter IP core

Multi-phase Encryption

Extraction of secret design

data

From PSO-DSE

exploration block

Secret design data generation block

Embedded design (with modified RAT) is

sent to PSO-DSE for new fitness

computation and determination of low-

cost secure architecture

Encryptio

n key-bits

Chosen mode of initial

state matrix formation

00 Select 2 elements

and skip subsequent 2.

01 Select 4 elements

and skip subsequent 4.

10 Select 8 elements

and skip subsequent 8.

11 Select 16 elements and

skip subsequent 16.

Encrypt

ion

key-bits

Description of selected

mode of row-diffusion

00 Perform circular right shift

operation by 1 element.

01 Perform circular right shift

operation by 2 elements.

10 Perform circular right shift

operation by 3 elements.

11 Perform circular right shift

operation by 4 elements.

Encryption

key-bits

Description of rule

to get digit

equivalents

000 t*u*v

001 t+u+v

010 |t-u-v|

011 |t-u+v|

100 (t+u)/v

101 (t+u) *v

Encrypti

on key-

bits

Description of rule

for byte

concatenation

000 (B0, B2, B1, B3)

001 (B0, B1, B3, B2)

010 (B0, B2, B1, B3)

011 (B0, B2, B3, B1)

100 (B0, B3, B1, B2)

101 (B0, B3, B2, B1)

Fig. 3.8. Details of multi-phase encryption-based hardware security methodology

68

signature bit is '0', then implant an artificial edge between (even, even) storage

variable pair, otherwise embed an artificial edge between (odd, odd) storage

variable pair). The artificial edges embedded between the storage variable

pairs of the RAT (corresponding to the image processing filter application)

indicate the covert hardware security constraints implanted into the design. An

artificial edge implanted between the storage variables of the design signifies

that the corresponding storage variables cannot be assigned to the same

register (i.e., forced distinct register assignment is made).

3.2.6. Key-driven crypto-chain-based hardware security methodology

The primary goal of the proposed key-driven crypto-chain-based hardware

security methodology is to produce secret hardware security constraints using

the scheduling information of the JPEG-CODEC, IP vendor specified

encoding rules, and IP vendor chosen crypto-keys. The primary inputs to this

security block are (a) IP vendor specified encoding rules, (b) IP vendor

specified keys to drive crypto-chain based security methodology, (c) IP vendor

specified bit padding and embedding rules, (d) IP vendor specified truncation

length, and (e) scheduling information obtained through transformed JPEG-

CODEC SDFG. Next, the obtained hardware security constraints are covertly

inserted into the design of the JPEG-CODEC using the HLS framework. The

presence of embedded security constraints in the design provides immunity

against IP piracy and fraudulent claim of IP ownership problems. Fig. 3.9

illustrates the proposed key-driven crypto-chain based security methodology

and its integration with FFA. The various steps involved in the generation of

secret security constraints are as follows:

Generation of initial bitstreams based on IP vendor specific encoding

mechanism: Initially, a bitstream is generated using scheduling information of

the JPEG-CODEC (SDFG), and IP vendor specified encoding mechanisms.

The scheduling information of JPEG-CODEC is highlighted in Table 3.3.

Further, the IP vendor specified encoding rules are shown in Fig. 3.6. The

encoding rules used to generate the initial bitstreams are decided by the

authentic IP vendor/designer, thus remaining completely unknown to an

attacker. There are 136 (l) operations in the SDFG of the JPEG-CODEC, as

depicted in Table 3.3. These are scheduled among different control steps using

69

resource constraints information (for example, scheduled using three adders

and three multipliers). For the sake of demonstration, the scheduling

information is taken from the SDFG of JPEG-CODEC that is scheduled using

three adders and three multipliers. However, in each iteration of the proposed

FFA-based security approach, the scheduling is performed using obtained

Control

step

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Operation

allocated

to Mul_1

1 4 7 18 21 24 35 38 49 52 55 66 69 72 83 86 97 100 103 114 117 120 48 96 - - - - - -

Operation

allocated

to Mul_2

2 5 8 19 22 33 36 39 50 53 56 67 70 81 84 87 98 101 104 115 118 16 64 112 - - - - - -

Operation

allocated

to Mul_3

3 6 17 20 23 34 37 40 51 54 65 68 71 82 85 88 99 102 113 116 119 32 80 - - 128 - - - 136

Operation

allocated

to Add_1

- 9 10 12 25 27 28 42 43 57 58 60 73 75 76 90 91 105 106 108 121 123 124 126 127 - 132 - - -

Operation

allocated

to Add_2

- - 11 13 26 29 41 30 44 46 59 61 74 77 89 78 92 94 107 109 122 125 129 130 131 - - 134 - -

Operation

allocated

to Add_3

- - - - 14 15 - - 45 31 47 - 62 63 - - 93 79 95 - 110 111 - - 133 - - - 135 -

Table 3.3: Scheduling information of JPEG-CODEC based on its SDFG scheduled using three adders and three multipliers

70

architectural configuration through FFA-driven DSE. That particular

scheduling information is used to generate the initial bitstream. Therefore,

these initial bitstream changes in each iteration for each architectural

configuration. Moreover, for the sake of brevity and simplicity during the

explanation of the proposed approach, we have assumed nine IP vendor

specified rules (e), as shown in Fig. 3.6. (Note: the value of 'e=9' is generally

very large as the IP vendor can devise potentially innumerable encoding

algorithms). Therefore, an initial l-bit bitstream is generated corresponding to

the nine different encoding rules (blocks). For example, as shown in Fig. 3.6,

encoding 1 (En_1): the output bit is 0 if the control step number and the

operation number in SDFG are both even; otherwise, output bit is '1'.

Therefore, if we compare the first operation number with its control step

number (i.e., also one as shown in Table 3.3), the output bit is '1'. Similarly,

the output for all remaining operations of the JPEG-CODEC application is

computed.

Conversion of the initially generated bitstream into 1024 bits and details of

the proposed crypto-chain algorithm: The proposed key-driven crypto-chain

based security methodology uses '2k' hash slices (each hash slice comprises

SHA-512 based crypto-chain module for the generation of the encrypted

bitstream). The SHA-512 accepts input in the form of 1024 bits. Therefore, the

initial l-bit bitstream is converted into a 1024-bit bitstream using an IP vendor

specified initial pre-processing technique. The initial pre-processing technique

used in the proposed security methodology is as follows: first, l-bits are taken

as input and converted to 896 bits by performing bit stuffing after l-bits. The

896 bits are generated post appending the initial l-bits with '1', followed by the

continuation of '0' till 896 bits. Further, the length of the initial bitstream (i.e.,

l) is converted into its 128-bit representation (for this, first convert 'l' into

binary and append continuation of '0' till 128-bit before binary bitstream).

Finally, these 128 bits are appended to the 896 bits to generate 1024 bits,

which is fed as input bitstream to the first hash slice of crypto-chain based

security methodology. The inclusion of nine different IP vendor-specific

encoding rules in the proposed hardware security methodology increases the

robustness of the proposed security methodology. Each encoding mechanism

71

generates a unique l-bit initial bitstream data, which is fed as input to the

different hash slices of the proposed security methodology. This uniqueness in

the generation of different initial bitstreams increases the robustness of the

proposed security methodology.

Crypto-chain: The proposed security methodology comprises several hash

slices connected as a chain in a cascaded way. The output of one hash slice

becomes the input of its subsequent hash slice. The cascading arrangement of

hash slices is illustrated in Fig. 3.8. The first 'k' (in this chapter, k is nine) hash

slices are the primary crypto components that accept the encoding blocks

generated bitstreams as input after performing IP vendor-specific pre-

512

Scheduled data flow graph (SDFG) generation using initialized

firefly position (resource constraints), CDFG of JPEG-CODEC,

and storage variables allocation in the generated SDFG

Output: Optimal crypto-chain secured

JPEG-CODEC datapath design

Bitstream generation using SDFG and IP vendor selected

encoding rules

Register allocation table (RAT) Modified register allocation table (with

embedded security constraints)
Embedding of security constraints using

register allocation phase of HLS FFA-DSE block

Key-driven crypto-chain

based security methodology

Secret security

constraints

embedding block

Fig. 3.9. Detailed flow diagram of the key-driven crypto-chain based security Methodology

Datapath design

Encoding-E2

Encoding-E1

Encoding-Ek

Hash slice 1

Hash slice 2

Hash slice k

Hash slice

k+1

512

512

1024

380

380

l

l

l

Initial

processing

Bit

stuffing

Bit

stuffing

--

-

Truncation of final

generated bitstream digest

Secret security constraints generation and
embedding using final digest and mapping rule

Hash slice

2k

Hash slice

k+2

Bit

stuffing

Bit

stuffing

Bit

stuffing

--

-

380

380

380

512

512

Crypto

-key 1

Crypto

-key k

Mux

1

k:1

Mux

k

k:1

l

l

l

log2k

bits

log2k

bits

72

processing. However, the remaining 'k' hash slices are controlled using

multiplexers (IP vendor specified crypto keys are used to control the output of

multiplexers).

Bit stuffing: The method of generating 1024 bits from l-bits (i.e., 136 for

JPEG-CODEC) for the first hash slice is already discussed above in this sub-

section. Next, the 136-bit output of the remaining encoding blocks (i.e., except

the first encoding block) is converted into 380 bits. For this, (380-l) bits of

continuous '0' is stuffed as a suffix of each l-bit output of the remaining output

block. All these bit-appending and stuffing algorithms are only known to the

IP vendor/designer, thus making it challenging for an adversary to regenerate

the exact output as the proposed security methodology.

Further, the method of generating 1024 bits (which acts as input to the second

hash slice) from 512 bits of the previous hash slice and 380 bits of primary

bitstream input (after pre-processing) is as follows: 512-bit output of the

previous hash slice is appended with "1000" followed by 380 bits (generated

using bit stuffing) to generate 896-bits. Finally, the length of the output of the

previous hash slice, i.e., 512, is converted into its 128-bit representation. This

conversion is done in a similar way as explained earlier in this sub-section,

and the obtained 128 bits are appended after 896 bits to generate 1024 bits.

Similarly, the output of each of the hash slices (512 bits) is converted into

1024 bits using 380 bits (obtained after pre-processing of input l-bit bitstream)

and 128 bits (generated using the length of the previous hash slice output, i.e.,

512). The output of (k-1)
th

 hash slice becomes the input of the k
th

 hash slice.

Hash slice: There are total '2k' hash slices in the proposed hardware security

methodology. Each hash slice is executed only once to generate the encrypted

512 bits as output which becomes the input to its subsequent hash slice.

Further, the round function within each hash slice (SHA-512) is executed as

per IP vendor specified iterations. The input to the first k hash slices is the pre-

processed output of encoding blocks. However, the input for the remaining 'k'

hash slices is controlled using multiplexers, as shown in Fig. 3.8. For 'k'

encoding blocks, 'k' multiplexers are required. The input of additional 'k' hash

slices is decided using IP vendor specific crypto keys. The maximum possible

73

hash slices for the k number of encoding blocks are 2k in our proposed

approach.

Further, the final generated 512-bit output is converted into its equivalent

hardware security constraints using IP vendor specified mapping/embedding

rules (discussed in the following sub-section). Finally, the generated hardware

security constraints are embedded into the design of the JPEG-CODEC IP

core during the register allocation phase of the HLS framework. Subsequently,

FFA-DSE explores the optimal resource configuration against secured

hardware IP design with the help of design cost function.

3.3. Illustrative Example: Watermark (Signature) Embedding

Process

The proposed multi-phase encryption based methodology is demonstrated on

the sharpening filter (SF) application. The SDFG of the SF application

scheduled with four adders and two multipliers (obtained through heuristic-

based architecture exploration) is illustrated in Fig. 3.10. Further, Table 3.1

depicts the initial RAT (with black and indigo colored storage variables)

corresponding to the scheduled SF. The different steps involved in the

demonstration with their corresponding outputs are shown in Fig. 3.11. The

secret information extracted from Table 3.1 and its hexadecimal equivalents are

shown in Figures 3.11. (a) and (b), respectively. An initial state matrix is

generated using IP vendor selected key value 1 (K1) (assumed "K1=01" for

demonstration). The generated initial state matrix is shown in Fig. 3.11. (c).

Next, the bit manipulated state matrix generated using AES forward

substitution box (S-box) is depicted in Fig. 3.11. (d). Then, the bit-manipulated

state matrix is subjected to row-diffusion based on IP vendor selected key 2

(K2) (assumed "K2=10 00 11 01 11"). Fig. 3.11. (e) depicts a row-diffused state

matrix. Next, the alphabetic substitution of the state matrix is shown in Fig.

3.11. (f). Further, the transposed state matrix is shown in Fig. 3.11. (g). Finally,

all generated transposed state matrix elements are concatenated based on IP

vendor byte concatenation key 4 (K4) (assumed "K4=010 101 000 100 011").

The obtained byte concatenated string is shown in Fig. 3.11. (h). Subsequently,

the final generated signature and its respective hardware security constraints

74

are depicted in Figures 3.11. (i) and (j). Further, the generated hardware

security constraints are embedded into the design. Two storage variable pairs

cannot be allocated to the same register while embedding the security

constraints in the RAT. Therefore, either the registers (colors) are swapped, or

a new register is added to accommodate the storage variable artificial edges.

Table 3.1 also depicts the final RAT (modified locations with red colored

storage variables) with embedded security constraints (as obtained in Fig. 3.11.

(j)) generated using low-cost multi-phase encryption.

Next, Fig. 3.12 demonstrates the security constraints generation and embedding

flow of the proposed key-driven crypto-chain based security methodology. As

*

*

*

*

+ + +

+

+

+

+

+

+

+

+

+

+

+

+

+

R

B

P

Y

G

I

LI
O

A

T

M

S

K

L

C

W

B

M

O

Bl

R2

R4

R6

R8

R10

R11

R12

R15

R16

R13

R14

R17

R19

R18

R22

R21

R20

R0

R1

R3

R5

R7

R9

Fig.3.10. PSO-based architecture exploration of 4(+), and 2(*) resources used for scheduling 3*3 sharpening filter

C0 C1 C2 C3 C4 C5 C6

Gr

O0

O1

R23

R24

R25

R26

R28

R27

R29

R30

R31

R32

R33

R34 R35 R36

R37

A1
M1

A2

A3

A1

A1 A1

A4

A2

A3

A2

10

1

2

3

4

5

6

7

8

9

11

12

13 14 15

16

17

18

I00

I01

I02

I10

I12

I20

I21

-1

I11

I22

I02

I11

I01

I03

I13

I21

I22

I23

9

-1

M1

19 20

R38

R39 R40

9

I12

M2

A4

A1

A2

A3

A4

M2 A2

R41

V

75

shown in Figures 3.12. (a) and (b), the scheduled DFG of JPEG-CODEC is

initially taken as input, and bitstreams are generated corresponding to different

IP vendor selected encoding rules using scheduling information. Further, Fig.

3.12. (c) highlights the generated bitstreams corresponding to different IP

vendor selected encoding rules (or encoding blocks such as En_1 to En_9).

Each encoding block generates 136 bits value as JPEG-CODEC comprises 136

operations (shown in Table 3.3). Next, the generated 136 bits corresponding to

the first encoding block (i.e., En_1) are passed through the pre-processing step

to generate 1024 bits. The steps to generate 1024 bits from 136 bits are

discussed in the previous subsection. The final generated 1024 bits are fed as

input to the first hash slice to generate an encrypted output (hash digest) of 512

bits. Figures 3.12. (d), (e), and (f) represent the initial 136 bits corresponding to

En_1, generated pre-processed 1024 bits, and 512 bits output of the first hash

slice, respectively. Further, as shown in Figures 3.12. (g) and (h), the 512-bit

output of the previous hash slice (i.e., first hash slice) and 136 bits from the

second encoding block (i.e., En_2) are taken as input. Again, processed 1024

bits are generated and fed as input to the second hash slice. The complete steps

regarding the generation of 1024 bits from 512 bits of the previous hash slice

and 136 bits of the current encoding block for the remaining hash slices (i.e.,

from the second to ninth hash slices) are discussed in the previous subsection.

The primary input to hash slices #2-#9 is the output bitstreams generated from

encoding blocks #1-#8, respectively. Figures 3.12 (i) and (j) represent the

processed 1024 bits and the output of the second hash slice. Similarly, 512-bit

hash digest as output is generated corresponding to the remaining hash slices

till the ninth hash slice.

Further, the primary inputs of the remaining hash slice (i.e., from #10-#18 hash

slices) are controlled using multiplexers and IP vendor selected crypto keys.

Let IP vendor selected crypto keys for our proposed approach are as follows;

"1001 0010 0100 0001 0111 1000 0011 0110 0101". Therefore, as shown in

Figures 3.12. (k) and (l), the tenth hash slice accepts 512 bits output of the

ninth hash slice and 136 bits output of encoding block nine (i.e., En_9 based on

IP vendor selected crypto key "1001"), respectively. Figures 3.12. (m) and (n)

denotes generated processed 1024 bits, fed as input to the tenth hash slice, and

76

obtained 512 bits of tenth hash slice output. Next, the hash digest

corresponding to the remaining hash slices is computed in a similar fashion.

Figures 3.12. (o), (p), (q), and (r) represent the 512-bit hash digest from the

seventeenth hash slice, input bitstream based on IP vendor selected crypto key

"0101" (i.e., En_5), processed 1024 bits, and finally generated 512 bits hash

digest (signature), respectively. Figures 3.12. (s) and (t) depict the final 512-bit

signature (digital template) and secret security constraints generation process.

25 27 83 8A

6D 18 1B 3B

9B 45 39 4B

07 8B 5C 89

3A 76 9A AB

 (c). Initial state matrix generation

based on IP vendor selected

encryption key 1 = “01”

3F CC EC 7E

3C AD AF E2

14 6E 12 B3

C5 3D 4A A7

80 38 B8 62

 (d). Bit-manipulated

 state matrix

AES forward s-

box substitution

CC EC 7E 3F

E2 3C AD AF

14 6E 12 B3

4A A7 C5 3D

80 38 B8 62

 (e). Row-diffused state matrix

 based on IP vendor selected

10 00 encryption key 2 = “

11 01 11”

Initial state matrix generation

Row-

diffusion

88 48 74 37

42 38 62 67

14 64 12 33

46 67 85 32

80 38 38 62

 (f). Alphabetic substituted state

 matrix using alphabetic digit

equivalents obtained using TRIFID

cipher and encryption key value 3

Alphabetic

substitution

88 42 14 46 80

48 38 64 67 38

74 62 12 85 38

37 67 33 32 62

 (g). Final obtained state matrix

after transposing alphabetic

substituted state matrix

Matrix

transposition

(a). Secret data extracted from register allocation table of sharpening filter scheduled

using PSO-based architectural exploration resource constraints (4 adders and 2

multipliers):

(0,36),(32,34),(33,39),(35,36),(1,40),(25,38),(7,29),(3,25),(22,32),(40,41),(22,35),(23,40)

,(8,30),(0,35),(0,32),(32,36),(1,33),(1,39),(33,41),(39,41),(4,26),(23,33),(22,34),(34,36),(

23,39),(5,27),(0,22),(9,31),(1,23),(32,35),(0,34),(33,40),(2,37),(24,37),(6,28),(1,41),(39,4

0),(34,35),(22,36),(23,41),(3,38),(2,24)

(b). Conversion of secret data extracted into their corresponding hexadecimal format

:(0,7), (0,9), (0,D), (0,E),(2,5),(2,7),(8,3),(8,A),(2,9),(0,6),(7,5),(2,4),(6,D),

(1,8),(1,B),(3,B),(0,2),(8,0),(9,7),(1,9),(9,B),(4,5),(3,9),(4,B),(7,4),(5,6),(7,E),(0,5),(0,7),(

8,B),(5,C),(8,9),(2,6),(0,4), (1,3),(1,A),(3,A),(7,6), (9,A), (A,B),(4,6)

(h). Byte concatenation based on IP vendor selected

encryption key value 4 (“010 101 000 100 011”):

8874483742676238141264334632678580386238

(i). Final generated digital signature: 100010001111001001000111111001011011111

01011100011001101101001111100110111011011110001011000011100011010111000

(j). Final generated hardware security constraints based on IP vendor selected encoding

rule: (R0,R2),(R0,R4),---,(R2,R38),(R2,R40),(R4,R6),(R4,R8),---,(R6,R12),

(R6,R14),(R1,R3),(R1,R5),---,(R1,R39),(R1,R41),(R3,R5),(R3,R7),---,(5,23),(5,25)

Fig. 3.11. Demonstration of the proposed multi-phase encryption methodology on sharpening

filter IP core with its corresponding outputs

77

The generated signature is converted into its corresponding hardware security

constraints using IP vendor chosen truncation magnitude and embedding or

mapping rules. The IP vendor chosen mapping rule for the proposed hardware

security methodology is as follows:

 Embed an additional (i.e., artificial) edge between (even, even) storage

Hash slice 18

Input (o) (p)
(q) (r)

(g) (h) Input
(i) (j)

Hash slice 2

(f) (e) (d)

Hash slice 1

(c) Generated bitstream

Hash slice 10

(k) (l) Input (n) (m)

(a) Scheduled JPEG-CODEC DFG

(b) Generation of bitstreams using scheduled JPEG-

CODEC DFG based on IP vendor selected encoding

rules

Encoding Generated bitstream

En_1 1110101111101110101011101111101010111010101110----------------

1111101010111010

En_2 01001001110011100010010001111010100100100001000--------------

--0111100000010000

------ --

En_9 111---------------------

11111111111111111

Initial 136-bit

bitstream (En_1)
Preprocessed

bitstream (1024-bits)

Output: 512-bits

bitstream digest

512-bits

bitstream digest

of previous slice

Input bitstream

from En_2

Processed (bit

stuffed) bitstream

(1024-bits)

Output: 512-bits

bitstream digest

512-bits

bitstream digest

of previous slice

Input bitstream based

on IP vendor selected

crypto key (1001)

Processed (bit

stuffed) bitstream

(1024-bits)

Output: 512-

bits bitstream

digest

512-bits

bitstream digest

of previous slice

Input bitstream based

on IP vendor selected

crypto key (0101)

Processed (bit

stuffed) bitstream

(1024-bits)

Output: 512-

bits bitstream

digest

(s) Final generated signature (512-bit)

(t). Secret security constraints generation based on obtained signature and IP

vendor selected mapping rules

Fig. 3.12. Security constraints generation flow of the proposed low-cost key-based

crypto-chain methodology

78

variables pair in the RAT framework in case of bit '0'; otherwise,

embed an edge between (odd, odd) storage variables pair.

Further, the generated key-driven crypto-chain based secret security constraints

are implanted into the design of the JPEG-CODEC IP core using register

allocation information i.e., RAT framework of the HLS process. Some of the

generated security constraints are as follows: <Q0, Q2>, <Q0, Q4>---<Q0,

Q262>---<Q244>, Q128>,<Q1, Q3>---<Q1, Q263>---<Q3, Q261>. Fig.

3.12. also includes the security constraints embedding process flow. The key

concept behind embedding secret security constraints (artificial edge) is that

 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16

R_1 Q0 Q128/Q129 Q136/Q137 Q144/Q145 Q152/Q153 Q160/Q161 Q168/Q169 Q176/Q177 Q184/Q185 Q220/Q221 Q238/Q239 Q244/Q245 Q252/Q253 Q258/Q259 Q261 - Q263

R_2 Q1 Q129/Q128 Q137/Q136 Q145/Q144 Q153/Q152 Q161/Q160 Q169/Q168 Q177/Q176 Q185/Q184 Q221/Q220 Q239/Q238 Q245/Q244 Q253/Q252 Q259/Q258 - Q262 -

R_3 Q2 Q130/Q131 Q138/Q139 Q146/Q147 Q154/Q155 Q162/Q163 Q170/Q171 Q178/Q179 Q186/Q187 Q222/Q223 Q240/Q241 Q246 Q254 Q260 Q260 - -

R_4 Q3 Q131/Q130 Q139/Q138 Q147/Q146 Q155/Q154 Q163/Q162 Q171/Q170 Q179/Q178 Q187/Q186 Q223/Q222 Q241/Q240 Q247/Q248 Q255 - - - -

R_5 Q4 Q132 Q140 Q148 Q156 Q164 Q172 Q180 Q188 Q236 Q236 Q248/Q247 Q256 - - - -

R_6 Q5 Q133 Q141 Q149 Q157 Q165 Q173 Q181 Q189 Q237 Q237 Q249 Q257 - - - -

R_7 Q6 Q134 Q142 Q150 Q158 Q166 Q174 Q182 Q190 - Q242 Q250 - - - - -

R_8 Q7 - Q143 Q151 Q159 Q167 Q175 Q183 Q191 - Q243 Q251 - - - - -

R_9 Q8 Q8 Q192 Q196 Q200 Q204 Q208 Q212 Q216 - - - - - - - -

R_10 Q9 Q9 Q193 Q197 Q201 Q205 Q209 Q213 Q217 - - - - - - - -

R_11 Q10 Q10 Q194 Q198 Q202 Q206 Q210 Q214 Q218 - - - - - - - -

R_12 Q11 Q11 Q195 Q199 Q203 Q207 Q211 Q215 Q219 - - - - - - - -

R_13 Q12 Q12 - Q224 Q224 Q224 Q227 Q224 Q224 Q224 - - - - - - -

R_14 Q13 Q13 - Q225 Q225 Q225 Q225 Q225 Q225 Q225 - - - - - - -

R_15 Q14 Q14 - - Q226 Q226 Q226 Q226 Q226 Q226 - - - - - - -

R_16 Q15 Q15 - - Q227 Q227 Q227 Q227 Q227 Q227 - - - - - - -

R_17 Q16 Q16 Q16 - - Q228 Q228 Q228 Q228 Q228 - - - - - - -

R_18 Q17 Q17 Q17 - - Q229 Q229 Q229 Q229 Q229 - - - - - - -

R_19 Q18 Q18 Q18 - - - Q230 Q230 Q230 Q230 - - - - - - -

R_20 Q19 Q19 Q19 - - - Q231 Q231 Q231 Q231 - - - - - - -

R_21 Q20 Q20 Q20 - - - - Q232 Q232 Q232 Q232 - - - - - -

R_22 Q21 Q21 Q21 - - - - Q233 Q233 Q233 Q233 - - - - - -

R_23 Q22 Q22 Q22 - - - - - Q234 Q234 Q234 - - - - - -

R_24 Q23 Q23 Q23 - - - - - Q235 Q235 Q235 - - - - - -

R_25 Q24 Q24 Q24 Q24 - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - -

R_129 Q135 Q135 Q135 Q135 Q135 Q135 Q135 Q135 Q135 Q135 Q135 Q135 Q135 Q135 Q135 Q135 -

Table 3.4: Register allocation table corresponding to JPEG-CODEC prior to and after implanting secret security constraints for

proposed low-cost crypto-chain signature

79

the storage variables corresponding to the additional edge cannot be allocated

on the same register. If the storage variables of the incoming artificial edge are

allocated on the same register. Then, either a color swapping between registers

is performed, or a new register is allocated to meet the hardware security

requirement. In other words, a forced distinct register allocation is performed

while embedding security constraints. Further, Table 3.4 reports the register

allocation table before and after embedding the crypto-chain signature into the

JPEG-CODEC. (Note: the black color (normal) registers in the Table are the

initial position of the registers, while the black colored (bold) registers are the

final position of the register after embedding the secret security constraints).

The embedded security constraints are represented in terms of change in the

positions of registers in the SDFG of the JPEG-CODEC. The alteration in the

final position/color of the register reports the embedding of the crypto-chain

signature. The presented low-overhead security algorithm offers robust security

with zero design cost overhead (i.e., an additional register is not needed after

embedding the secret security constraints).

3.4. Watermark Detection Process

3.4.1. Distinguishing between genuine and pirated/fake IP cores

The presence of the proposed hardware security/watermarking constraints

(generated through the proposed security algorithms) clearly enables the

detection of IP piracy. While performing piracy detection, the key-driven

crypto-chain based signature is regenerated using the proposed algorithm and

matched with the embedded signature (which is embedded as covert (security)

constraints) of the IP core under test. At first, the total number of different bits

(such as # '0s' and # '1s') present in the signature is matched during

litigation/conflict resolution. Next, if the count of the 0's and 1's matches, then,

in that case, bit position matching is performed during litigation/conflict

resolution. Only an authentic IP vendor would be able to successfully perform

the above matching process to validate authenticity. On the contrary, an

attacker would fail to regenerate the original signature and match it with the

embedded one, thereby failing to validate authenticity. The dependence of the

proposed hardware security methodologies on various security factors

(explained in previous sub-sections) makes the proposed security methodology

80

highly robust. The presence of various security factors makes it challenging

for an adversary to regenerate the exact signature. They require complete

information corresponding to the proposed security methodology, which is

only known to the IP vendor/designer.

3.4.2. Resolution of false IP ownership claim

Further, Further, the presence of the proposed signature in the IP core also

protects from fraudulent claims of IP ownership. An IP can be fraudulently

claimed by an attacker in the SoC house or foundry. For awarding correct

ownership initially, the proposed signature/watermark is regenerated. Further,

the signature is converted into hardware security constraints. Next, the

regenerated security constraint information is matched with the extracted

register allocation information of the IP core under test. The ownership is

granted to the authentic IP vendor in case of a comprehensive information

match. Therefore, the proposed security algorithm also nullifies false claims of

IP ownership besides IP piracy.

3.5. Summary

Two novels security methodologies: (a) PSO driven multi-phase encryption

and (b) firefly algorithm driven low-cost crypto chain based security

methodologies for designing optimal secured image processing filter and

JPEG-CODEC IP cores are presented in this chapter. The proposed PSO-

driven multi-phase encryption mechanism employs strong security layers such

as bit manipulation, row diffusion, TRIFID cipher computation, alphabetic

substitution, and byte concatenation to generate a highly robust and tamper-

tolerant signature. The main focus of the chapter is to offer a detective

countermeasure against potential IP piracy and false claims of IP ownership

by attackers in the SoC design house or foundry. The threat model considers

the IP vendor as the defender and the SoC integrator/foundry as the attacker.

Next, the proposed low-cost key-driven crypto-chain based security

methodology incorporates an IP vendor specified encoding mechanism,

crypto-keys, #SHA-512 hash slices, and mapping rules to generate secret

hardware security constraints. These elements together create a tamper-

tolerant signature, which is further converted into security constraints and

81

embedded into the optimal hardware IP core design obtained using the firefly

algorithm based exploration technique. This embedding of security constraints

(i.e., digital evidence) safeguards the hardware IP cores from IP piracy and

fraudulent claims of IP ownership. Both approaches involves multiple security

layers to generate a tamper tolerant signature/watermark, which makes the

regeneration harder for the adversary to evade the piracy detection process.

The experimental results of the PSO driven multi-phase encryption and low-

cost key-driven crypto-chain based security methodologies have been

discussed and analyzed in the chapter 9 of this thesis.

82

Chapter 4

Enhanced Security for Hardware IPs Using IP Seller’s

Protein Molecular Biometrics and Facial Biometric-

based Encryption Key

Hardware IP cores, embedded in a variety of electronic devices such as

smartphones, cameras, and health bands, play a critical role in enhancing the

performance and efficiency of these devices. In the digital ecosystem, DSP co-

processors are essential for handling complex tasks like data compression and

decompression, filtering, and image processing. These DSP algorithms are

often implemented using dedicated IP cores, which can be designed at a higher

level using HLS framework, later synthesized into a RTL data path. With the

increasing globalization of the design supply chain, the development of

electronic devices and multimedia systems often involves multiple offshore

entities, including third-party IP (3PIP) vendors. This introduces the risk of

hardware threats such as IP piracy and false claims of IP ownership.

Pirated/Counterfeit IPs can compromise user safety and system reliability,

potentially causing issues like sensitive data leaks, excessive heat generation,

or malfunctioning of DSP hardware. Therefore, it is vital for SoC integrator to

safeguard end user against these threats. Moreover, without adequate security

mechanisms, adversaries may falsely claim IP ownership. To address such

ownership and piracy threats, embedding a robust security marker within the

IP can be instrumental in countering false ownership claim and identifying

pirated IP cores. The SoC integrator can easily verify the embedded IP

vendor's authentic watermark before integration into the final system.

Security against IP piracy is crucial for consumer electronics (CE) systems for

two key reasons: (i) pirated designs often bypass thorough reliability and

safety testing, and (ii) they are more likely to contain malicious hardware

Trojans. A SoC integrator can source IP cores directly from vendors or

through intermediaries (IP brokers). However, rogue suppliers may introduce

counterfeit IPs into the supply chain, driven by illegal motives. This poses

significant risks to both CE system integrator and end consumer, making it

crucial to ensure only genuine IPs are used in CE systems. These

compromised IP cores pose significant risks when integrated into CE systems.

83

By embedding a unique encrypted protein biometric signature/watermark of

the IP vendor, the proposed approach allows authentic IP cores to be

distinguished from pirated ones, preventing counterfeit designs from being

incorporated into SoCs. This ensures the safety and reliability of CE devices

for consumer. The method is particularly effective in identifying fake IPs,

especially when rogue suppliers attempt to introduce pirated components into

the supply chain. The proposed solution helps ensure that only legitimate IPs

are used in the design and manufacturing process, safeguarding both the

system integrator and the end consumer.

This chapter introduces a novel encrypted protein molecular biometric

approach for securing hardware/DSP IP cores against piracy and fraudulent IP

ownership claim. This method effectively counters false ownership claim and

detects counterfeit IPs before they are integrated into electronic systems. The

first section of the chapter outlines the problem formulation, threat model and

overview. The second section discusses the details of encrypted protein

molecular biometrics based security approach. Following this, the third section

illustrates the embedding of the proposed watermarking constraints with

relevant examples. The fourth section then covers the process of watermark

detection. Lastly, the fifth section provides the chapter's conclusion.

4.1. Overview

4.1.1. Threat model and motivation

The threat model is clearly described in the introduction section of this

chapter. The proposed approach effectively counters false claims of IP

ownership by utilizing the inherently unique molecular and physical biometric

properties of the legitimate IP vendor, such as protein samples for molecular

signature generation and facial biometrics for encryption key creation. Unlike

traditional watermarking and digital signature methods, this robust encoding

and encryption process ensures that even if an adversary were to somehow

replicate the signature (which is highly unlikely), they would be unable to

claim the vendor's identity. The detailed process of signature generation

remains unknown to potential attackers, further preventing fraudulent

ownership claim. Additionally, the approach ensures strong detection and

84

isolation of counterfeit IP cores through the embedded, encrypted protein

molecular signature, safeguarding the authenticity of the IP design.

4.1.2. Input and Outputs

The primary inputs are (a) transfer and computation function/CDFG of

hardware (DSP) application, (b) IP vendor’s amino acid sequence/protein

biometric sample, (c) IP vendor’s facial biometric sample, (d) AES encryption

key, (e) IP vendor’s concatenation and embedding rules, and (f) IP vendor’s

specified resource constraints. The final output is an encrypted protein

biometric embedded secure RTL datapath of input hardware application.

4.1.3. Target Platform

The proposed security methodologies can be seamlessly integrated with any

electronic design automation (EDA) tools. The techniques can easily be

combined with HDL, or any high-level language used for IP generation within

design tools.

4.1.4. Security framework using IP seller’s protein molecular and facial

biometrics

This chapter presents a novel approach for securing hardware IP cores by

leveraging both "physical biometrics" (facial biometrics for encryption key)

and "molecular biometrics" (protein molecular sequences as watermark

signature) from the legitimate IP vendor. This method provides a unique

cellular and molecular-level signature derived from the IP vendor's body

sample, offering robust protection against piracy and false ownership claim.

Fig. 4.1 depicts the overview of proposed encrypted protein molecular

biometric based security methodology. The proposed system generates an

encrypted protein molecular signature from the amino acid sequence, obtained

through the protein sequenator process. Additionally, the encryption key for

the signature is derived from the vendor’s facial biometrics. One key

advantage of this approach is that it does not require resequencing or

recapturing the vendor’s biometric data during the verification process.

Instead, a pre-stored encrypted digital template (securely stored in a database),

is used for authentication and counterfeit detection. This eliminates the need

for continuous biometric input and ensures that the method is immune to

85

variations in facial recognition conditions, such as changes in camera angles,

scales, or lighting. Thus, the facial biometrics and molecular signature remain

consistent during both the embedding and detection phases, corresponding to

the genuine IP vendor. This has already been established in the literature [20],

[24], [32], [36], [37].

The encrypted protein molecular signature is generated using a sequence of 20

amino acid chemical components extracted from the IP vendor’s body sample.

This sequence is then fed as input into the AES encryption process, along with

the encryption key derived from the vendor’s facial biometric features. The

result is a highly secure, robust encrypted molecular biometric

signature/watermark. To further enhance security, covert hardware

security/watermarking constraints are generated from the encrypted signature

using an IP seller’s embedding/encoding/mapping algorithm/rule (as shown in

phase 1 in Fig. 4.1). These constraints are then embedded into the

Protein molecular structure

sample of IP vendor

Protein molecular signature

generation using chains of 20

different amino acid

molecules of human body of

the IP vendor

Module library

Resource

constraints

Algorithmic description

of DSP application

Encrypted amino acid digital signature of protein molecule

using facial biometric

AES encryption

Implanting secret security

information during HLS

phase of IP core design

process

10001000….11

Secret security information

Secured RTL datapath of

DSP coprocessor

Convert the encrypted

amino acid signature of

protein molecule into covert

hardware security

constraints

IP vendor specified secret

encoding rule

Facial biometric of IP

vendor

Generated facial signature

using facial features

Encryption key

using facial

biometric

Phase-1

Phase-2

Fig. 4.1. Overview of proposed encrypted protein molecular biometric

based security methodology

86

DSP/hardware design during the register allocation phase of the HLS process

(as shown in phase 2 in Fig. 4.1). Ultimately, the method produces a secure

RTL design for the DSP coprocessor. The detailed process is elaborated

below.

4.2. Encrypted Protein Molecular Biometrics based Security

Approach

4.2.1. Introduction to protein molecular amino acid sequences

Human body protein is composed of linear sequence of amino acids. These

amino acids are linked to one another through a bond by linking the carboxylic

acid group of one amino acid with the amine group of another amino acid

called peptide bond. The connected amino acids through peptide bonds in

series, forms polypeptide chain or protein sequence. Each protein has a unique

amino acid sequence. In a protein sequence chain, there are twenty different

amino acids which by linking together forms the chain of amino acids. The

largest polypeptide chain may contain 5000 amino acids [102]. A specific

digit/letter is used to represent each of the twenty different amino acids present

in the protein sequence chain. The process of determining the amino acid

sequence from the collected body sample is termed as protein sequencing. It is

the practical process for determining the sequence of amino acids in protein

sample. However, partial sequencing is also capable to infer sufficient

information for identification. The protein samples can be collected from

human body samples such as hair, bone, fingernail, saliva, muscle and

fingermark etc. Further, the human samples such as hair, bone and muscle

samples are more effective for individual identification [103]-[105]. Upon

collecting the sample(s), they are brought for protein sequencing, where the

samples are applied on swabs and digested with trypsin in order to obtain

peptides. Trypsin is an enzyme that starts the digestion of protein molecules

by cutting long chains of amino acids into smaller pieces. In this process, the

samples such as blood and saliva are characterized by the presence of

hemoglobin and alpha-amylase1 biomarkers. Similarly, other samples are

identified using corresponding biomarkers. There are two widely used

methodologies for protein sequencing viz. mass spectrometry and Edman

degradation [106]. Both these methodologies are used for performing protein

87

sequencing using sequenator (sequencer). The ongoing and recent

developments in the field of proteomics, renders it impactful and important for

forensics and unique identification. With the development in the field of

proteomics in terms of increased availability of high-resolution mass

spectrometers, maturity of sequencing and different methodology for protein

sequencing have been effective and useful for enabling the usage of protein

molecular for unique identification.

Typically, the sequencing process of protein comprises of the following steps:

a. Break the disulfide bridges in the protein using reducing agent.

b. Form the separate chain(s) of protein complex.

c. In each chain, determine the terminal and composition of amino acids.

d. Divide each chain into small size fragments (up to 50 amino acids in

each).

e. Separate each of the resultant fragment and purify them.

f. Exploit the fragments to determine amino acid sequence.

g. Repeat steps 1-6, to construct overall protein sequence.

4.2.2. Advantages of protein molecular biometric signatures compared to

DNA molecular biometrics

The protein sequencing is more advantageous than DNA sequencing from the

perspective of molecular biometrics for generating unique and robust digital

signature [102], [103]:

a. Compared to genomic analysis, proteomics (proteomics is large scale

study of all proteins of an organism or system by using mass

spectrometry) can provide an accurate distinctive detail of the human

body sample. Protein analysis is a confirmatory and orthogonal

technique that helps in forensic identification.

b. The proteins in sample are more persistent and chemically more robust

than DNA and can persist for longer durations, whereas DNA can

become degraded in the environment.

c. DNA sample contains the genome information whereas proteins are

much of what determines a cell's characteristics and function.

88

d. Protein sequencing is more accurate than DNA sequencing because the

proteins are composed of twenty amino acids while the DNA contains

only four chemical compositions. Therefore, the signal to noise ratio in

protein sequence chain is much better as compared to DNA.

e. The generated protein molecular signature is highly distinctive than

DNA signature which results in unique identification of sample.

f. The generated protein molecular signature results in higher tamper

tolerance ability (robustness of digital evidence) and lower probability

of coincidently detecting the authentic secret security constraints

within an unsecured design (higher security strength).

Therefore, protein molecular signature, generated from the amino acid

sequence contains more accurate distinction of human body sample at the cell

level. Due to advancement in the field of biosciences, it is easy to analyze the

protein sample and report the sequence of amino acids present in a human

body sample. Moreover, the process of protein sequencing is cost effective

which makes it feasible for unique sample identification using the concept of

molecular biometrics.

4.2.3. Generation of the Proposed IP seller’s protein molecular signature

As discussed in earlier section that protein sample can be analyzed using

protein sequenator for generating the protein sequence. For explaining the

process of proposed molecular signature generation, we have considered the

protein sequence of the human body of the IP vendor as input, as shown in

Fig. 4.2. In this protein molecular sequence of amino acids as shown in Fig.

4.2, the formation of amino acid chain comprises of 20 different amino acids,

resulting into a long polypeptide chain. Therefore, in this protein sequence, the

polypeptide chain consists of 380 amino acids. Each amino acid is represented

by a unique alphabet. Further it is to be noted that the polypeptide chain length

is scalable depending upon the smaller or larger amino acid sequence

generated from the human body protein sample. The polypeptide chain length

can be selected based on the IP vendor choice. Subsequently, for the selected

amino acid sequence length of the polypeptide chain, encoding is performed.

Each amino acid has a unique encoding based on their alphabetical positions.

For example, for amino acid methionine (M), the alphabet position is 13 and

89

corresponding encoded binary bits are 1101, for proline (P) the alphabet

position is 16 and corresponding encoded binary bits are 10000, while for

tryptophan (W) it is 10111 etc. Subsequently, all amino acids are encoded with

Generating the protein molecular signature corresponding to protein molecules

structure of IP vendor (Generated molecular signature)

“11011000011011111101010010001110101111010111100111011001101110000101

101101110011000010011001001110111000111011101000110111011101…………

….011010111100110110110101110110110111011110010110111111000110011100

11001001101100110000110001”

Encoding amino acids of protein using encoding algorithm
Naming

conventions of

amino acids

Alphabet

position &

Binarize
value

Naming

conventions

of amino
acids

Alphabet

position &

Binarize
value

Naming

conventions

of amino
acids

Alphabet

position &

Binarize
value

M (13) -1101 K (11)-1011 V (22)-10110

P (16) -10000 L (12)-1100 I (9)-1001

F (6)-110 Y (25)-11001 Q (17)-10001

G (7) - 111 E (5)-101 C (3)-11

N (14) - 1110 D (4)-100 R (18)-10010

T (20)- 10100 S (19)-10011 W (23)-10111

H (8)-1000 A (1)-1 - -

Amino Acids

Sample primary structure of polypeptide chain of amino acids of protein

Polypeptide chain

I

H P
F

Y
L

Y
G

T

N
N

K P E
E

L

H K F

D

R

S

I

D

F

H G

P

G

K N

K
V L

R
D

K K

K

T

E
Y

E

L

L

M

F

P

T
L

D

P

K H N N H M

E Y
A

V
Q

D

S

D D I

P G F

T

T G N

P
V V

V F K
E

V

S

I

E
A

C

D

E

M T

G

G
V

E

I P A Q

Q

G

M

Y

S I
D

D

Amino acids of protein or peptide
Ala: Alanine (A)
Arg: Arginine (R)

Asn: Asparagine (N)

Asp: Aspartic acid (D)
Cys: Cysteine (C)

Glu: Glutamic acid (E)

Trp: Tryptophan (W)
Tyr: Tyrosine (Y)

Val: Valine (V)

Thr: Threonine (T)

Gln: Glutamine (Q)
Gly: Glycine (G)

His: Histidine (H)

Ile: Isoleucine (I)
Leu: Leucine (L)

Lys: Lysine (K)

Met: Methionine (M)
Phe: Phenylalanine (F)

Pro: Proline (P)

Ser: Serine (S)

Input sample of protein

Protein structure

Formation of

amino acid

sequence of a

protein or

peptide

Fig. 4.2. Generating the protein molecular signature corresponding to amino acid

sequence of sample protein

90

a unique encoding bit. Finally, by concatenating the binarized bits

corresponding to amino acids of polypeptide chain, protein molecular

signature is obtained. The binarized protein molecular signature of 1500 bit

from amino acid sequence chain corresponding to protein sample of IP vendor

is generated.

4.2.4. Using IP seller’s facial biometrics to generate encryption keys

In order to generate encrypted protein molecular signature for securing DSP

hardware IP cores, facial biometric based encryption key has been used. The

process of facial biometric key generation from the facial features of IP vendor

has been discussed below:

a. Capture the facial image of IP vendor using high resolution camera.

b. This captured facial image is then subjected to a specific grid size and

spacing (specified by the IP vendor for generating the nodal points on

the facial image precisely). This also mitigates the impact of face

movement, thereby resulting in accurate facial feature generation.

c. Based on the selected feature set (among eleven features as shown in

Fig. 4.3), nodal points are generated on the facial image.

d. Assign the naming conventions on nodal points of facial image.

e. Generate the facial image with IP vendor chosen feature set.

f. Compute the feature dimensions between the nodal points

corresponding to each facial feature chosen by IP vendor for

encryption key generation. To do this, first the coordinates of each

nodal points are computed and subsequently, feature dimensions are

computed using Manhattan distance (|x2-x1|+|y2-y1|), where (x1, y1)

and (x2, y2) are the coordinates of the facial feature nodal point.

g. Each feature dimension of selected facial features is transformed into

their corresponding binarized value.

Finally, based on the concatenation order of facial features (decided by IP

vendor), the facial biometric based encryption key is generated. For example:

for the following concatenation order of facial features such as: (HFH) &

(IPD) &(BOB) &(IOB) &(OB) &(WNR) &(WF) &(HF) &(WNB) &(NB)

91

&(OCW), the encryption key has been generated as shown in Fig.3. Further,

the IP vendor generated facial key is to be used in AES encryption.

Note: Facial biometric renders robustness even if an adversary is look alike or

twin to the true vendor. Furthermore, exact regeneration of encryption key is

impossible for an adversary as it depends on several intricate parameters such

as (a) grid size/spacing used in determining the precise coordinates of nodal

points (b) type of chosen feature set by true IP vendor (among the exhaustive

features for generating digital template) c) their concatenation order, all are

only known to an authentic IP vendor.

4.2.5. Generation of encrypted protein molecular biometric signature

using AES encryption

Generating the facial biometric encryption key based on the IP vendor decided feature

order

 (Generated facial encryption key)

1000001010001100110101111000110100101111011101000011101100100001011011

0111111111000

Subjecting the captured facial image with grid size and spacing

Designer selected feature set
HFH: Height of Forehead (P1-P2)

IPD: Inter Pupillary Distance (P3-P4)
BOB: Bio- Ocular Breadth (P5-P8)

IOB: Inter – Ocular Breadth (P6-P7)

OB: Ocular Breadth (P5-P6) or (p7-p8)
WF: Width of face (P9-P10)

HF: Height of Face (P1-P18)

WNB: Width of Nasal Base (P13-P14)
NB: Nasal Breadth (P12-P15)

OCW: Oral Commissure Width (P16-P17)

WNR: Width of Nasal Ridge (P2-P11)

Assign naming

conventions on

nodal points

Generate the facial image with chosen features

Input image captured using high resolution camera

Nodal points

generation process

Fig. 4.3. Demonstration of facial biometric key generation used for encrypting the

protein molecular signature

Coordinates Dimension Binary value

(240, 120)- (240, 250) 130 10000010

(170, 280)- (310, 280) 140 10001100

(130, 285) -(345, 285) 215 11010111

(205, 285) - (275, 285) 70 1000110

(130, 285) - (205, 285) 75 1001011

(240, 250) - (240, 360) 110 1101110

(105, 325)- (375, 325) 270 100001110

(240, 120)- (240,520) 400 110010000

(220, 375) - (265, 375) 45 101101

(195, 375)- (290, 375) 95 1011111

(185, 440)- (305, 440) 120 1111000

92

The inputs to the AES encryption phase of proposed approach are: 1) unique

protein molecular biometric signature (generated using chain of twenty

different amino acids) of body sample of IP vendor and 2) encryption key

which is derived from the facial biometric features of IP vendor. The

encrypted protein molecular digital signature of protein molecule using facial

biometric is obtained as an output. After the completion of 10 iterations of

AES encryption corresponding to initial protein molecular signature strength,

the encrypted protein molecular digital signature is obtained (corresponding to

protein molecular signature shown earlier in Fig. 4.2). Finally, the encrypted

protein molecular signature is generated at the end of AES encryption process.

For example, the encrypted protein molecular signature using facial encryption

key corresponding to input protein molecular signature is as follows:

“11101011111000101110111011010000010111110111011111010101100110

10111101011110………..111010001010110101001111011110110001000000

11001000001001101110110101000110001001”. This generated encrypted

digital template is embedded into the design for securing the DSP hardware IP

cores against piracy and false ownership claim.

4.2.6. Security properties of the proposed encrypted protein molecular

biometric watermark signature

The proposed encrypted protein molecular biometrics-based hardware security

approach renders several security properties as discussed below:

i. Exact regeneration of protein molecular signature is not possible for an

adversary because of the following: a) length of the polypeptide chain

in the protein molecule sequence for signature generation and b)

encoding rule corresponding to 20 different amino acids c) secret facial

encryption key, all are unknown to an adversary.

ii. The exact regeneration of facial key is not possible for an adversary as

the following crucial details chosen by an IP vendor is not known to an

adversary such as: a) specific grid size/ spacing, b) number of chosen

facial features and c) concatenation order of facial features for final

facial key generation.

iii. However, in the rare likelihood, even if an adversary manages to

access the stored encrypted authentic digital template, the proposed

93

approach still provides robust security against fraudulent claim of IP

ownership and pirated designs. This is because, it is not possible for an

adversary to exactly regenerate the secret hardware security constraints

corresponding to facial biometric encrypted protein molecular

sequence of original IP vendor (used for embedding into the genuine

IP core design for enabling robust security) due to obscured non-

decodable crucial security parameters of the proposed approach. The

details of obscured non-decodable crucial security parameters of the

proposed approach are discussed earlier in this section, which

demonstrates that replication or regeneration of secret hardware

security constraints is not possible for an adversary.

iv. The AES encryption algorithm itself offers highly robust encryption.

v. The encoding rule used for generating the secret security constraints

corresponding to encrypted protein molecular signature is also not

known to an adversary.

vi. The proposed approach results into the generation of highly robust

encrypted protein molecular signature which yields higher tamper

tolerance ability of the secured design.

vii. It is not possible for an adversary to evade the counterfeit detection

process as the complete matching of secret security constraints of

regenerated signature is mandatory with the extracted register

allocation information of the target design under test.

viii. Protein molecular signature is immune to aging effects, injury and

other external environmental factors.

ix. It offers more distinctive and unique identification as compared to

other non-biometrics and biometrics-based hardware security

approaches.

4.3. Demonstration: Watermark Embedding and Secure

RTL Design Generation Process

The process of obtaining the secured (embedded with encrypted protein

molecular signature through facial biometric based AES encryption) RTL

datapath of DSP co-processor using HLS, is discussed in two phases (as

shown in Fig. 4.1).

94

Phase-1 is responsible for generating the covert hardware security constraints

corresponding to encrypted protein molecular biometric signature generated

using the proposed approach. The security constraints generation process

accepts the following inputs: a) DSP application in the form of data flow

graph (DFG) /transfer function b) vendor specified encoding rule (discussed

subsequently). The DFG is the scheduled using ‘LIST’ scheduling algorithm

based on designer specified resource constraints and the available dependency

information of storage variables as highlighted in the scheduled data flow

graph shown in Fig. 4.4. Where X0- X22 are the storage variables and

required registers are designated using different colors corresponding to DCT-

8 point IP cored design. As evident, nine control steps (C0 -C8) were required

to schedule and obtain the final output value. Subsequently the register

allocation table corresponding to scheduled data flow graph is constructed.

Next, using the following encoding rule, the obtained encrypted protein

molecular signature bits are converted into its respective hardware security

constraints.

Encoding rule:

 Bit ‘1’ signifies the embedding of security constraints between odd-

odd storage variable pair X (i, j) of the scheduled DFG, where i and j

represents the specific storage variable used for pairing.

 Bit ‘0’ signifies the embedding of security constraints between even-

even storage variable pair of the scheduled DFG.

* *

*

*

 *

*

*

*

 +

+

+

 +

 +

 +

 +

R V B G O S FG
X2 X4 X6

X8

X10 X11

X12 X15

X16

X13 X14

X17

X19

X18

X22

X21

X20

X0 X1 X3 X5 X7

X9

Fig. 4.4. Scheduled data flow graph of DCT-8 with 1(+) and 4(*)

post embedding secret constraints.

C0

C1

C2

C3

C4

C5

C6

C7

C8

A

P

Br

Y

95

For example, the secret hardware security constraints corresponding to

encrypted protein molecular signature (108 bit) for 8-point DCT IP core are

generated as follows: [X(0, 2), X(0, 4), X(0, 6), X(0, 8), X(0, 10), X(0, 12),

X(0, 14), X(0, 16), X(0, 18), X(0, 20), X(0, 22), X(2, 4), X(2, 6), X(2, 8), X(2,

10), X(2, 12), X(2, 14), X(2, 16), X(2, 18), X(2, 20), X(2, 22),…..., X(12, 16),

X(1, 3), X(1, 5), X(1, 7), X(1, 9), X(1, 11), X(1, 13), X(1, 15), X(1, 17), X(1,

19), X(1, 21), X(3, 5), X(3, 7), X(3, 9), X(3, 11), X(3, 13), X(3, 15), X(3, 17),

X(3, 19), X(3, 21),..……, X(19, 21)]. Finally, the security constraints are

generated which is subsequently embedded into the design (in the register

allocation of the scheduled data flow graph) as discussed in phase-2.

Phase-2 is responsible for implanting the generated secret security constraints

corresponding to protein molecular signature into the design. The security

constraints are embedded into the design during register allocation phase of

HLS process. The register allocation table constructed earlier in phase-1,

contains the details of required control steps for generating the output

functionality, storage variables of the DSP coprocessor and details of registers

required for accommodating the intermediate and final operational value of

storage variables. The register allocation table is used for embedding the

hardware security constraints by locally altering (modifying) the register

assignments using the following rule such that two storage variables in a pair

cannot be assigned to the same register. Finally, the encrypted molecular

signature implanted modified register allocation table corresponding to 8-point

DCT is obtained, as shown in Table 4.1. The storage variables marked in red

color are indicating the local alterations, post embedding the secret security

constraints into the design (covertly). Note: sometimes it may require

allocation of new register(s) for accommodating the storage variable.

Subsequently, the secured RTL datapath corresponding to 8-point DCT,

embedded with encrypted protein molecular signature is obtained.

4.4. Detection of Fake/Pirated IP Versions and Resolution of

False Claim of IP Ownership

Verification of false IP ownership claim: In case if an adversary (located at

either at offshore third-party design houses or foundry) fraudulently claims IP

ownership, then the pre-stored encrypted protein molecular sequence and

96

facial biometric encryption key is used for robust and seamless verification of

authentic IP ownership. Encrypted protein molecular sequence and encryption

key using facial biometric traits are safely stored (in a safe database) with

genuine IP vendor. This, therefore, makes the proposed approach independent

of protein resequencing and recapturing face image. Thus, the proposed facial

biometric is independent of variations caused by different angles, scales, or

illuminations.

In the proposed approach seamless and robust verification of ownership can be

performed without recapturing or reproducing biometric information of

original IP vendor. This is because regeneration of exact secret hardware

security constraints by decrypting the pre-stored digital template is possible by

the authentic IP vendor only. Reproduction of the IP vendor biometric

information during verification of IP ownership and detection of counterfeited

IPs is not required, as its equivalent digital template is pre-stored in a safe

database in encrypted form. Therefore, in order to nullify the false claim, the

positions of authentic protein molecular signature bits are matched bit by bit

with the embedded protein molecular digital template corresponding to DSP

design under test. Consequently, based on the complete matching, ownership

is awarded to the genuine IP vendor. As the protein molecular signature

provides cellular/ molecular level distinction, therefore it is not possible for an

adversary to possess similar molecular characteristics as that of genuine IP

vendor to satisfy the claim of IP ownership.

Detection of counterfeited IP versions: The embedded protein molecular

signature also enables the detection of genuine/authentic DSP IP cores by

isolating them from counterfeited IP designs. During the counterfeit detection

process, secret security constraints corresponding to protein molecular

signature are regenerated and matched with the information of register

Table 4.1: Register allocation in 8-point DCT (after embedding

encrypted protein molecular signature)
CS R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

CS0 X0 X1 X2 X3 X4 X5 X6 X7 -- -- --

CS1 X9 X8 X11 X10 X4 X5 X6 X7 -- -- --

CS2 -- -- X11 X10 X13 X12 X15 X14 X16 -- --

CS3 -- -- X11 -- X13 X12 X15 X14 X17 -- --

CS4 -- -- -- -- X13 X12 X15 X14 X18 -- --

CS5 -- -- -- -- X13 -- X15 X14 -- X19 --

CS6 -- -- -- -- -- X20 X15 X14 -- -- --

CS7 -- -- -- -- -- -- X15 -- -- -- X21

CS8 -- -- -- -- -- X22 -- -- -- -- --

97

allocation extracted from RTL design under test. If the presence of protein

molecular signature is not found in the design, then it is probably counterfeit.

Moreover, the involvement of several complex information during encrypted

protein molecular signature generation and implantation, makes it almost

impossible for an adversary to evade the counterfeit detection process.

4.5. Summary

This chapter presented a novel hardware security method that combines a

protein molecular biometric signature from a human body sample with a facial

biometric-based encryption key specific to the IP vendor. To secure the IPs,

the design embeds an encrypted version of the protein molecular signature—

derived from a unique sequence of 20 amino acids—during the HLS process.

This approach helps in identifying counterfeit IP designs and prevents false

claims of IP ownership by integrating both the molecular signature and the

vendor's facial biometric data. The method demonstrates superior security,

offering a lower probability of coincidence and greater resistance to tampering

compared to recent alternatives, discussed in result section in Chapter 9.

98

Chapter 5

Securing Hardware IPs by Exploiting Statistical

Watermarking Using Encrypted Dispersion Matrix

and Eigen Decomposition Framework

As described in the introduction chapter, the demand for application-specific

computing has become increasingly vital due to the need for enhanced

performance, power efficiency, real-time capabilities, scalability, and cost

reduction. Application-specific hardware IP cores are designed (using HLS

framework) to handle tasks that require significant computational power, such

as data filtering, compression, and complex mathematical operations. HLS, a

crucial technology in electronic design automation (EDA), simplifies the

design of complex integrated circuits by bridging the gap between high-level

descriptions, often written in programming languages like C/C++, and the

lower-level hardware implementations. However, with the global design

supply chain, security of hardware IP cores has emerged as a significant

concern. Malicious actors within SoC integrator design houses may attempt to

pirate or fraudulently claim ownership of imported hardware IPs. To combat

this, this chapter introduces a security methodology that incorporates/embeds

an encrypted dispersion matrix and eigen decomposition framework based

watermarking constraints to safeguard against IP piracy. The proposed

approach enables the generation of a unique secret mathematical (using

statistical modelling) signature/watermark to secure the hardware IP against

piracy and false IP ownership claim.

This chapter introduces a novel encrypted mathematical (statistical)

watermarking approach for securing hardware/DSP IP cores against piracy

and fraudulent IP ownership claim for the first time in literature. This method

effectively counters false ownership claim and provide detective

countermeasure against IP piracy. The first section of the chapter outlines the

threat model and motivation of the proposed approach. The second section

discusses the details of proposed statistical watermarking using encrypted

dispersion matrix and eigen decomposition framework. Following this, the

third section illustrates the embedding of the proposed watermarking

constraints with relevant examples. The fourth section then covers the IP

99

piracy detection and resolution of false IP ownership claim process. Lastly, the

fifth section provides the chapter's conclusion.

5.1. Threat Model, Motivation, and Target Platform

5.1.1. Threat model

A SoC integrator design house may be compromised by internal adversary

who may pirate the original hardware IP design imported from authentic IP

vendor. The motivations behind this IP piracy could include generating illegal

profits, damaging the reputation of the legitimate vendor, or embedding

malicious logic in the pirated design. Additionally, an adversary within the

SoC integrator might attempt to fraudulently claim ownership of the IP. To

counter these threats, the authentic IP vendor must secure the hardware IP

before sharing it with the integrator. The proposed approach treats the IP

vendor as the defender and the SoC integrator as the attacker, embedding

secret digital evidence via an encrypted dispersion matrix and eigen

decomposition watermarking framework, offering detective control against IP

piracy and false ownership claim.

5.1.2. Motivation: using statistical watermarking framework for

securing hardware IPs

The proposed watermarking methodology introduces a novel security

mechanism for hardware IP cores by using a 2D design parameter-driven

encrypted dispersion matrix combined with eigen decomposition framework to

create a secure watermark. This approach leverages statistical techniques like

variance and covariance of design space parameters to embed unique,

irreproducible watermarks within the IP design. By using covariance, the

method captures the relationship between key design metrics such as area and

delay, while variance and eigenvalues help measure the spread and

characteristics of the design parameters. The mathematical watermark is

derived from the inherent properties of the IP design, such as resource

configurations, without relying on external identifiers like signature or

biometrics. This makes the watermark not only unique but highly resistant to

tampering. Unlike other statistical models, this approach effectively captures

the core characteristics of the IP design space, providing robust digital

100

evidence to secure hardware IP cores against piracy and unauthorized

ownership claim.

5.1.3. Target platform, Inputs and output

The proposed security methodologies can be seamlessly integrated with any

electronic design automation (EDA) tools. The techniques can easily be

combined with HDL, or any high-level language used for IP generation within

design tools. The primary inputs are (a) algorithmic description or control data

flow graph (CDFG) of target hardware, (b) module libraries (containing

necessary information such as area, delay, etc. corresponding to functional

units used in hardware design), (c) IP vendor chosen p-bit key for initial

resource configuration generation, (d) LIST scheduling algorithm, and (e) IP

vendor selected key for AES encryption. The final output is a secure hardware

IP core using proposed 2-D design parameter driven encrypted dispersion

matrix and eigen decomposition based security framework.

5.2. Statistical Watermarking Using Encrypted Dispersion

Matrix and Eigen Decomposition Framework

5.2.1. Overview

Fig. 5.1 highlights the overview of the proposed mathematical/statistical

watermarking approach. The proposed security framework incorporates a

multi-phase process to generate a tamper resistant mathematical watermark. In

the first phase, the IP vendor's selected p-bit key is used to generate resource

configurations for the specific hardware design. The IP design's

characteristics, such as area (Ad) and latency (Ld), along with their variances

and covariance, are extracted. These values form a dispersion matrix, which

serves as the basis for the security constraints derived from the vendor's

chosen design space parameters. The second phase focuses on further

characterizing the hardware design by calculating eigenvalues (λn) from the

selected resource configurations. These eigenvalues, or characteristic roots,

leads to the generation of additional security constraints. In the third phase,

both the elements of the dispersion matrix (variance and covariance of Ad and

Ld, (var (Ad), var (Ld), (cov (Ad, Ld))) and the eigenvalues (corresponding to

two 2*2 square matrices for minimum of four different resource

101

configurations) are encrypted using the vendor's AES key. This results in

seven unique variables that contribute to the generation of mathematical

watermarking/security constraints. As more resource configurations are

selected, more eigenvalues can be extracted, increasing the number of security

variables and enhancing watermark strength. The encrypted data is then

converted into binary form and concatenated according to the vendor's specific

rule, resulting in a secure watermark signature. The fourth phase involves

generating covert security constraints using the watermark signature,

embedding them into the hardware design during the register allocation phase

of HLS process. In the final phase, the covert security constraints are

embedded into the RAT to generate the final, secure hardware IP core design.

The inclusion of multiple convoluted security variables, such as dispersion

matrix, eigen decomposition, encryption, etc. leads to the creation of a highly

tamper-resistant watermark signature.

5.2.2. Extracting secret security data from encrypted dispersion matrix

based on hardware design space parameters

Input: Algorithmic description or CDFG of the target hardware

application, module libraries, IP vendor selected p-bit key and AES

encryption key, IP vendor selected concatenation rule, and IP

vendor selected mapping/embedding rules

Phase 1: Initial area and delay matrix generation

corresponding to IP vendor’s selected resource

configuration based on input p-bit key

Phase 3:

Dispersion matrix

generation block

Phase 2: Eigen

decomposition

block

AES encryption block using encryption key

Conversion of encrypted data corresponding to

different parameters into binary equivalents and

concatenation to generate digital template

Phase 4: Conversion of obtained digital template

into covert hardware security constraints

Phase 5: Embedding of covert security constraints into register

allocation table (RAT) of target hardware application

Output: Watermarked hardware IP core

CDFG of

target

hardware

application

Scheduling

of hardware

application

Initial RAT

of target

hardware

application

Fig. 5.1. Overview of the proposed mathematical watermarking methodology

LIST

Scheduling

algorithm

HLS Block

Datapath and controller synthesis

102

The proposed security methodology accepts algorithmic description or CDFG

of target hardware application (for example, 8-point DCT is used for

demonstration) along with its module library and IP vendor selected p-bit key

for generating resource configurations from the design space (as discussed in

the overview section). Figure 5.2 illustrates the CDFG of an 8-point DCT

application. The CDFG is used to generate the RAT, which is used for

performing the embedding of security constraints, i.e., digital evidence. In the

first phase, initially, the IP vendor selected p-bit secret key is used to generate

the resource configurations (Note: The secret key size (p-bit) depends upon the

design space size corresponding to the target application. For example, in the

case of 8-point DCT, the maximum number of adders (AM) and multipliers

(MM) required for parallel implementation is eight. The resources can be

generalized to other design types depending on the application. Therefore, the

exhaustive design space size is (1*8 = 8), i.e., 2
3
. Hence, a 3-bit IP vendor

selected key can represent 8 resource configurations (RC) in the design space

of an 8-point DCT. Here, for the sake of brevity, only four resource

configurations, along with their area and latency, are shown for

* *

*

*

*

*

*

*

+

+

+

+

+

+

+

Fig. 5.2. Control Data flow graph of 8-point DCT

C0

C1

C2

C3

C4

C5

C6

1

C7

C8

10

2 3 4 5 6 7 8

9

11

12

13

14

15

p-bit

key

RC (IP vendor chosen - key

controlled)

Ad (IP

vendor

computed)

Ld (IP

vendor

computed)

011 [1, 4] 327 um2 927 ps

000 [1, 1] 101 um2 2186 ps

111 [1, 8] 629 um2 729 ps

100 [1, 5] 403 um2 927 ps

Table 5.1: Generation of resource configurations and its respective

area (Ad) and latency (Ld) matrix corresponding to 8-point DCT

based on IP vendor selected four different p-bit keys

103

demonstration purposes in Table 5.1 based on the p-bit key selected by the IP

vendor. However, it can be expanded as per the IP vendor's key selection).

The area (Ad) and latency (Ld) corresponding to key-selected resource

configurations are computed using the specified module library. Table 5.1

reports the area and latency corresponding to different key values.

Fig. 5.3. shows the details of the proposed dispersion matrix generation block.

In the first step, the generated area (Ad) and latency (Ld) matrix (given in Table

5.1) is fed as input to the dispersion matrix generation block to extract the

characteristics of the IP vendor selected design space parameters in terms of

variance of Ad (var (Ad)), the variance of Ld (var (Ld)), and covariance (cov

(Ad, Ld)). Next, the mean of the area (𝐴𝑑
̅̅̅̅) and latency (𝐿𝑑

̅̅ ̅) is computed in step

2. (a) and (b). Subsequently, in steps 3. (a) and (b), the mean value of the area

(𝐴𝑑
̅̅̅̅) and latency (𝐿𝑑

̅̅ ̅)
is subtracted from the area and latency parameter values

of the resource configurations. Further, the sum of the square of the difference

corresponding to the design area (∑ (𝐴𝑑𝑖 − 𝐴𝑑
̅̅̅̅)2𝑛

𝑖=1) and latency (∑ (𝐿𝑑𝑖 −𝑛
𝑖=1

𝐿𝑑
̅̅ ̅)2) are computed in step 4. (a) and (b). Post computing the sum of the

square of the difference, the characteristics of the IP vendor selected design

space parameters (area (Ad) and latency/delay (Ld)), i.e., var (Ad), var (Ld), and

cov (Ad, Ld) are computed. Finally, a dispersion matrix is generated

corresponding to the target application.

Further, the generated characteristic features (elements of dispersion matrix),

i.e., var (Ad), var (Ld), and cov (Ad, Ld), are encrypted individually using the

AES-128 encryption mechanism based on IP vendor chosen 128-bit private

key for each (128-bit*3 = 384 bits in total). The corresponding encrypted

values are generated as output. Subsequently, each encrypted output is

converted into its binary equivalent to generate 128-bit encrypted data

corresponding to each element of the dispersion matrix.

Demonstration of generating secret security data from the encrypted

dispersion matrix corresponding to the 8-point DCT application:

Step 1. Computation of area (Ad) and latency (Ld) corresponding to IP vendor

chosen resource configuration: The area and latency corresponding to selected

resource configurations are shown in Table 5.1.

104

Step 2. (a). Mean computation of design parameter 'Ad':

𝐴𝑑
̅̅̅̅ = ∑ 𝐴𝑑𝑖

𝑛
𝑖=1 (5.1)

Generation of resource configurations based on IP vendor selected p-bit key

1. Generation initial area (Ad) and delay (Ld) matrix corresponding to

selected resource configuration using module library

2. (a) Perform mean computation

of the area (𝐴𝑑
̅̅̅̅)

2. (b) Perform mean computation

of the latency (𝐿𝑑
̅̅ ̅)

3. (a) Subtract the area mean (𝐴𝑑
̅̅̅̅)

from all area parameter values

3. (b) Subtract the latency mean

(𝐿𝑑
̅̅ ̅) from all latency parameter

values

4. (a) Compute sum of the square

of the differences ∑ (𝐴𝑑𝑖 −𝑛
𝑖=1

𝐴𝑑
̅̅̅̅)2

4. (b) Compute sum of the square

of the differences ∑ (𝐿𝑑𝑖 −𝑛
𝑖=1

𝐿𝑑
̅̅ ̅)2

5. Estimate variances (𝑉𝑎𝑟(𝐴𝑑)𝑎𝑛𝑑 𝑉𝑎𝑟(𝐿𝑑)) and covariance

(𝐶𝑜𝑣 (𝐴𝑑, 𝐿𝑑)) and generate dispersion matrix

Dispersion matrix generation

IP vendor selected p-bit key

Fig. 5.3. Details of the proposed dispersion matrix generation block

To AES encryption block

Generation of resource configurations based on IP vendor selected p-bit key

1. Generate a square matrices using selected resource configuration

(preferably 2*2 square matrix is used for generating resource

configuration square matrix)

2. Compute characteristic scalar values (i.e., eigen values)

corresponding to the generated resource configuration square matrix

Eigen decomposition block

IP vendor selected p-bit key

Fig. 5.4. Details of the proposed eigen decomposition block

To AES encryption block

Input: (a). 𝑉𝑎𝑟(𝐴𝑑), (𝑏). 𝑉𝑎𝑟(𝐿𝑑)), (c). (𝐶𝑜𝑣 (𝐴𝑑 , 𝐿𝑑)),

and (d) eigen values corresponding to resource matrices

Perform encryption of obtained

characteristics parameters corresponding to

the target hardware application using AES-

128 and IP vendor chosen encryption key

Output: Encrypted values of all estimated characteristics

parameters

From dispersion matrix

generation block

AES Encryption

block

IP vendor

selected key

encryption key

Fig. 5.5. Details of the AES encryption block

From eigen

decomposition block

To embedding block

105

𝐴𝑑
̅̅̅̅ =

(327 + 101 + 629 + 403)

4
= 365

Step 2. (b). Mean computation of design parameter 'Ld':

𝐿𝑑
̅̅ ̅ = ∑ 𝐿𝑑𝑖

𝑛
𝑖=1 (5.2)

𝐿𝑑
̅̅ ̅ =

(927 + 2186 + 729 + 927)

4
= 1192.25 = ~1192

Step 3. (a). Subtract the mean (𝐴𝑑) from all area parameter values:

 (𝐴𝑑1 − 𝐴𝑑
̅̅̅̅), (𝐴𝑑2 − 𝐴𝑑

̅̅̅̅), (𝐴𝑑3 − 𝐴𝑑
̅̅̅̅), … … … (𝐴𝑑𝑛 − 𝐴𝑑

̅̅̅̅) (5.3)

 (327-365), (101-365), (629-365), (403-365)

 (-38), (-264), (264), (38)

Step 3. (b). Subtract the mean (𝐿𝑑) from all latency parameter values:

 (𝐿𝑑1 − 𝐿𝑑
̅̅ ̅), (𝐿𝑑2 − 𝐿𝑑

̅̅ ̅), (𝐿𝑑3 − 𝐿𝑑
̅̅ ̅), … … … (𝐿𝑑𝑛 − 𝐿𝑑

̅̅ ̅) (5.4)

 (927-1192), (2186-1192), (729-1192), (927-1192)

 (-265), (994), (-463), (-265)

Step 4. (a). Compute the sum of the square of the differences corresponding to

the design area:

𝑆𝐴 = ∑ (𝐴𝑑𝑖 − 𝐴𝑑
̅̅̅̅)2𝑛

𝑖=1 (5.5)

 SA = (-38)
2
 + (-264)

2
+ (264)

2
 + (38)

2

 (1444 + 69696 + 69696 + 1444) = 142280

Step 4. (b). Compute the sum of the square of the differences corresponding to

design latency:

𝑆𝐿 = ∑ (𝐿𝑑𝑖 − 𝐿𝑑
̅̅ ̅)2𝑛

𝑖=1 (5.6)

 SL = (-265)
2
 + (994)

2
+ (-463)

2
 + (-265)

2

 (70225 + 988036 + 214369 + 70225)= 1342855

Step 5. Estimate var (Ad), var (Ad), and cov (Ad, Ld):

𝑉𝑎𝑟(𝐴𝑑) =
∑ (𝐴𝑑𝑖−𝐴𝑑̅̅ ̅̅)2𝑛

𝑖=1

𝑛−1
 (5.7)

 𝑉𝑎𝑟(𝐴𝑑) = (
142280

3
) = 47426.66 = ~48000

106

𝑉𝑎𝑟(𝐿𝑑) =
∑ (𝐿𝑑𝑖−𝐿𝑑̅̅̅̅)2𝑛

𝑖=1

𝑛−1
 (5.8)

 𝑉𝑎𝑟(𝐿𝑑) = (
1342855

3
) = 447618.33 = ~448000

𝐶𝑜𝑣 (𝐴𝑑 , 𝐿𝑑) = ∑
(𝐴𝑑𝑖− 𝐴𝑑̅̅ ̅̅)×(𝐿𝑑𝑖− 𝐿𝑑̅̅̅̅)

𝑛−1

𝑛
𝑖=1 (5.9)

Now, perform the multiplication of the corresponding pair's values obtained in

steps 3. (a) and 3. (b).

 {(-38)×(-265)}, {(-264)×(994)}, {(264)×(-463)}, {(38)×(-265)}

 {10070}, {-262416}, {-122232}, {-10070}

Next, perform a summation of the above-obtained values to estimate

𝐶𝑜𝑣 (𝐴𝑑 , 𝐿𝑑).

 (10070-262416-122232-10070)

 (-384648)

 𝐶𝑜𝑣 (𝐴𝑑 , 𝐿𝑑) = (
−384648

4−1
) = −128216

Finally, the generated dispersion matrix is:

𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 (𝐷𝑀) =

[

∑ (𝐴𝑑𝑖−𝐴𝑑̅̅ ̅̅)2𝑛
𝑖=1

𝑛−1
∑

(𝐴𝑑𝑖− 𝐴𝑑̅̅ ̅̅)×(𝐿𝑑𝑖− 𝐿𝑑̅̅̅̅)

𝑛−1

𝑛
𝑖=1

∑
(𝐴𝑑𝑖− 𝐴𝑑̅̅ ̅̅)×(𝐿𝑑𝑖− 𝐿𝑑̅̅̅̅)

𝑛−1

𝑛
𝑖=1

∑ (𝐿𝑑𝑖−𝐿𝑑̅̅̅̅)2𝑛
𝑖=1

𝑛−1

]

𝐷𝑀 = [
𝑉𝑎𝑟(𝐴𝑑) 𝐶𝑜𝑣 (𝐴𝑑, 𝐿𝑑)

𝐶𝑜𝑣 (𝐴𝑑 , 𝐿𝑑) 𝑉𝑎𝑟(𝐿𝑑)
]

𝐷𝑀 = [
48000 −128216

−128216 448000
]

Next, the elements of DM are encrypted using the IP vendor chosen

encryption key. For example, the first 128-bit IP vendor chosen encryption

key used to encrypt 𝑉𝑎𝑟(𝐴𝑑) is "aaaaabbbbbcccccd". Similarly, the

remaining 256 bits out of 384 bits are used to encrypt 𝑉𝑎𝑟(𝐿𝑑) and

𝐶𝑜𝑣 (𝐴𝑑 , 𝐿𝑑).

Var(Ad)
NE

 = 48000, (here NE: non-encrypted).

Var(Ad)
E
 = 3b3cbe38153eaa9e73c4721249a570e1, (here E: encrypted).

107

Var(Ld)
NE

 = 448000

Var(Ld)
E
 = 42d86f986c536e33fe35f6963f5094d1.

Cov(Ad, Ld)
NE

 = -128216

Cov(Ad, Ld)
E
 = fff7b1da0a087f666f1dbcdb3f84be32.

5.2.3. Extracting secret security data from encrypted eigenvalues

representing hardware design space characteristics

In the second phase, the IP vendor selected resource configurations are fed as

input to the eigen decomposition block to extract the characteristics of the

design space w.r.t. the target hardware application in terms of eigen values (λn)

or characteristic roots. Fig. 5.4. shows the details of the proposed eigen

decomposition block. Initially, square matrices are generated using the IP

vendor selected resource configurations. The generated square matrices are

used to compute the characteristic roots (i.e., eigen roots) corresponding to

selected resource configurations of the design space. The aim of this phase is

to derive secret security constraints from the above-extracted characteristics

eigen values. The generic representation of resource configuration square

matrices for extracting eigen roots are as follows:

 𝐴 = [
𝑃𝑥

1 𝑃𝑦
1

𝑃𝑥
2 𝑃𝑦

2], 𝐵 = [
𝑃𝑥

3 𝑃𝑦
3

𝑃𝑥
4 𝑃𝑦

4]

 Further, eigen roots are computed as follows:

 𝑑𝑒𝑡 (𝜆 [
1 0
0 1

] − [
𝑃𝑥

𝑔
𝑃𝑦

𝑔

𝑃𝑥
ℎ 𝑃𝑦

ℎ
]) = 0

 𝑑𝑒𝑡 ([
𝜆 − 𝑃𝑥

𝑔
−𝑃𝑦

𝑔

−𝑃𝑥
ℎ 𝜆 − 𝑃𝑦

ℎ
]) = 0

 (((𝜆 − 𝑃𝑥
𝑔

) ∗ (𝜆 − 𝑃𝑦
ℎ)) − (𝑃𝑦

𝑔
∗ 𝑃𝑥

ℎ)) = 0 (5.10)

For example, the generated square matrices corresponding to the 8-point DCT

application are:

𝐴 = [
1 4
1 1

], 𝐵 = [
1 8
1 5

]

108

Subsequently, the eigen values or characteristic roots corresponding to

generated matrices (i.e., A and B) are computed. The obtained eigen values

corresponding to square matrices 'A' and 'B' are as follows:

 det (λI – A) = 0

 𝑑𝑒𝑡 (𝜆 [
1 0
0 1

] − [
1 4
1 1

]) = 0

 𝑑𝑒𝑡 ([
𝜆 − 1 −4

−1 𝜆 − 1
]) = 0

 𝜆2 − 2𝜆 − 3 = 0

 𝜆1 = 3 𝑎𝑛𝑑 𝜆2 = −1

Similarly,

 det (λI – B) = 0

 𝑑𝑒𝑡 (𝜆 [
1 0
0 1

] − [
1 8
1 5

]) = 0

 𝑑𝑒𝑡 ([
𝜆 − 1 −8

−1 𝜆 − 5
]) = 0

 𝜆2 − 6𝜆 − 3 = 0

𝜆3 = 6.46 𝑎𝑛𝑑 𝜆4 = −0.46

Further, as discussed in the overview subsection, the obtained characteristic

roots corresponding to the IP vendor selected design space are encrypted using

the AES-128 encryption mechanism. Fig. 5.5. Details of the AES encryption

block. Next, all encrypted values are converted into binary equivalents to

generate secret data corresponding to all design space characteristic roots. The

final secret data corresponding to all four characteristic roots are:

λ1
NE

 = 3

λ1
E =

 917ebc40242d1c2c362b04130ae4a4a7.

λ1
E
 = 10010001011111101011110001000000001001000010

110100011100001011000011011000101011000001000001001100001010111

001001010010010100111.

λ2
NE

 = -1

λ2
E =

 c8a3f97a72afd4dfafdfa7ea3d2ebdff.

109

λ2
E
 = 11001000101000111111100101111010011100101010

111111010100110111111010111111011111101001111110101000111101001

011101011110111111111.

λ3
NE

 = 6.46

λ3
E =

 f88ded1ad977335078eca9d1a69b069c.

λ3
E
 = 11111000100011011110110100011010110110010111

011100110011010100000111100011101100101010011101000110100110100

110110000011010011100.

λ4
NE

 = -0.46

λ4
E =

 0eae40a1008f6b1f735c04ddb48438e9.

λ4
E
 = 00001110101011100100000010100001000000001000

111101101011000111110111001101011100000001001101110110110100100

001000011100011101001.

5.2.4. Generation and embedding of final mathematical watermark

After generating the encrypted secret data corresponding to all seven

characteristic parameters, the secret data is concatenated according to the IP

vendor selected concatenation rule to generate a final encrypted signature. The

IP vendor selected concatenation rule for the proposed approach is Var(Ad)
E
 ||

Var(Ld)
E
 || Cov(Ad, Ld)

E
 || λ1

E
 || λ2

E
 || λ3

E
 || λ4

E
, where || is the concatenation

operator. Note: The concatenation order can vary as per the IP vendor's choice.

The final obtained encrypted signature is:

"00111011001111001011111000…………………00011100011101001 (896-

bit). Subsequently, the generated encrypted signature is transformed into

covert hardware security constraints using the IP vendor chosen

encoding/mapping mechanism for embedding into the design. The IP vendor

chosen encoding mechanism used in the proposed approach is as follows,

where C0 and C1 represent the covert hardware security constraints, <Lx, Ly>

denotes the storage variable pairs in the RAT of the design:

C0 = {(L2a,L2b), a, b ε W and (0≤a≤m), (0≤b≤n)} (5.11)

C1 = {(L2a+1,L2b+1), a, b ε W and (0≤a≤s), (0≤b≤t)} (5.12)

110

For incoming bit '0', covert security constraints are generated using C0,

otherwise using C1. The upper limits of 'a' are 'm' and 's', respectively, while

the upper limits for 'b' are 'n' and 't'. The upper limit depends on the maximum

number of storage variables in the target application's SDFG.

For example, using the above representation, the determined secret hardware

security constraints for 8-point DCT can be obtained as follows: <L0, L2>,

<L0, L4>--<L0, L30>, <L2, L4>--<L2, L30>, <L4, L6>--<L4, L30>, <L6,

L8>--<L6, L30>, <L8, L10>--<L20, L28>, <L1, L3>, <L1, L5>--<L1,

L29>,<L3, L5>--<L3, L29>,<L5, L7>--<L27, L29>. These generated

security constraints are embedded into the design of the 8-point DCT

application. Note: The generated encrypted signature is stored in a secure

database, which is used to validate/verify the authenticity of the IP and

original IP owner.

5.3. Demonstration

Fig. 5.6. shows the details of the proposed watermark embedding process. At

first, the CDFG is scheduled using IP vendor selected resource configuration

for scheduling and LIST scheduling algorithm to generate a SDFG. As

discussed in earlier sections, an initial register allocation table is generated

using the SDFG of the target hardware application, which is further used to

Conversion of each encrypted parameter values into its binary equivalents

Generation of covert hardware

security constraints using IP

vendor specified

mapping/embedding rules

CDFG of hardware

application

SDFG of hardware

application

Register allocation table (RAT)

generation

Embedding of security constraints

in the initial register allocation

table of target hardware design

Security constraints embedded

secured target hardware IP core

Concatenation of the binary values of encrypted parameters as per IP

vendor’s concatenation rule

Final output: Secured hardware IP core using proposed 2-D design

parameter driven encrypted dispersion matrix and eigen decomposition

based security framework

Embedding block

LIST Scheduling

algorithm, and IP

vendor chosen

resource constraint

Fig. 5.6. Details of the proposed watermark embedding process

Datapath and controller synthesis

Input from AES encryption block

111

perform embedding of generated secret security constraints. The security

constraints are added as additional edges in the initial RAT of the target

hardware application. Embedding security constraints into the initial RAT

must satisfy the security constraints obtained earlier. No two storage variables

associated with the incoming security constraint can be allocated to the same

register. In case of storage variable allocation conflict while embedding

security constraints, either a local alteration of registers is performed, or

allocation of the new register is made. Post embedding the generated hardware

security constraints, the final secured RAT corresponding to the target

application now contains the IP vendor's secret digital evidence. This secured

RAT is further used to generate the respective secure RTL datapath. The

embedding of the digital evidence acts as a detective countermeasure against

IP piracy and false IP ownership by an attacker in the SoC design house. The

RAT corresponding to the 8-point DCT is shown in Table 5.2 (initial and final

positions of registers before and after embedding security constraints are

depicted with black and red colors, respectively).

5.4. Validation and Detection

5.4.1. Validation of secured design

The proposed methodology utilizes the secret watermarking constraints of

original IP vendor during the validation and detection of authentic (secured).

The goal of this chapter is to provide robust validation of secured IP designs.

For accomplishing this, the watermark constraints are extracted from the

design-under-test (DUT) chip and matched with the originally embedded

watermark security constraints of the IP design. From the extracted layout

design file of the DUT chip, through reverse engineering, the IP core register

transfer level (RTL) files are obtained. Finally, the watermarking constraints

are extracted from the IP core RTL file (hardware description language code)

for matching. In case of a complete match, validation of authentic/secured

designs is complete.

5.4.2. Resolving IP ownership conflicts and detecting IP piracy

In case of IP ownership conflict, it is assumed that the attacker (in SoC house)

and defender (original IP vendor) have access to the contested IP design. The

112

proposed security approach facilitates a seamless IP ownership conflict

resolution using the digital evidence implanted as watermarking constraints.

For accomplishing this, the watermark proof is established by extracting the

secret watermarking constraints from the RTL file (hardware description

language code) of the IP design-under-test and matched with the original

watermark constraints embedded. Only a genuine IP vendor would be able to

successfully match his/her watermark security constraints with the extracted

watermark constraints of the IP design to prove ownership in IP court. On the

CS Red(R) Green

(G)

Indigo

(I)

Blue

(BL)

Yellow

(Y)

Black

(B)

Violet

(V)

Pink

(P)

Lime

(LI)

Olive

(O)

Aqua

(A)

Teal

(T)

Grey

(Gr)

Magenta

(M)

Silver

(S)

Khaki

(K)

0 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15

1 L16/L17 L17
/L16

L2 L3 L4 L5 L6 L7 - - - - - - - -

2 L24 - L18

/L19

L19

/L18

L4 L5 L6 L7 - L24 - - - - - -

3 L25 - L19 L19 L20
/L21

L21
/L20

L6 L7 L25 - - - - - - -

4 L26 - - - L20

/L21

L21

/L20

L22

/L23

L23

/L22

- L26 - - - - - -

5 L27 - - - L21 L21 L22
/L23

L23
/L22

- - L27 - - - - -

6 L28 - - - - - L22

/L23

L23

/L22

- L28 - - - - - -

7 L29 - - - - - L23 L23 - - - L29 - - - -

8 L30 - - - - L30 - - - - - - - - - -

Table 5.2: Register allocation table pre and post embedding generated signature

113

contrary, an attacker would fail to successfully regenerate the watermark

security constraints and match them with the extracted constraints to prove IP

ownership in IP court. This is due to the multiple security layers, such as IP

vendor selected parameters and convoluted mathematical computations in the

security constraints generation process, which increases the complexity for an

attacker during the watermark regeneration process. Further, to detect IP

piracy, a genuine IP vendor can match the original watermark security

constraints with the extracted watermark (security constraints) of the

suspected chip under test. In case of a match, IP piracy is detected.

5.5. Summary

This chapter presented a 2D design parameter-based encrypted dispersion

matrix, coupled with eigen decomposition security framework to secure

hardware IPs against IP piracy and false IP ownership claim. The threat model

assumes the IP vendor as the defender and the SoC integrator as the attacker.

The methodology employs IP vendor-specific resource configurations, a

dispersion matrix, eigen decomposition, and AES encryption to generate a

tamper-resistant mathematical watermark signature. This watermark,

embedded in hardware IP designs, provides detective control against piracy

and fraudulent claim. Experimental results (discussed in Chapter 9) show the

approach significantly improves security in terms of probability of

coincidence, tamper tolerance, and entropy, with minimal impact on design

cost overhead.

114

Chapter 6

Securing GLRT Cascade Hardware IP using IP

Seller’s Fingerprint and CIG Framework for ECG

Detector

The accurate detection of cardiovascular diseases (CVDs) is critical due to the

increasing incidence of heart-related issues such as arrhythmias, heart failure,

etc. Timely and precise diagnosis is essential to ensure effective treatment and

prevent potential complications in the future. One commonly used device for

this purpose is the electrocardiogram (ECG) detector, which monitors heart

activity by recording electrical signals through electrodes placed on the body.

These signals, displayed as ECG waveforms, are analyzed by healthcare

professionals to assess the heart's condition. The ECG detector is also a key

component of cardiac pacemakers, which regulate the heart's rhythm in

patients with certain cardiac conditions. For example, Table 6.1 reports the

acquired ECG data of patient X from the department of non-invasive

cardiology of cardiology research laboratory. Note: the data has been

recovered ethically with the consent of the respective patient. It depicts the

normal ECG parameter range [108], [109] and the acquired values. An ECG

detector contains several important components that facilitate its operation,

including the GLRT (generalized likelihood ratio test) unit, filtering unit, and

analog-to-digital converter. Among these, the generalized likelihood ratio test

(GLRT/QRS detector) unit is responsible for analyzing the QRS wave

complex to estimate heart rate [110]-[113]. Due to its critical role in

processing intensive computations, it is essential to design the GLRT unit as a

reusable hardware IP core. HLS aids in developing the GLRT unit as a secure

and efficient IP core, making it suitable for integration into SoC within ECG

detector.

However, ensuring the safety and security of the GLRT hardware IP core is

paramount. Pirated/unauthorized or counterfeit versions of this hardware can

introduce serious risks, such as inaccurate heart data measurements or

malfunctioning of the ECG device, which can have life-threatening

consequences for patients. Given that the GLRT unit is also integral to the

functioning of cardiac pacemakers, which remain in the body for extended

115

periods, the importance of using secure and authenticated versions of this

hardware cannot be overstated. Furthermore, counterfeit hardware can also

lead to fraudulent ownership claim, further complicating the medical device

industry. Therefore, securing the GLRT hardware design is critical for the safe

operation of these life-saving devices.

This chapter presents a novel secure hardware IP of GLRT cascade using color

interval graph (CIG) based embedded fingerprint, for ECG detector. The

proposed approach discusses designing GLRT micro and GLRT cascade

hardware IP core for ECG detectors for the first time in literature. The first

section of the chapter outlines the overview, threat model and motivation of

the proposed approach. The second section discusses the details of proposed

CIG-based secure HLS flow using IP seller’s fingerprint for generating secure

GLRT cascade hardware IP. Following this, the third section illustrates the IP

piracy detection and resolution of false IP ownership claim process. Lastly, the

fourth section provides the chapter's conclusion..

6.1. Overview, Threat Model, and Motivation

Fig. 6.1. ECG wave recorded through electrode for reference; PR interval -

duration between onset of atrial depolarization and ventricular depolarization;

QT interval - duration between onset of ventricular depolarization and end of

ventricular repolarization

ECG parameters Normal ECG parameter

range

Acquired ECG data

Parameter

name

Value Parameter

name

Value

Heart Rate (HR) HR 60-100

bpm

HR 75 bpm

PR Interval

(PRI)

PRI 0.1 sec -

0.2 sec

PRI 0.138 sec

QRS Interval

(QRSI)

QRSI 0.07 sec -

0.10 sec

QRSI 0.072 sec

QT Interval

(QTI)

QTI 0.36 sec -

0.44 sec

QTI 0.34 sec

QTC Interval

(QTCI)

QTCI 0.36 sec -

0.44 sec

QTCI 0.382 sec

Table 6.1: Acquired ECG data of patient X, is age: 69Y 6M 3D, gender: male,

report date: 05/may/2023 04:27 pm from department of non-invasive cardiology

of cardiology research laboratory

Note: Significance of abnormal range (>upper limit): Cardiovascular disorder

such as arrhythmias, atrial enlargement, Wolff-Parkinson-white syndrome),

myocardial ischemia, ventricular hypertrophy, heart failure, hypertrophic

cardiomyopathy long QT syndrome, etc.

116

6.1.1. Overview of ECG detector (GLRT cascade)

An ECG detector consists of several key components, including a filtering

unit, noise detector, GLRT cascade unit, summer, and threshold processing

unit. It is primarily used to detect ECG parametric data (shown in Table 6.1),

which helps evaluate heart activity by analyzing signals captured through

electrode leads. The filtering unit generates both monophasic (single-

direction) and biphasic (two-direction) pulse outputs, which are then sent to

the GLRT unit to identify the presence of the R wave, a key part of the heart's

electrical cycle. The GLRT cascade outputs are summed and compared using a

threshold processing function, allowing the device to distinguish between

cardiac signals and various noise interferences, such as muscle artifact, power

line interference, and baseline wander. An ECG waveform, as shown in Fig.

6.1, consists of several segments: the P-wave, QRS complex (comprising Q,

R, and S waves), and the T-wave. These waves, along with intervals like the

PR interval (from atrial to ventricular depolarization) and the QT interval

(from ventricular depolarization to repolarization), provide critical insights

into heart function. Accurate detection of the QRS complex, particularly the R

wave, is a challenge due to the heart’s dynamic behavior and physiological

variations, making the GLRT unit vital for reliable heart signal interpretation

in both diagnostics and cardiac pacemaker devices.

GLRT overview: The GLRT cascade unit processes filtered signals to evaluate

heart rate by analyzing outputs from a wavelet filter bank (WFB) and

Filtering process

GLRT

Cascade

stage 2

GLRT

Cascade

stage 1

Summer and threshold function

processing for ECG detector

Noise
detector

WF1--WF3 WF4--WF6

Output

--

Input

Fig. 6.2. Proposed secure hardware IP of GLRT cascade for
ECG detector

Secure

hardware IP

Electrodes

Secure

hardware IP

--

117

detecting the presence of the QRS complex. This is achieved through

maximum likelihood estimation, using hardware components like delays,

multipliers, and adders. As illustrated in Fig. 6.2, each GLRT cascade unit in

an ECG detector consists of two stages, each containing three GLRT micro

units. The CDFG ([110]-[112]) outlines the operational flow of these units, as

shown in Fig. 6.3 and Fig. 6.4. In stage 1 of the GLRT cascade, primary inputs

from the filter unit (WF1, WF2, WF3) are processed by the three GLRT micro

units. Each unit uses specific coefficients (C12, C22, C32 for micro unit 1;

C11, C21, C31 for micro unit 2; and C13, C23, C33 for micro unit 3) to

perform computations. The output of each micro unit is passed sequentially to

the next unit. Similarly, stage 2 of the GLRT cascade processes inputs WF4,

WF5, and WF6 in the same manner. Finally, the outputs from the GLRT

cascade stages are summed and compared using a threshold processing unit,

Fig. 6.3. GLRT DFG of proposed micro IP

Fig. 6.4. GLRT cascade DFG of proposed macro IP

118

which helps differentiate between cardiac and noise signals.

6.1.2. Threat model

The proposed approach offers a security measure to detect and prevent the

integration of pirated GLRT IP cores into SoC designs for ECG detectors. The

presence of pirated/counterfeited GLRT hardware IP in an ECG detector can

pose serious risks to patient safety, as these versions are often untested and

may contain malicious logic. The attacker responsible for creating pirated IPs

are typically competitors aiming to harm the reputation of the original vendor.

This not only undermines the credibility of the legitimate IP vendor but also

endangers patients who rely on accurate and reliable heart monitoring devices.

6.1.3. Motivation

Designing the GLRT unit of an ECG detector as a reusable hardware IP core is

essential due to its role in detecting the QRS complex through computationally

intensive tasks on filtered data. Further, ensuring the safe and reliable

performance of the GLRT hardware IP core is crucial for accurate detection of

cardiac signals and ECG parameters. Pirated GLRT hardware IPs pose

significant risks, as they may contain malicious logic and are not subjected to

rigorous testing, leading to potentially fatal consequences for patients. This

issue arises due to the involvement of untrustworthy third-party vendors and

manufacturers, increasing the risk of security breaches. Additionally, the ECG

detector is a critical component in cardiac pacemakers, making the use of

secure GLRT hardware IP cores essential for their proper functioning. The

proposed approach provides a detective security measure, allowing only

authentic IP versions to be integrated into the system.

6.2. CIG-based Secure HLS Flow Using IP Seller’s

Fingerprint for Generating Secure GLRT Cascade

Hardware IP

6.2.1. Deriving the GLRT dataflow graph from its transfer function

The GLRT dataflow graph is initially extracted from its corresponding transfer

function. The transfer function of GLRT using Mallat's algorithm is adopted

from [110]-[112]:

119

𝑍(𝑎) = 𝑠𝑇(𝑛)𝐻(𝐻𝑇𝐻)−1𝐻𝑇𝑠(𝑛) (6.1)

where, s(n) is the input to the filtering unit and H is the linear combination

matrix of the representative function. Here, 𝐻 is a 1×6 matrix, s(n) is a 1×6

matrix, s
T
(n) is a 6×1 matrix and (𝐻𝑇𝐻) is a 6×6 matrix [118]. The extracted

CDFG of GLRT and its cascaded representation are illustrated in Figures 6.3

and 6.4 respectively. WF1, WF2, and WF3 are the outputs of the filtering unit,

and C11-C33 is the coefficients of the linear combination matrix H. The

extracted CDFG is fed as input to the scheduling allocation and binding block

of HLS to generate its corresponding SDFG. The details of the proposed CIG

generation from SDFG and fingerprint biometric based hardware security are

discussed in the next subsection.

6.2.2. Creation of covert fingerprint biometric watermark signature

A fingerprint biometric-based covert signature/watermark is generated using

the IP vendor's fingerprint to ensure security of GLRT IP core design. Fig. 6.5

shows the fingerprint watermark generation process. The process begins with

capturing the IP vendor's fingerprint through a high-quality optical scanner in

a secure, dust-free environment. The fingerprint must be clean, free from

injuries, and properly scanned to capture all critical features like ridge angles

and bifurcations. After the capture, the fingerprint undergoes preprocessing

steps such as binarization, thinning, and Fast Fourier Transform (FFT)

enhancement. These steps are crucial for improving the fingerprint image,

enabling the identification of unique minutiae points—key elements that

distinguish fingerprint features like ridges and valleys. Binarization converts

the fingerprint image into a binary form, where pixels are assigned values of 0

or 255 based on a threshold, while thinning reduces the ridge line thickness to

enhance clarity. FFT enhancement helps in reconnecting broken ridges and

improving overall fingerprint structure. Once preprocessing is complete,

minutiae points are generated and classified based on their features, such as

bifurcation or ridge ending. The fingerprint is then placed under an IP vendor-

specified grid to extract vital parameters: x and y coordinates, minutiae type,

and ridge angle. The proposed approach employs a crossing number (Cr)

algorithm to extract the respective minutiae points [119]. Fig. 6.6 shows the

120

neighboring image pixels of image pixel I. The crossing number

corresponding to a fingerprint image pixel I is formulated as [119]:

𝐶𝑟 = 0.5 ∑ |𝐼𝑘 − 𝐼𝑘+1|8
𝑘=1 (6.2)

where Ik is the neighborhood pixel value of pixel I (depicted in the above 3x3

pixel matrix). A minutiae point is classified into (a) bifurcation and (b) ridge

ending. The minutiae point with crossing number 3 is a bifurcation, and

crossing number 1 is a ridge ending. The four crucial parameters (x and y

coordinates, minutiae type, and ridge angle) corresponding to each generated

minutiae point is extracted. Each of these values is then converted into binary

format and concatenated using a specific rule defined by the IP vendor (x-

coordinate |+| y-coordinate |+| minutiae type number |+| ridge angle, where |+|

is a concatenation operator). This concatenation of binary strings, arranged by

minutiae point number, generates the final fingerprint-based digital template

Fig. 6.5. Proposed fingerprint digital template generation process extracted from captured IP

vendor’s fingerprint, (a) input IP sellers fingerprint image, (b) binarized fingerprint image, (c)

thinned fingerprint image, (d) minutiae points generation on fingerprint image, (e) details of

generated minutiae points parameters, (f) generated fingerprint biometric based digital template.

Fig. 6.6. Image matrix representing neighboring pixels of image pixel I

121

or covert signature (shown in Fig. 6.5). The final watermark/signature serves

as a unique identifier for the IP vendor, ensuring that only the authentic

hardware IP core passes validation checks.

Note: The fingerprint biometric is securely stored in an encrypted format,

removing the need for re-capturing during the detection and validation

process. During the IP piracy detection process, evasion by an attacker is not

possible as he/she is unable to regenerate the fingerprint biometric digital

template for embedding into his/her fake versions, thus failing in the hardware

IP core authentication process. Thus, the proposed approach effectively

safeguards the GLRT hardware IP core by embedding the fingerprint

biometric, ensuring that only legitimate versions are integrated, and preventing

hardware IP piracy.

6.2.3. Generation and embedding of watermarking constraints

The proposed secure HLS flow uses a colored interval graph of the HLS

framework and fingerprint biometric based hardware security methodology to

Fig. 6.7. (a) SDFG of GLRT micro IP using one adder (+) and two multipliers (*)

post embedding fingerprint signature , (b) SDFG of GLRT cascade macro IP

scheduled using three multipliers and two adders post embedding fingerprint

122

generate a secure GLRT hardware IP core for ECG detector. As discussed

above in the overview subsection, the transfer functions of GLRT micro and

GLRT cascade generates its corresponding CDFG. The generated CDFG is

fed as the primary input to the scheduling, allocation, and binding (SAB)

block of HLS with IP vendor specific resource constraints and scheduling

algorithm (such as LIST scheduling) as additional inputs. The final output of

the SAB block is an SDFG with registers allocated in different control steps.

An SDFG corresponding to micro GLRT and GLRT cascade with register

allocations is depicted in Figures 6.7 (a) and (b), respectively. Registers are

storage units that store input, intermediate, and output variable values during

the computation of the GLRT unit. Post SDFG creation, an initial CIG is

generated using register allocation information of the created GLRT SDFG.

CIG is a graphic representation of register allocation information of the GLRT

SDFG. The initial CIG (i.e., pre-embedding fingerprint signature based secret

security constraints) corresponding to micro GLRT and GLRT cascade are

shown in Figures 6.8 (a) and (b). The obtained initial CIG is used for

performing the embedding of fingerprint based secret hardware security

constraints. The presence of the IP vendor's fingerprint based covert signature

into the design of GLRT hardware IP core guards it against piracy and false

claim of IP ownership problems. The obtained digital fingerprint template

(comprising of 227 number of zeros and 311 number of ones) is initially

converted into secret hardware security constraints using IP vendor specific

mapping or embedding rule. The IP vendor specific embedding rule is as

follows:

𝑆0 = (𝐺(2𝑠), 𝐺(2𝑟)) (6.3)

where, 2s, 2r are whole numbers and (0 ≤s ≤9), (1≤ r ≤20)

𝑆1 = (𝐺(2𝑠 + 1), 𝐺(2𝑟 + 1)) (6.4)

where (0≤ s ≤18), (1≤ r ≤19)

The symbols G(2s) and G(2r) represent the storage variables in the scheduled

data flow graph. The limits of s and r depend on the maximum storage

variables used in GLRT SDFG. For bit 0, covert security constraints are

generated using S0, otherwise using S1.

123

The storage variables in the SDFG are sorted in ascending order and stored in

a list. Post sorting, the mapping/embedding rule is applied to generate the

encoded security constraints using equations (6.3) and (6.4), respectively.

Therefore, the obtained secret security constraints are as follows: (G0, G2),

(G0, G4)--(G0, G40), (G2, G4)--(G2, G40), (G4, G6)--(G4, G40), (G6, G8)--

(G6, G40), (G6, G8)--(G6, G40), (G8, G10)--(G18, G40), (G1, G3), (G1, G5)-

-(G1, 39),(G3, G5)--(G3, G39),(G5, G7)--(G37, G39).

Hence, corresponding to 227 number of zeros, 227 security constraints of

storage variables are obtained (ranging from (G0, G2)---(G18, G40)).

Similarly, corresponding to 311 number of ones, 311 security constraints of

storage variables are obtained (ranging from (G1, G3)---(G37, G39)). Note: As

evident, these secret security constraints are extracted using the

mapping/embedding rule of the IP vendor and is a function of the fingerprint

signature obtained. The obtained secret hardware security constraints are

embedded into the initial CIG of the micro GLRT and GLRT cascade. No

Fig. 6.8. (a) CIG (pre and post embedding fingerprint) corresponding to secure GLRT

micro IP core, (b) CIG (pre and post embedding fingerprint) corresponding to secure

GLRT macro IP core

124

additional changes are made if an edge is already present in the CIG

corresponding to incoming secret security constraints. However, in the

absence of the edge between storage variables of incoming hardware security

constraints, an additional edge in the corresponding CIG is added (depicted in

red color in Fig. 6.8 (a) and (b)). Post embedding of an additional artificial

edge, a color swapping (i.e., local alteration) between registers is performed if

the additional embedded edge's storage variables are allocated on the same

colored register. The storage variables of embedded security constraints

cannot be allocated on the same colored register. Moreover, a new color

register is also allocated to resolve the raised conflict if no local alteration is

possible. Figures 6 (a) and (b) depict the final CIG post embedding all

determined security constraints corresponding to micro GLRT and GLRT

cascade, respectively. As shown in Fig. 6.8 (a), storage variables G0 and G12

are allocated on the red color register. However, due to additional artificial

edge (G0, G12) (i.e., security constraints), the color of G12 is changed to

orange. Similarly, all required alterations are performed post-embedding all

security constraints in the CIG of micro GLRT and GLRT cascade. Note:

Artificial edges (imposed security constraints) do not alter the functionality of

an IP core because these artificial edges are only responsible for local

Fig. 6.9. Secure RTL design of GLRT cascade macro IP core with CIG

based embedded fingerprint

125

alteration of registers corresponding to storage variable assignment. These

imposed security constraints do not affect the dataflow connectivity of the

SDFG corresponding to the IP core functionality. Therefore, due to embedding

of the security constraints, the functional units and its interconnectivity remain

unaffected (only the register sharing is locally altered). Further, Figures 6.7 (a)

and (b) illustrate the SDFG of micro GLRT and GLRT cascade post-

embedding hardware security constraints. Moreover, Fig. 6.9 and 6.10 depict

the secure RTL datapath corresponding to the micro GLRT hardware IP core

and GLRT cascade macro hardware IP core for the ECG detector. The final

generated RTL of GLRT hardware IP core contains security constraints in the

form of altered register colors.

6.3. Identifying Pirated GLRT Hardware IP Cores for ECG

Detectors

The presence of fingerprint biometric based digital evidence helps in making a

clear distinction between authentic and fake (i.e., pirated) versions of GLRT

hardware IP cores. While conducting piracy detection, the security constraints

corresponding to the IP vendor's fingerprint template are initially regenerated.

The regenerated information is matched with the register allocation

Fig. 6.10. Secure RTL design of GLRT cascade macro IP core with CIG based

embedded fingerprint

126

information of GLRT hardware IP's RTL datapath under test. The authentic

version will exhibit a complete matching of security constraints; otherwise, the

version is considered pirated.

It is crucial to protect the designed GLRT hardware IP core for the ECG

detector from an adversary's false claim of IP ownership problem. An

adversary located at an untrustworthy offshore design or fabrication house can

falsely claim hardware IP ownership right. The IP vendor's digital fingerprint

template embedded in the design (i.e., CIG) of GLRT hardware IP core

safeguards it from the adversary's false claim of IP ownership. Authentic IP

vendor can easily nullify the false claim of IP ownership by matching the

embedded digital fingerprint constraints (in the GLRT RTL IP under test) with

the original one (minutiae points pre-stored in a secure database in an

encrypted format or can be regenerated as explained above in the previous

subsection). In case of complete matching, ownership is awarded to the

original IP vendor. Note: In the proposed approach, the embedded fingerprint

biometric is stored in a secure database in an encrypted format for detection

and validation process later. Therefore, recapturing of the fingerprint

biometric data is not required for the detection and validation process.

6.4. Summary

This chapter presented a secure design methodology for GLRT cascade

hardware IP core, integrated with CIG-based fingerprint biometric.

Embedding the IP seller’s fingerprint based watermark ensures clear

distinction from pirated versions, allowing only authenticated cores to be

integrated into ECG detectors. This is critical for patient safety, as the use of

counterfeit versions could lead to hazardous outcomes. The proposed approach

ensures reliable and secure ECG detector functionality, which is essential for

accurately analyzing a patient's heart condition and preventing risks associated

with counterfeit components. The experimental evaluation of the proposed

approach is discussed in Chapter 9.

127

Chapter 7

Exploiting Voice Biometric-Based Watermarking

Framework for Securing Hardware IP Cores

IP cores play a crucial role in numerous industries, including consumer

electronics, healthcare, information technology, military, and aerospace. The

current electronic design cycle often involves offshore entities to reduce

design complexity, costs, and time-to-market. However, this outsourcing

increases the risk of hardware security threats, including IP piracy,

counterfeiting, and fraudulent ownership claim. These threats not only pose a

risk to an IP owner's revenue but also tarnish their reputation. Furthermore,

counterfeit IP integrated into the supply chain can negatively impact the

performance and reliability of systems, ultimately affecting end users. Hence,

protecting IP cores from these hardware threats is essential.

To mitigate risks of piracy and counterfeiting, hardware watermarking [31]-

[36], [42] encryption based security approaches [38], [39], [43], and

steganography [37] techniques have been discussed in the literature. These

techniques typically embed a vendor's signature into the IP design. However,

using random binary sequences or physical parameters, like integrated circuit

images, for generating signature may not accurately represent the vendor's

identity, leading to potential ownership conflict. To address this, this chapter

proposes a novel IP protection method utilizing the IP vendor’s voice

biometric watermark signature. This approach leverages unique voice

characteristics such as jitter, shimmer, pitch, and intensity to generate a

distinctive signature. The voice-based signature is embedded as a hardware

security constraint within the IP design, ensuring robust security (detective

control) against piracy and fraudulent claim of ownership. The secure design

allows for straightforward detection and verification of unauthorized IP use,

with the original voice sample securely stored for future authentication.

Moreover, the proposed voice biometric based security approach provide more

robust security than traditional biometric based security approaches [40], [41],

[44] in terms of stronger tamper tolerance and reduced probability of

coincidence, discussed in Chapter 9 of the thesis.

128

The first section of the chapter discusses the motivation and benefits of voice

biometric based watermarking framework. The second section outlines the

threat model involved and overview of the proposed approach. Subsequently,

the third section discusses the details of proposed voice biometric based

hardware watermarking framework. Following this, the fourth section

illustrates the demonstration of the proposed approach. Next, IP piracy

detection and resolution of false IP ownership claim process is explained in

fifth section. Finally, the sixth section provides the chapter's conclusion.

7.1. Motivation and Benefits of Voice Biometric-Based

Watermarking Framework

The rise in fraud attacks, which surged by 269% over four years, and the lack

of adequate security features have led to an increased focus on voice

biometrics over traditional methods like fingerprints, facial recognition, and

palmprints. The voice biometrics market is expanding rapidly, projected to

grow from $1.1 billion in 2020 to $3.9 billion by 2026. This growth has drawn

the attention of security researchers, especially in the field of IP protection

[102], [121]. Voice biometrics offers several key advantages over other

biometric techniques.

First, it enables the extraction of numerous features from voice signals at

various timestamps, producing a vast number of hardware security constraints,

which is one of the primary limitation of traditional biometric based

watermarking approaches [40], [41], [44]. This makes it highly robust

compared to other biometric systems like fingerprint-based approach [40],

which involve complex processes such as minutiae generation and filtering.

Second, voice biometrics has a lower implementation complexity. Unlike

fingerprint recognition [40], which requires several preprocessing steps like

binarization and image enhancement, voice biometrics involves a simpler

process of feature extraction. Increasing the number of timestamps for voice

feature analysis allows for a larger, more secure signature without added

complexity. Third, detecting and verifying a voice signature is seamless, as it

relies on a pre-stored voice sample, eliminating the need for recapturing data.

129

Additionally, voice biometrics meet ISO/IEC standards by supporting unique,

revocable, and irreversible digital templates, ensuring secure and reliable

authentication ((i) Unlikability- Voice biometric supports the generation of

diverse (exclusive) voice signature digital templates from the same voice

sample. (ii) Revocability- the previously generated voice biometric template

can easily be replaced with a new one for the same voice sample. It is possible

because of the dependence of the generated voice signature template on

variation in the number of features, selected feature set, concatenation order,

and mapping rule. (iii) Irreversibility- it is extremely challenging to recover

the original voice sample data from the generated digital template as this

requires complete knowledge of the concatenation rule, selected feature set,

and the number of timestamps chosen to extract the features.). Lastly, voice

biometrics is a contactless technology, immune to environmental factors like

dirt or physical injuries that can affect other methods, such as fingerprint [40]

and facial biometric [41]. While facial recognition and palmprints are also

contactless, they have limitations, such as aging effects on facial features [41]

and grid size requirements for palmprint [44], making voice biometrics a

superior choice for secure IP protection.

7.2. Threat Model and Overview

7.2.1. Threat model: attacker’s and defender’s capabilities

Reusable IP cores from third-party vendors face significant hardware security

risks such as counterfeiting, piracy, and fraudulent IP ownership claim, driven

by the globalized nature of the design supply chain. In counterfeiting,

counterfeit or substandard IPs are introduced into the supply chain under the

original vendor's brand, damaging both revenue and reputation. Piracy or

cloning occurs when a dishonest user, such as a SoC integrator or foundry,

steals the vendor's IP and sells unauthorized copies under a different brand.

Additionally, adversaries may falsely claim ownership of the IP, leading to

legal and financial disputes. To combat these threats, a robust solution

involving voice biometric-based watermarking is proposed to detect IP misuse

and resolve ownership conflicts. Attackers, including foundries or IP brokers,

may have access to the IP and could attempt piracy or fraudulent ownership

claims. They might also be aware of the biometric watermarking and attempt

130

to spoof the voice sample or forge the signature to bypass detection. In

response, the IP owner embeds an encrypted voice signature to counteract

these threats. The owner is also equipped to defend against spoofing attempts

or efforts to compromise the stored voice sample, ensuring robust IP

protection.

7.2.2. Overview

The proposed method leverages unique features of a voice sample to generate

a distinctive signature for IP core authentication and verification. The process

begins by recording a voice sample and converting it into a spectrogram, from

which features such as jitter, shimmer, pitch, and intensity at various

timestamps are extracted. These feature values are then transformed into

binary form and concatenated to create a unique voice signature template. This

template is further encoded into hardware security constraints, which are

integrated into the IP core design during the HLS process. The robustness of

the signature can be enhanced by extracting additional pitch and intensity

features from the spectrogram. For verification, a pre-stored voice template is

used, ensuring that the defining characteristics—pitch, intensity, jitter, and

shimmer—remain consistent with the original vendor's voice sample. The

process starts by converting the target DSP application’s algorithmic

description, such as a transfer function, into a CDFG, which is then scheduled

using LIST scheduling to produce a SDFG. Subsequently, a voice biometric

signature is generated using the proposed algorithm and encoded as hardware

security constraints. These constraints are embedded into the DSP design

through the HLS framework, providing robust protection against threats.

7.3. Voice Biometric-Based Watermarking Framework

Fig. 7.1 highlights the detailed flow-chart of the proposed voice biometric

based hardware security approach.

7.3.1. Introduction to voice biometric

Voice biometrics can be categorized into two types: text-independent, where

no audio template is stored, and text-dependent, where a voice sample is

stored for authentication purposes. The proposed method utilizes text-

dependent voice biometrics. Each voice sample contains unique traits

131

influenced by both behavioral speech patterns, such as speaking speed, and

physiological factors, like the shape of the throat and mouth. Key acoustic

features for voice biometrics include jitter and shimmer, which are primarily

used for speaker verification. Jitter refers to the variation in pitch frequency

from cycle to cycle, while shimmer relates to the variation in amplitude. These

features, along with pitch, which distinguishes high and low sounds, and

intensity, which measures sound energy, play a crucial role in voice-based

identification [122], [123]. The proposed approach leverages these voice

features—jitter, shimmer, pitch, and intensity at different timestamps—to

create a unique watermark signature template for securing IP cores.

7.3.2. Inputs and Outputs

The primary inputs are: (a) transfer function of the hardware application

/CDFG/C/C++ code, (b) module libraries, (c) IP vendor’s voice sample. The

intermediate outputs are as follows: (a) covert hardware watermarking/security

constraints, and (b) a CIG (based on the RAT) of the target application. The

final output is a voice biometric secure hardware IP design.

Input: Algorithmic

description of DSP

application, module

library, resource

constraints, voice

sample captured with

microphone, AES

key

Estimation of jitter and shimmer

Estimation of pitch corresponding to all chosen

timestamps

Intensity estimation corresponding to chosen

timestamps

Conversion of the decimal values of different voice features into their binary

equivalents and performing AES-256 encryption

Concatenation of all generated features to form a voice signature template

Determination of feature order for concatenation

Conversion of signature into respective hardware security constraints using

encoding rules

Implant voice biometric based generated hardware security constraints into the

design of DSP application during register allocation phase

Generate

scheduled

data flow

graph

based on

resource

constraints

Perform

voice

biometric

based

hardware

security

during HLS

Register

transfer

level

(RTL)

datapath

synthesis

Output:

Voice

biometric

signature

based

secured RTL

datapath

Lower-

level

synthesis

Selecting number of timestamps for feature

extraction

Extracting voice

features for signature

generation

Capturing/recording

of voice sample

Converting into a

spectrogram using

voice analyzer (Praat)

Fig. 7.1. Detailed flow-chart of the proposed voice biometric based hardware security approach

132

7.3.3. Capturing and pre-processing IP seller’s voice biometric sample

The proposed approach begins by capturing the IP vendor's voice sample

using a microphone. Once recorded, the voice sample is transformed into a

spectrogram and analyzed through speech analysis software. In the proposed

approach, the 'Praat application' is used to extract biometric security features.

For example, a voice sample labeled 'voice-001', corresponding to the

utterance “Gopal”, is demonstrated. Fig. 7.2 (a) shows a spectrogram of a

voice sample 'voice-001' (corresponding to the utterance 'Gopal') used in the

proposed approach for demonstration. Different timestamps are selected based

on the required signature strength, with fewer timestamps for lower strength

and more for higher strength, showing the approach's scalability for various

applications. In this demonstration, 15 timestamps are used to capture pitch

and intensity values from the voice sample. The goal is to extract pitch and

Fig. 7.2. Spectrogram of voice sample (voice-001) using a speech

analyser tool showing the range of pitch and intensity with

indicating (a) starting point of pitch (b) end point of pitch

 (a)

 (b)

 Time

 Time

Frequency

Amplitude

Frequency

Amplitude

 Pitch (in Hz) Intensity (in DB) Start of pitch

 Pitch (in Hz) Intensity (in DB) End of pitch

133

intensity at each timestamp to create a unique signature. Spectrograms are

preferred over Mel-frequency cepstral coefficients (MFCC) in this approach,

as they more effectively represent voice data, including key features like pitch,

intensity, jitter, and shimmer, making them more suitable for generating robust

watermark signature.

7.3.4. Identifying distinct voice features for watermark signature

creation

7.3.4.1. Timestamp analysis for pitch value determination

The proposed approach considers different features of a voice sample, viz.

jitter and shimmer, along with pitch and intensity values at different

timestamps, for corresponding voice signature template generation. The pitch

and intensity values are extracted for the IP vendor selected timestamps

(assumed as N1, N2 = 15 using the voice analyzer software (Praat) application.

The blue and yellow lines in Fig. 7.2. (a) and (b) represent the pitch and

intensity variation curve of the voice signal at different time instants. The

initial and final position of both the pitch and intensity variation curve on the

spectrogram is noted to determine different unique timestamps for the feature

extraction. The pitch and intensity values at different timestamps represent the

first and second subsets of features used to generate our voice signature

template. Different timestamps for extracting various pitch and intensity

values are determined below. In the proposed approach, pitch values are

extracted at the N1 number of timestamps (selected by the IP vendor). In order

to determine the different timestamps, the following steps are performed.

(a) The total duration of voice pitch (PT) is calculated using the following

equation:

PT = pe -ps (7.1)

 Where pe and ps indicate the end time and start time, respectively, on the

voice pitch variation curve.

(b) We define a step size of different timestamps for pitch features extraction

to be Δp which is calculated as follows.

Δp = PT/N1. (7.2)

134

(c) The different values of timestamps are determined using the following

equation.

ti = Vs + i*Δp; (0< i ≤N1-1) (7.3)

Where Vs is the starting position of the pitch in the spectrogram shown in Fig.

7.2. (a) and (b).

Here, the IP vendor selected the number of timestamps, N1 is N1=15. The

initial (ps) and final timestamps (pe) on which the pitch values recorded are

0.11 and 0.71 (corresponding to the voice-001 obtained from Fig. 7.2. (a) and

(b), respectively). Hence, the time duration of voice pitch (PT) is calculated to

be (0.71-0.11) = 0.6, and the step size is computed to be 0.04 using (7.2).

7.3.4.2. Timestamp analysis for intensity value determination

The intensity values are extracted at the N2 number of timestamps. In order to

determine the different timestamps, the following steps are performed.

(d) The total duration of voice intensity (IT) is calculated using the following

equation:

IT = Ie -Is (7.4)

 Where Ie and Is indicate the end time and start time of voice intensity,

respectively.

(e) We define a step size of different timestamps for intensity features

extraction to be Δi which is calculated as follows.

Δi = IT/N2. (7.5)

(f) The different values of timestamps are determined using the following

equation.

tj = Is + j*Δi; (0< j ≤N2-1) (7.6)

 Where Is is the starting position of intensity in the spectrograph shown in

Fig. 7.2. (a) and (b).

Here, the IP vendor selected the number of timestamps, N2 is 15. The initial

(Is) and final timestamps (Ie) on which the intensity values recorded are 0.09

and 0.73 (corresponding to the voice-001). The initial and final values of

135

intensity are determined in a similar fashion as previously determined for pitch

(from Fig. 7.2 (a) and (b)). Hence, the time duration of voice intensity (IT) is

calculated to be (0.73-0.09) = 0.64, and the step size is computed to be =

0.0427 using (7.5).

In the proposed approach, values at 15 timestamps have been determined

corresponding to two features, pitch and intensity. All these values will be

unique as the proposed approach uses a stored voice template. For computing

jitter and shimmer, the proposed approach considers a complete voice sample.

We have only considered jitter local and shimmer local values. Both jitter and

shimmer can be easily computed with the help of a voice report generated by a

voice analyzer (Praat) application.

7.3.5. Feature extraction from voice template: pitch and intensity

extraction

Extracting pitch and intensity features: In the previous subsection, we

discussed how the different timestamps for extracting pitch and intensity

values are determined. Further, in order to extract pitch and intensity features

at the specified timestamps, the following steps are performed:

(a) The values of pitch and intensity are extracted by moving to a particular

timestamp in voice spectrograph using voice analyzer (Praat) application.

(b) The pitch values read from the spectrograph at ti time instant are denoted

by P(ti). Table 7.1 shows the extracted pitch values corresponding to 15

different timestamps (selected by IP vendor).

(c) The intensity values read from the spectrograph at tj time are denoted by

I(tj). Table 7.2 shows the extracted intensity values corresponding to 15

different timestamps (selected by IP vendor).

Post obtaining the pitch and intensity feature values in decimal, they are

converted to equivalent binary values. The timestamps where pitch and

intensity are not defined are termed undefined (U) and the ASCII value of

character 'U' is used as feature dimension (value). Tables 7.1 and 7.2 show the

different values of pitch and intensity at different computed timestamps.

136

Extracting jitter and shimmer features: The jitter (local) and shimmer (local)

values are recorded from the voice report generated with the Praat voice

analyzer application, corresponding to the input voice sample. Before

computing jitter and shimmer (generating the voice report), we must first

select the voice portion we want to consider in the spectrograph. In our

experiment, we have considered the complete length of voice samples (as

shown in Fig. 7.3). So, the obtained jitter (local) and shimmer (local) values

(in %) and their corresponding binary equivalents for the voice-001 are:

Jitter (Jt)= 2.782 = 10.1100100000110001001

Shimmer (Sh) = 10.586 = 1010.1001011000000100001.

Sr.

No.

Timestam

p (ti)

Pitch

P(ti)

Magnit

ude

Corresponding

binary equivalents

1. 0.15 P(t1) 152 10011000

2. 0.19 P(t2) 146 10010010

3. 0.23 P(t3) 135 10000111

4. 0.27 P(t4) 126 1111110

5. 0.31 P(t5) U 01010101

6. 0.35 P(t6) U 01010101

7. 0.39 P(t7) 146 10010010

8. 0.43 P(t8) 137 10001001

9. 0.47 P(t9) 133 10000101

10. 0.51 P(t10) 134 10000110

11. 0.55 P(t11) 135 10000111

12. 0.59 P(t12) 133 10000101

13. 0.63 P(t13) 142 10001110

14. 0.67 P(t14) 162 10100010

15. 0.71 P(t15) 175 10101111

Table 7.1: Pitch values in hertz (Hz) Corresponding to Different

Timestamps

Table 7.2: Intensity values in HZ corresponding to Different

Timestamps

Sr.

No

Timestam

p (ti)

Intensity

I(ti)

Magnitu

de

Corresponding

binary equivalents

1. 0.1327 I(t1) 66 1000010

2. 0.1754 I(t2) 81 1010001

3. 0.2181 I(t3) 81 1010001

4. 0.2608 I(t4) 75 1001011

5. 0.3035 I(t5) 54 110110

6. 0.3462 I(t6) 45 101101

7. 0.3889 I(t7) 64 1000000

8. 0.4316 I(t8) 70 1000110

9. 0.4743 I(t9) 70 1000110

10. 0.517 I(t10) 70 1000110

11. 0.5597 I(t11) 70 1000110

12. 0.6024 I(t12) 69 1000101

13. 0.6451 I(t13) 67 1000011

14. 0.6878 I(t14) 65 1000001

15. 0.73 I(t15) 46 101110

137

7.3.6. Creating of watermark signature from extracted voice biometrics

features and generation of its corresponding watermarking

constraints

Once all the feature values and their equivalent binary are computed, they are

encrypted using AES-256 and subsequently concatenated into a single

encrypted template known as voice biometric- signature template based on the

defined concatenation rule. This encrypted template is stored in a safe server

for validation later. The concatenation rule is IP vendor specified. A designer's

specified concatenation rule used in the proposed approach is given below.

𝑆 = {&𝑖=1
𝑁1 𝑃(𝑡𝑖)} & {&𝑗=1

𝑁2 𝐼(𝑡𝑗)} &{𝐽𝑡} &{𝑆ℎ} (7.7)

Where '&' is the concatenation operator. Based on the concatenation rule

shown in (7.7), the generated voice biometric signature template is as follows.

S = [1001100010010010100001111111110010101010101

010110010010100010011000010110000110100001111000010110001110101

000101010111110000101010001101000110010111101101011011000000100

011010001101000110100011010001011000011100000110111010110010000

011000100110101001011000000100001] = 265 digits.

7.4. Demonstration: Embedding of Watermarking

Constraints

Post obtaining the digital template of voice biometric signature, it is converted

into equivalent hardware security constraints based on designer-selected

encoding rules shown in Table 7.3. To perform the encoding, we traverse the

Fig. 7.3. Spectrogram of voice sample (voice-001) showing jitter

(local), and shimmer (local) based on selected voice sample

138

digital template to collect all different possible bit-variations, viz. 00, 01,

10 and 11. Further, each bit-variations has a specific encoding into a

corresponding hardware security constraint, as shown in Table 7.3. For the

signature template generated from voice-001, the total possible numbers of

different bit-variations are as follows: (i) number of 00 bit-variations = 77,

number of 01 bit-variations = 71, number of 10 bit-variations = 71,

number of 11 bit-variations = 45. Hence the total number of voice signature

constraints is 264.

After generating the voice biometric signature-based hardware security

constraints, they are embedded in the respective IP core design using an HLS

framework. A colored interval graph (CIG) of the respective DSP IP core is

harnessed for embedding generated hardware security constraints. Nodes in

the CIG represent storage variables corresponding to the target DSP IP core,

and an edge between two nodes represents existing design constraints. The

security constraints are implanted into the design in the form of extra edges in

the CIG. The process of embedding addition edges (security constraints)

between the same colored nodes in the CIG is achieved in two ways: (a) local

alteration: the storage variable is allocated to some different colored register

Encodings Constraints

E0


0 Embed an edge between (even, even) node pair

E0


1 Embed an edge between (even, odd) node pair

E1


0 Embed an edge between (odd, odd) node pair

E1


1 Embed an edge between (prime, prime) node pair

Table 7.3: Mapping Rules (Encoding Mechanism) to Generate

Hardware Security Constrains from Voice Biometric Signature

*

*

+

 -

 -

 -

*

+

*

*

+

*

*

R

B P
Y

G

I LI

O
A T M Bl

J2 J4 J6 J8 J10 J11 J12

J15

J16

J13

J14

J17

J19 J18 J22

J21

J20

J0 J1 J3 J5 J7 J9

Fig. 7.4. Scheduled data flow graph of IIR with resource configuration

of one adder (A1), one subtractor (S1) and two multipliers (M1 & M2)

C0

C1

C2

C3

C4

C5

C6

C7

Gr

O0

J23

J24

J25

J26

M1

A1

M1

M2

M2

10

1 2

3
4 5

6 7 8

9

11

12

A1

A1

M1 M2

M1

S1

S1

S1

13

V

139

that is not in use in that particular control step, (b) new color register

allocation: if no any local alteration is possible while embedding of security

constraints (extra edges) between same colored storage variables, then a new

color (indicating a new register) is allocated. Similarly, all the voice

biometric-based hardware security constraints are embedded in the design of

the target DSP IP core.

Demonstration on IIR Filter Application: A DFG of IIR filter scheduled with

one adder, one subtractor, two multipliers, and 27 storage variables (J0 to J26)

is shown in Fig. 7.4. The 27 storage variables are executed using 14 registers

highlighted using different colors. A corresponding register allocation table

and CIG are shown in Table 7.4 and Fig. 7.5. (a), respectively. The hardware

security constraints, corresponding to the voice signature template generated

using (7.7), are embedded into the IIR filter design during the register

allocation phase of the HLS process by exploiting the CIG framework. These

security constraints are represented as four different sets of constraint edges

(C0-0, C0-1, C1-0, and C1-1) corresponding to the four variations 00, 01,

10, and 11 in the voice signature template. The following are the sets of

voice signature constraints generated for the IIR filter application.

𝐶0−0 = {(𝐽2𝑖, 𝐽2𝑗), 𝑖, 𝑗 ∈ 𝑊 𝑎𝑛𝑑 (0 ⩽ 𝑖 ⩽ 16), (1 ⩽ 𝑗 ⩽ 18)} (7.8)

𝐶0−1 = {(𝐽2𝑖, 𝐽2𝑗+1), 𝑖, 𝑗 ∈ 𝑊 𝑎𝑛𝑑 (0 ⩽ 𝑖 ⩽ 16) , (0 ⩽ 𝑗 ⩽ 21)} (7.9)

𝐶1−0 = {(𝐽2𝑖+1, 𝐽2𝑗+1), 𝑖, 𝑗 ∈ 𝑊 𝑎𝑛𝑑 (0 ⩽ 𝑖 ⩽ 23), (1 ⩽ 𝑗 ⩽ 25)} (7.10)

𝐶1−1 = {(𝐽𝑖, 𝐽𝑗), (𝑖 ∈ 𝑝𝑟𝑖𝑚𝑒 𝑎𝑛𝑑 2 ⩽ 𝑖 ⩽ 19), (𝑗 ∈ 𝑝𝑟𝑖𝑚𝑒 𝑎𝑛𝑑 3 ⩽ 𝑗 ⩽

23)} (7.11)

In the above equations (7.8) – (7.11), the limits for 'i' and 'j' depend on two

factors: (i) the total number of bit-variations of a particular type and (ii) the

limit of storage variables of the target application, which is J26 in case of IIR

filter. For example, the total number of possible constraints corresponding to

bit-variations (00) is 77. Therefore, generated security constraints

corresponding to the IIR filter start from (J0, J2) and end with (J16, J18).

Similarly, constraints for all remaining bit-variations are obtained.

140

The voice signature constraints implantation process is performed by adding

the aforementioned constraints edge sets to the CIG. Post implantation of

constraints into the IIR filter design, the modified CIG and register allocation

table are shown in Fig. 7.5 (b) and Table 7.5, respectively. The extra colors

(registers) required to accommodate all the security constraints are highlighted

in Table 7.5 in Black (Bold) text. Post embedding the voice signature

constraints, a synthesized RTL datapath of IIR filter design is shown in Fig.

7.6. The portion of the datapath carrying the voice signature constraints is

enclosed in a Red dotted rectangle.

7.5. Detection of Voice Biometric Signature

Figure 7.7 illustrates the detection process of voice biometric-based signature

embedded into the hardware IP core. The detection process requires a pre-

stored voice sample of the authentic IP vendor. First, the digital signature

template is regenerated from the pre-stored voice sample using the proposed

algorithm of signature generation. Then, the digital template is converted into

corresponding hardware security constraints (representing the register

allocation of different storage variables) using the predefined encoding rules.

(a)

(b)

Fig. 7.5. (a). CIG of IIR filter before embedding voice biometric

signature, and (b). CIG after embedding voice biometric signature, where

the added voice signature constraints are highlighted using red edges

141

Further, these security constraints are matched against the register allocation

information extracted from the RTL datapath of the IP core (under test). If

matching does not happen, then the design may be a counterfeit (i.e., absence

of genuine IP vendor's voice signature). However, the complete matching

implies that the design is authentic.

An adversary cannot evade the counterfeit detection process by embedding the

authentic voice biometric information of the IP vendor into his/her fake

design. This is because of the several security factors involved in the process

of regeneration of the exact voice biometric based signature. Along with the

Table 7.4: Register allocation of IIR filter before embedding voice biometric based hardware security constraints

T Red (R) Indigo

(I)

Yellow

(Y)

Violet

(V)

Lime

(LI)

Aqua

(A)

Gray

(Gr)

Green

(G)

Blue

(Bl)

Black

(B)

Pink (P) Olive

(O)

Teal (T) Maroon

(M)

0 J0 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13

1 J14 J15 J2 J3 J4 J5 J6 -- -- J9 J10 J11 J12 J13

2 J21 -- J16 J17 J4 J5 J6 -- -- -- -- J11 J12 J13

3 J22 -- -- J17 J18 J19 J6 -- -- -- -- -- -- J13

4 J23 -- -- -- J18 J19 J20 -- -- -- -- -- -- --

5 J24 -- -- -- -- J19 J20 -- -- -- -- -- -- --

6 J25 -- -- -- -- -- J20 -- -- -- -- -- -- --

7 J26

Table 7.5: Register allocation of IIR filter after embedding voice biometric based hardware security constraints

T Red

(R)

Indigo

(I)

Yellow

(Y)

Violet

(V)

Lime

(LI)

Aqua

(A)

Gray

(Gr)

Green

(G)

Blue

(Bl)

Black

(B)

Pink

(P)

Olive

(O)

Teal

(T)

Maroon

(M)

Lavender

(L)

Khaki

(K)

Cyan

(C)

Wheat

(W)

Silver

(S)

Beige

(B)

0 J0 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 -- -- -- -- -- --

1 -- J14 J2 J3 J4 J5 J6 -- -- J9 J10 J11 J12 J13 J15 -- -- -- -- --

2 -- -- -- J16 J4 J5 J6 -- -- -- -- J11 J12 J13 -- J17 -- J21 -- --

3 -- -- -- J22 -- J18 J6 -- -- -- -- -- -- J13 -- J17 J19 -- -- --

4 -- -- -- J20 -- J18 -- -- -- -- -- -- -- -- -- -- J19 -- J23 --

5 -- -- -- J20 -- J24 -- -- -- -- -- -- -- -- -- -- J19 -- -- --

6 -- -- -- J20 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- J25

7 -- -- -- J26 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

142

voice biometric of the IP vendor, an adversary also needs to decode the

following security factors to forge the signature: (a) the IP vendor selected the

number of timestamps for pitch determination, (b) the IP vendor selected the

number of timestamps for intensity determination, (c) IP vendor selected range

of voice sample for jitter and shimmer calculation (d) and concatenation

sequence of the determined features (such as pitch, intensity, jitter and

shimmer) to generate final voice biometric signature. Further, the voice

sample used for generating hardware security constraints is stored in a tamper-

proof secure database along with the IP designer's secret information, such as

the number of timestamps used for features generation and the portion of voice

sample used for jitter and shimmer feature estimation.

In case of IP ownership conflict, an adversary would fail to successfully claim

the IP ownership as he/she is unable to match the embedded security

constraints of the authentic voice biometric of the IP vendor (extracted from

the final RTL datapath) with his/her signature. However, an authentic IP

vendor would be successfully able to match his/her voice biometric signature

with the embedded security constraints of the authentic voice biometric of IP

vendor (extracted from the final RTL datapath). Therefore, IP ownership can

be seamlessly awarded to the authentic IP vendor in case of ownership

conflict.

7.6. Challenges and Limitations of Voice Biometrics

Fig. 7.6. RTL datapath of IIR filter IP core with embedded voice

biometric based signature

143

Apart from the multiple advantages, voice-based biometrics pose some

limitations too, such as it is not ideal to record voice sample at noisy

environments. Recording of voice sample at noisy places and using poor-

quality recording equipment are not favorable, as background noise present in

voice sample will directly affect the feature extraction and signature

generation process. How ever, standard low-pass IIR/FIR filter (LPF) can be

used to eliminate the unnecessary background noise and maintain a proper

signal to noise ratio. In addition, the speaker's voice is also affected by illness

and aging during authentication/verification. However, in the proposed

approach, recapturing of the IP vendor’s voice sample is not required as the

voice sample of the original IP owner is safely pre-stored and used during

verification. Further, the proposed approach requires secure storage of the

voice template in encrypted format to safeguard against potential misuse.

7.7. Summary

This chapter presented a novel security methodology for securing hardware IP

cores using voice biometric watermark signature. The discussed approach

harnessed distinct voice biometric features, including jitter, shimmer, pitch,

and intensity at various timestamps, to create a unique signature from the

voice sample. This signature was then embedded into the target IP core design

using the HLS framework. The proposed approach depicts robust security in

terms of higher tamper tolerance and lower probability of coincidence

(discussed in Chapter 9).

Converting

into security

constraints

Retrieving

register

allocation

information

from the RTL

Fig. 7.7. Voice signature detection for IP authentication/

verification

Design may be

a counterfeit

No

Yes

Design is authentic or

belongs to the true

owner

Matching of

constraints

with registers?

1100101111010

1…….1110010

Decrypted

template of

voice

signature

Encrypted pre-

stored voice

sample

template

IP core

under

test

144

Chapter 8

HLS-Based Exploration of Low-Cost (Optimal)

Functional Trojan-Resistant Hardware IP Designs

Various detective control mechanisms have been implemented to identify

pirated/counterfeited IP cores in computing devices in the past. Techniques

like hardware watermarking [31]-[36] and biometric-based methods [40], [41],

[44] are commonly seen as effective in mitigating IP piracy risks. However,

these methods do not address how to ensure that hardware IP core in

computing application remain resistant to Trojan attack, particularly when

backdoor functional Trojan are covertly inserted. An attacker could introduce

a Trojan at any stage of the design process, whether at the vendor level by a

malicious third-party IP provider/broker or during SoC integration, or at

foundry level [125]-[129]. While some detection methods exist for identifying

Trojans at the vendor or foundry stage, such as RTL simulation and side-

channel analysis, none provide a comprehensive approach for designing

Trojan-resistant hardware that can be applied to various computing

applications [130], [131]. This chapter for the first time in literature

demonstrates a complete HLS-base low-cost functional Trojan resistant design

framework using distinct multi-vendor allocation policy. The proposed

methodology leverages triple modular redundancy (TMR) to secure hardware

SoC designs (IP cores), providing a more robust and reliable defense against

functional hardware Trojan. Additionally, the approach incorporates a design

space exploration framework to identify the optimal Trojan-resistant hardware

architecture from a range of design possibilities.

The first section of the chapter discusses the motivation, threat model,

problem formulation and advantages of designing optimal Trojan-resistant

hardware IPs. The second section discuss the low-cost functional Trojan-

resistant framework in detail. Following this, the third section illustrates the

demonstration of the proposed approach. Next, advantages and limitations of

low-cost Trojan resistant TMR framework in fifth section. Finally, the fifth

section provides the chapter's conclusion.

8.1. Problem Formulation

145

8.1.1. Threat model, Motivation and advantages of designing optimal

Trojan-resistant hardware IPs

Hardware Trojans pose a significant threat to the integrity of application-

specific computing systems that rely on a variety of hardware IP cores for

their functionality. These IP cores perform crucial tasks like image

compression, audio equalization, and digital broadcasting in devices used

across industries. For example, IP cores such as the discrete cosine transform

(DCT) and haar wavelet transform (HWT) are vital for compressing audio,

video, and image files, while finite and infinite impulse response (FIR/IIR)

filters are essential for sound processing in audio systems. Similarly, JPEG

codecs manage image and video compression in digital cameras, and fast

fourier transform (FFT) is used in digital video broadcasting. Given the critical

role these components, any vulnerability introduced through a hardware

Trojan could have severe implications for end-users. Hardware Trojans are

malicious modifications to a circuit that are covertly inserted at any stage of

the design process, potentially by a rogue 3PIP vendor. These Trojans remain

dormant until triggered, making them difficult to detect during standard testing

procedures. Once activated, they can cause erroneous output or complete

failure of the system, posing significant risks to safety, reliability, and

performance. In critical infrastructure or mission-sensitive applications, such

failures could be catastrophic. For instance, in image classification systems or

biometric authentication processes, a Trojan could alter the output of

convolution filters used in convolutional neural networks (CNNs), leading to

incorrect identification or authentication results. Similarly, in medical imaging

applications, a Trojan could affect the accuracy of image compression,

resulting in incorrect diagnoses and potentially fatal consequences for patients.

Further, the insertion of hardware Trojans in machine learning systems also

raises serious concerns. In scenarios where machine learning coprocessors are

used for decision-making, a Trojan could manipulate the prediction outcomes.

For example, an attacker could inject a Trojan that alters the results of a

medical diagnosis model, leading to misdiagnosis and improper treatment.

This not only compromises the reliability of the system but also opens avenues

for adversaries to gain financial or competitive advantages. Additionally, the

146

Trojan could tamper with digital filter cores like the Sobel edge detector and

Gaussian filters, which are widely used in image processing for both consumer

and industrial applications.

To address this challenge, ensuring that IP cores are resistant to functional

Trojan attack is essential. The proposed methodology aims to provide a robust

defense against these threats by implementing TMR along with a distinct

vendor allocation policy. This approach isolates any infected unit, preventing

the Trojan from affecting the overall system. Furthermore, by distributing the

design workload across multiple vendors, the probability of multiple IP cores

being compromised by the same Trojan payload is significantly reduced. This

isolation not only improves the security of the design but also ensures reliable

functionality across various applications, from consumer electronics to critical

medical and industrial systems. By safeguarding against hardware Trojans, the

proposed system enhances the reliability of custom computing devices,

protecting both the integrity of the design and the safety of end consumers. It

also helps ensure that even if one vendor’s IP core is compromised, the overall

system remains functional, minimizing the risk of widespread failure or data

corruption.

8.1.2. Problem formulation

The problem solved in this chapter can be formulated as follows: Designing

Trojan resistant hardware IP core design while minimizing {hybrid cost (ATMR,

TTMR)} based on explored optimal resource configuration {Si} using design

space exploration. The associated variables of the methodology are explained

in nomenclature table. This chapter addresses the Trojan resistance of DSP

hardware IP cores against Trojan that are capable of inducing functional error

in the computed output. Trojans that are responsible for the denial of service

and leakage of secret information are not targeted in the proposed approach.

However, the proposed approach enables the defense against functional

Trojans that may be inserted at the IP vendor/designer's level (not easily

detectable during test vector analysis and normal run) and induces erroneous

functional behavior. Further, the micro-IPs or modules present in the library of

an HLS tool used for hardware IP core design are also susceptible to Trojan

infection, including third-party IP vendors or untrustworthy entities.

147

Consequently, integrating such malicious hardware IPs into custom computing

systems may induce abnormal functioning of the devices, causing safety

hazards to the end consumer.

The proposed approach for the Trojan resistant design of the DSP hardware IP

core is evaluated based on the following crucial parameters: design area,

delay, design cost, and security (in terms of the number of vulnerabilities

tackled):

(1) Proposed Area Metric: Total area covered (𝐴𝑇𝑀𝑅) by the Trojan-resistant

TMR design is given by (8.1).

 𝐴𝑇𝑀𝑅 = ∑ ∑ (𝐴(𝐶𝑖
𝑉𝑗

3

𝑖=1

3

𝑗=1
) ∗ (𝐶𝑖

𝑉𝑗)) (8.1)

Where, 𝐴(𝐶𝑖
𝑉𝑗) indicates the area of a resource type 𝐶𝑖 corresponding to the

vendor 𝑉𝑗 and 𝐶𝑖
𝑉𝑗 indicates the number of instances utilized for a resource

type 𝐶𝑖 from the vendor 𝑉𝑗. Further, the details of the area and delay of

functional resources (adder, multiplier) corresponding to vendors are adopted

from the related approach [45].

(2) Proposed Delay Metric: Design latency (𝑇𝑇𝑀𝑅) metric involves the delay

due to the number of control steps required while scheduling the design using

functional resources and

delay due to respective functional components corresponding to each vendor.

The delay metric can be represented as follows:

 𝑇𝑇𝑀𝑅 = ∑ ((𝑛𝑚 ∗ 𝑑𝑚) + (𝑛𝑎 ∗ 𝑑𝑎)
3

𝑣=1
 (8.2)

(3) Design Cost Function (fitness function): The fitness function includes

normalized area and execution time corresponding to the architectural design

of Trojan-resistant TMR schedule and can be formulated as follows:

𝐷𝑒𝑠𝑖𝑔𝑛 𝐶𝑜𝑠𝑡 (𝐹𝑖𝑡𝑛𝑒𝑠𝑠) = 𝑒1 ∗ (
(𝐴𝑇𝑀𝑅−𝐴𝐶𝑜𝑛)

𝐴𝑚𝑎𝑥
) + 𝑒2 ∗ (

(𝑇𝑡𝑚𝑟−𝑇𝐶𝑜𝑛)

𝑇𝑚𝑎𝑥
) (8.3)

Where e1 and e2 are designer-defined weighing factors. Further, 𝐴𝑀𝐴𝑋 and

𝑇𝑀𝐴𝑋 represents maximum design area (computed using allocating maximum

functional resources available) and delay (computed using allocating

minimum functional resources) while 𝐴𝑇𝑀𝑅 and 𝑇𝑇𝑀𝑅 represents the computed

148

area and delay of the proposed Trojan resistant TMR hardware design.

Further, ACon and TCon are IP vendor-specified area and latency constraints.

8.2. Low-Cost Functional Trojan-Resistant Framework

8.2.1. Underlying assumptions

1. The voter in the proposed approach is fault tolerant (adopted from

[124]), which means it produces functionally correct output always.

2. We have considered an error detection block (EDB), which is a multi-

stage setup (adopted from [124], [132]) designed to protect the Trojan-

resistant design from faulty comparators.

3. The fault-tolerant voter and error detection block used in the proposed

approach is considered to be Trojan-free (trustworthy). This is because

these hardware modules are considered to be designed in-house (by a

system integrator). In the proposed approach, the system integrator is

considered to be trustworthy.

4. The information corresponding to multiple vendors is confidential and

only known to the system integrator. The vendors are completely

unaware of the information about their counterparts. As vendors in the

proposed approach are unaware of their counterparts. Therefore, the

chances of collusion between distinct unknown 3PIP vendors to

achieve the same Trojan payload are very low. Henceforth, the

proposed approach always, at minimum always, ensures Trojan

detection [45].

8.2.2. Low-cost Trojan-resistant TMR design framework

The proposed solution for DSP hardware design with Trojan defense ability

exploits an optimal design architecture. The PSO-DSE process is employed to

explore an optimal resource configuration for Trojan resistant design. The

overview/thematic representation of the proposed approach is shown in Fig.

8.1. The primary inputs consist of CDFG of the selected hardware application,

PSO initial parameters, module library, designer’s specified design constraints

(Acon, Tcon), and resources (such as adder, multiplier, etc.) from three distinct

IP vendors. At first, the particle/swarm positions are initialized, and the

149

corresponding TMR schedule is generated. Next, the design cost, latency and

its corresponding cost are computed for each particle. Subsequently, the local

best and global best particle position are updated. At last, mutation is

performed on particle position to make the optimal solution search more

diversified. For each resource configuration explored (using PSO-DSE)

corresponding to Trojan-resistant scheduled and allocated design during HLS,

the respective datapath is generated. Finally, the optimal Trojan resistant

datapath is obtained at the end of DSE process. The details are discussed in the

next subsections.

Fig. 8.1. Overview of proposed optimal Trojan defense IP

core/SoC design generation process for DSP applications

SoC integrator

Optimal Trojan

resistant datapath/

SoC design

Computing systems

Fab center (chip

manufacturing)

Trojan

resistant

chip to

users

3PIP core vendor

Trojan Resistant block

 TMR scheduling

Resource allocation in

TMR based on distinct

vendor value

Proposed low-cost Trojan resistant SoC design methodology

Datapath functional

resource configuration

Binding

Design cost

computation

PSO-driven optimization

of functional resource

configuration for each

vendor simultaneously

Manufacturing

unit

Design library comprising of

module info from three vendors

150

This chapter explicitly presents a case study on FIR IP core used in several

computing applications such as convolution process in image/video

processing, signal attenuation, signal filtering in audio/image applications, etc.

Further, it can be converted into an optimal design with Trojan defense

capability. Even if a malicious backdoor logic exists in the design, it can still

produce the correct output functionally using the concept of TMR, distinct

vendor allocation policy, and voter. In order to explore optimal Trojan

resistant architecture corresponding to DSP hardware designs used in custom

computing systems, the proposed approach accepts the following inputs: DFG

of the DSP application, multivendor library, PSO-DSE parameters such as

inertia weight (ω), acceleration coefficient (b1 and b2), terminating criteria

(T), population size (n) with initial particle position/ functional resource

configuration. The output of the proposed approach yields an optimal

architectural solution (global best solution) for Trojan resistant DSP register

transfer level (RTL) datapath soft IP.

Original unit Duplicate unit

Comparator

1
Comparator

3

Comparator

2

Fault tolerant

voter

Fig. 8.3. Error detection block adopted from [124]

Error detection

block

Fig. 8.2. Illustration of the trojan resistance capability of the

proposed approach with the help of voter and 4:1 multiplexer

Original unit

(UOG)

Duplicate unit

(UDP)

Triplicate unit

(UTR)

Error

detection

block

Fault

tolerant

voter

Error

detection

block

Error

detection

block

4:1 MUX S1

S0

151

The proposed approach presents the TMR design framework to provide Trojan

resistance against functional Trojans. The proposed approach shows greater

defense in terms of providing Trojan detection and isolation, both based on the

proposed setup (shown in Fig. 8.2). Fig. 8.2 illustrates the Trojan resistance

capability of the proposed approach. The proposed solution provides complete

Trojan resistance with the help of a TMR-based design and a fault-tolerant

voter (V), adopted from [132]. The fault-tolerant voter will generate the

correct output based on the majority. The output of the 4:1 multiplexer (MUX)

ensures Trojan detection when select lines (S1 S0) chosen are 01,10,11 and

provides Trojan resistance when select lines chosen are 00. In order to ensure

that the proposed approach always at least provides Trojan detection, the

concept of a multi-stage setup using error detection blocks (EDB) has been

integrated into the proposed setup. Fig. 8.3 depicts an architecture of EDB

used in the proposed approach using multiple comparators and fault tolerant

voter (adopted from [124] and [132]). This multi-stage setup (or EDB) is used

to handle cases of faulty comparators. Assuming fault in the comparator: in

such a case, the faulty comparator out of the used three comparators inside a

multi-stage setup of EDB will produce a complementary output of the

remaining two. Therefore, the fault-tolerant voter [132] will produce the

correct majority output generated by the remaining two correct comparators.

The area overhead of used EDB (adopted from [124]) is negligible [124].

In the TMR design logic, besides the original unit, two other units

corresponding to the TMR design are employed by duplicating the operations

of the DFG (DSP application). The combined DFG logic with original,

duplicate, and triplicate units, called TMR logic, is then scheduled using the

LIST scheduling algorithm based on the hardware resources explored using

PSO-DSE (discussed in the next section). LIST scheduling is a scheduler that

works by aiming to schedule the maximum number of operations in a single

control step, subject to resource constraints and data dependency. Therefore, it

minimizes the number of control steps required to schedule the DSP

application compared to traditional ones. Next, in the proposed scheduled

TMR design, each of the three distinct vendors is then allocated to a dedicated

unit. In the proposed approach, a distinct multivendor allocation policy has

152

been presented, where the resources from a particular vendor are allocated to a

single unit of the TMR design. This is effective for providing Trojan

resistance compared to assigning multivendor resources simultaneously within

a single unit (either original, duplicate or triplicate unit) of TMR logic. It

enhances the likelihood of the design being infected, thereby carrying

malicious logic in each TMR unit. Therefore, multivendor resource allocation

within the single unit of TMR logic fails to provide Trojan resistance against

hidden functional Trojans. On the contrary, a distinct multivendor resource

allocation process enables easy isolation of any Trojan-infected design. In

other words, if either of the three vendors carries malicious backdoor logic in

their resources (micro-IPs), then due to distinct vendor allocation to each unit

of TMR logic, it would enable the remaining two units to remain Trojan-free.

Thereby allowing the non-erroneous output to pass through the voter. For

example, if vendor VD1 carries a backdoor Trojan and is allocated to only the

original TMR unit, the remaining two vendors, VD2 and VD3, are allocated to

duplicate and triplicate units, respectively. Therefore, due to this distinct

multivendor allocation, the voter would pass the correct majority output from

duplicate and triplicate units, thus providing Trojan resistance against

functional Trojans. However, it is possible that vendor assignment can be

changed internally between original, duplicate, and triplicate units as long as

distinctness is maintained across units. If vendor VD1 is allocated to any one of

the three units, then vendor VD2 and VD3 are assigned distinctly with the other

two units. Further, in case if any unit is Trojan-infected, then due to a distinct

vendor allocation policy, it would enable the remaining two units to be Trojan-

free.

The mathematical representation of the proposed vendor allocation policy for

enabling Trojan-resistance through TMR is discussed below.

Oi ϵ UOG, Oi’ ϵ UDP, Oi’’ ϵ UTR

Where ‘i’ = 1 t, ‘Oi’ denotes i
th

 operations in single instance of CDFG, ‘t’

denotes total number of operation present in single instance of CDFG and

{UOG, UDP, UTR} are explained in nomenclature table.

{ UOG, UDP, UTR} ϵ SDFG
TMR

153

VDi  UOG, VDj  UDP, VDk  UTR, where ‘VDi’ is the ‘i
th

’ IP vendor and

VDi ≠ VDj ≠ VDk

Then, based on the majority solution (at least two of the three units producing

the same output value), the fault-tolerant voter [132] will pass the functionally

correct output, thereby providing Trojan resistance against functional Trojan

that a rogue element could have implanted during the in-house designing

process. Finally, based on the obtained scheduled and allocated Trojan-

resistant TMR design, the design area using (8.1) and execution time using

(8.2) are computed. Subsequently, the fitness cost for the corresponding

Trojan resistant hardware design is evaluated by substituting the area and

delay in (8.3) to iterate the PSO-DSE process till the stopping criterion is

achieved. The overview of the PSO-DSE is discussed in the upcoming sub-

section.

8.2.3. Exploration for low-cost Trojan-resistant TMR scheduling using

PSO-DSE

As shown in Fig. 8.4, the PSO-driven design space exploration is responsible

for generating an optimal Trojan resistant design architecture. At first, the

initial position of each particle (representing initial functional resource

configuration) and velocity (Aix) are initialized, where the first particle's

position S1 is initialized with minimal resources such as S1= (min (Z1), min

(Z2) …. min (Zn)) and second particle S2 is initialized with maximum resources

such as S2= (max (Z1), max (Z2) ….max (Zn)); while the third particle S3 is

initialized by the average of minimum and maximum resource value, where 'Z'

represents the resource type (adder or multiplier). However, the rest of the

particle positions (S4 …Sn) are initialized using the following equation:

𝑆𝑖𝑥 = (𝑓 + 𝑔)/2 ± ℎ (8.4)

Where 'f' is the minimum resource value, 'g' is the maximum resource value,

and 'h' is any random number between 'f' and 'g'. 'Six' represents the resource

configuration of i
th

 particle x
th

 dimension. Here, dimensions imply the resource

types: adder and multiplier (X=2). At first, the fitness cost value (using the

cost function) corresponding to each particle (
‘
i
th’

) (as explained earlier in the

above section) is computed. Subsequently, in its first iteration, the global best

154

particle position is determined based on each particle's initial cost value. The

particle with minimal cost function value among all particles is selected as the

global best resource configuration by the PSO-DSE. Subsequently, the new

position of the particles is computed by adding the computed velocity/

displacement to the previous particle position [78]. Furthermore, if the

computed velocity causes excessive exploration drift, then the velocity

clamping is performed to keep the particle within the design space. However,

if the new particle position outreaches the boundary space, adaptive end-

terminal perturbation is performed to limit the particle within its valid design

space [78]. This process is executed for each remaining particle selected by

Yes

No

Local best particle position

updating

x<X?

Cf
i <Cf

LBi?

i<n?

T?

Determination of global and local

best particle position and cost

based on fitness calculation

Read module library, CDFG/DFG, maximum iteration declaration, PSO

parameters declaration like acceleration coefficients, swarm size, etc.

Compute new particle position (Si)

based on new velocity calculation

Perform mutation on each local best particle position and update global

best resource configuration

Initialize particle initial position (Si) and velocity (Aix), along with distinct

vendor allocation, (i=1, x=1)

Global best particle position updating

Optimal resource configuration

 Construct TMR (SDFGTMR)

Hardware allocation based on

proposed rule

Area and delay estimation

and computation from

SDFGTMR

Fitness calculation

Velocity

computation

Perform

resource and

velocity

clamping
Cf

LB = Cf
i and SlBi = Si

Si
+ updating

Start

Stop

Trojan Resistant Design

Cost Estimation

Fig. 8.4. Flow-chart of proposed optimal TMR based Trojan resistant methodology

Yes

Yes

Yes

No

No

No

155

the IP designer in the design space. Subsequently, the cost is computed for

each of the remaining particles in the population (i.e., for i<n, where ‘n’ is the

total number of particles in the population), and if the currently computed cost

is less than the cost of the particle obtained in the previous iteration, then both

local best particle position, global best particle position and also the respective

cost values are updated with currently computed cost. Moreover, a particle

with a lesser fitness cost value is declared as the fittest among the remaining

particles. In the next phase, the mutation is performed on each particle position

to diversify the solution, better explore the design space and avoid getting

stuck in the local minima [78]. Subsequently, each mutated particle's fitness

cost is computed, and local and global best resource configurations are also

updated. This process continues until the terminating condition is met. The

exploration process gets terminated if the algorithm has already converged to

global minima and results in no further updation/ exploration for the next ten

consecutive executions (T1= 10) or if the number of iteration counts is

exhausted (T2 ≥50). Thereby, an optimal design architecture solution for

Trojan resistant TMR design is obtained using PSO-DSE.

8.3. Process Demonstration: Motivational Example

The demonstration of enabling Trojan-resistant capability of hardware IP

cores used in computing systems is shown using finite impulse response filter

(FIR) as follows: (i) high-level representation of FIR filter application is

transformed to corresponding data flow graph (DFG). This is performed by

parsing the transfer function of the FIR filter into matrix multiplication format

comprising of input data samples, FIR filter coefficients and output samples.

Further, the matrix multiplication format is generically represented as a

mathematical function for computing the n
th

-output data sample. Finally, this

mathematical function is represented as a connected graph, where each node

represents the mathematical operations and the edges represent the data

dependency, (ii) subsequently, two other units (duplicate and triplicate) are

created corresponding to the same application (main/ original) in regard of

TMR design (iii) all the three units corresponding to TMR design are

scheduled using optimal resource configuration (adders and multipliers)

obtained using PSO-driven design exploration. For a single unit, explored

156

resource configurations are three multipliers and one adder. The first unit

(original unit) is scheduled by considering the inputs from vendor VD1.

Subsequently, the second (duplicate unit) and third (triplicate unit) are

scheduled using resources from vendor VD2 and vendor VD3, respectively. The

proposed approach considers the simultaneous execution of the original unit

along with two duplicate units. Further, the TMR design is scheduled using the

LIST scheduling algorithm. In order to schedule the TMR design of the FIR

filter, a total of nineteen control steps are required to generate the functional

output value. The SDFG of the TMR design corresponding to the FIR filter

using the proposed approach is shown in Fig. 8.5.

8.4. Advantages and Limitations of Low-Cost Trojan

Resistant TMR Framework

Advantages:

a) The proposed approach generates a complete Trojan resistant DSP

hardware design capable of providing 100 percent resistance against

functional Trojans (that affects the computational outputs). The

Trojan-resistant design automatically detects and isolates the malicious

logic (Trojans) present in the design.

b) Additionally, the proposed approach discusses a framework of

integrating the Trojan resistant design with the PSO-DSE (considering

area and latency metric tradeoff) to generate low-cost optimized

Fig. 8.5. Scheduled data flow graph of FIR filter (TMR) with 9(*), 3(+)

157

architecture corresponding to Trojan resistant hardware design. PSO

prunes the potential architecture solutions present in the design search

space to obtain a low-cost optimized solution.

Limitations:

a) The integration of PSO-DSE with the proposed Trojan resistance

design is mandatory to handle the overhead caused by the replication

of functional units (FUs) in the proposed approach.

b) The values of various control parameters used in PSO-DSE, such as

inertia weight, random numbers, weights, social and cognitive factors,

should be chosen appropriately to facilitate proper convergence of

PSO-DSE to optimal solution in an acceptable time.

c) The proposed approach is based on assumptions of using fault-tolerant

voter [132], error detection block [124], [132] based on multi-stage

comparators to guard against faulty comparisons, and trustworthy

(Trojan-free) fault-tolerant voters and comparators designed in-house.

8.5. Summary

This chapter discusses a low-cost solution for making hardware IP designs

resistant to hardware Trojans for application-specific computing systems. It

combines a PSO-based design space exploration technique with a TMR-based

security strategy to create an optimal, low-cost SoC design that provides

functional Trojan resistance in hardware applications. This approach utilizes a

unique vendor allocation policy for the original, duplicate, and triplicate units

within the TMR-based SoC design. Even if one of the TMR units is

compromised by a functional Trojan, the system still produces correct outputs.

As discussed in the Chapter 9, this Trojan-resistant method adds only a

minimal design cost overhead.

158

Chapter 9

Results and Analysis

This chapter presents the experimental results and analysis of the proposed

hardware security techniques aimed at ensuring the security and protection of

data-intensive hardware IP cores. The results were obtained using various

data-intensive DSP and multimedia benchmarks [83]-[86].

9.1. Experimental Results: Exploration of Low-Cost

Hardware IPs during HLS using Multiphase Encryption

and Crypto-Chain Signature

The experimental results of the proposed low-cost multi-phase encryption and

low-cost crypto-chain signature based security methodologies (discussed in

Chapter 3) are analyzed and discussed in this section. The proposed low-coat

multi-phase encryption based security approach is validated on a system with

a 2.30 GHz processor and 4GB RAM. The parameters for PSO-based

architecture exploration are initialized as follows: acceleration coefficients (f1

and f2) =2, k1 and k2 = 1, N =3, and ω = linearly decreasing between 0.9 to 0.1

[79]. Further, the experimental analysis of the proposed FFA based crypto-

chain security approach has been performed on a system with a 2.30 GHz

workstation and 4GB main memory. The parametric values used for the

proposed approach: firefly population size (Y) =3,5, and 7, q1=q2=0.5, β0 = 1,

γ = linearly decreasing from 0.5 to 0.1, αx and αy = linearly decreasing value

from the maximum value of the first dimension and maximum value of the

second dimension, and rand = 1.5 [80]. The evaluation of area and latency

corresponding to JPEG-CODEC is performed using a 15nm scale using

NanGate library [86].

9.1.1. Results in terms of security, design cost, and implementation

complexity analysis

(i). Security Analysis: The proposed security methodologies security is

analyzed using two established security metrics (a) probability of coincidence

(Ci) and (b) tamper tolerance (To) [25], [31], [32], [33]. The probability or

likelihood of detecting identical covert security information in a baseline

159

design is called the probability of coincidence (PC/Ci). The PC/Ci is

formulated as (9.1):

Ci = (1− 1/b)
p
 (9.1)

Where 'b' denotes the number of registers (color) present in the SDFG of target

application before embedding secret security constraints, and 'p' denotes total

embedded secret security/watermarking constraints. The robustness of the

proposed security approach is inversely proportional to the value of Ci (i.e., a

lower value of Ci indicates a stronger security approach in terms of obtaining

stronger digital evidence). The presence of a unique watermark signature

inside the design of hardware application helps in the definitive and robust

detection of pirated IP cores from genuine ones. Further, tamper tolerance

(TT/To) is formulated as (9.2):

𝑇o = v
p
 (9.2)

Where 'p' denotes total embedded secret security data, and 'v' denotes the

quantity of distinctive encoding variables employed in the security approach.

The greater the magnitude of To, the bigger the signature space (i.e., stronger

security). The generation of different signature combinations increases with an

increase in the T0, making it challenging for attackers to decode the precise

signature blend to extract the covert constraints. Consequently, the security

technique's sturdiness against tampering attacks increases with a higher value

of To. The primary purpose of the adversary is to regenerate the exact

signature (using different mechanisms such as brute force attack, etc.) so that

they can easily evade the IP counterfeit detection process. Therefore, a higher

value of To hinders the adversary from performing a tampering attack on the

secured IP core design.

Proposed low-cost multiphase encryption based security methodology: Fig.

9.4 shows the comparison of PC between the proposed approach and [37].

Further, Fig. 9.5 and 9.6 report a similar comparison of PC between the

proposed approach and related works [31] and [32], respectively. The

proposed approach reports a lower PC than [31], [32], and [37], which means

the proposed approach provides stronger digital evidence than [31], [32], and

[37] due to generation of a higher number of hardware security constraints.

160

Due to embedding a higher number of generated security constraints, it

becomes challenging for an adversary to detect the same security constraints

in an unsecured design. Further, embedding a higher number of security

constraints increases the presence of IP vendor-specific digital evidence in the

design.

Next, Fig. 9.7 and 9.8 show a comparison of tamper tolerance between the

proposed approach and the related works [31] and [32]. The proposed security

methodology shows a significantly higher tamper tolerance ability over [31]

and [32] due to generation and embedding of a higher number of hardware

-0.25

-0.2

-0.15

-0.1

-0.05

0

BF SF LED VE HE

D
es

ig
n

 c
o
st

Proposed approch (Sengupta et al., 2019)

(Koushanfar et al., 2005) (Sengupta et al., 2016)

0

200

400

600

800

1000

BF SF LED VE HE

T
im

e
(m

s)

Benchmarks

Convergence time Exploration time

Benchmarks Explored

resource

configurat

ion

Baseline unsecured design (before

signature embedding)

Signature embedded secured design Design

cost

overhead

%
Design

area (um2)

Design

latency (ps)

Design

cost

Design

area (um2)

Design

latency (ps)

Design

cost

Blur filter (BF) 3(+), 4(*) 147.849 927.399 -0.112 147.849 927.399 -0.112 0

Sharpening filter (SF) 4(+), 2(*) 243.79 794.91 -0.193 243.79 794.91 -0.193 0

Laplace edge detection filter

(LED)

2(+), 2(*) 199.75 728.671 -0.108 199.75 728.671 -0.108 0

Vertical embossment (VE) 1(+), 1(*) 99.09 596.185 -0.077 99.09 596.185 -0.077 0

Horizontal embossment (HE) 1(+), 1(*) 99.09 596.185 -0.077 99.09 596.185 -0.077 0

Table. 9.1:Area, latency, cost, and resource configuration of proposed security methodology before and after embedding signature

Fig. 9.1. Design cost comparison between proposed approach

and (Sengupta et al., 2019) [37], (Koushanfar et al., 2005) [31],

and (Sengupta et al., 2016) [32]

Fig. 9.2. Convergence time and exploration time for the

proposed methodology

161

security constraints. Further, the comparison of TT is not reported here

between the proposed and the related work [37] as security methodology [37]

does not use an encoding mechanism (where encoding variables are not

required) to generate the hardware security constraints. Moreover, the

proposed approach is highly robust in terms of security because of the

following factors: (a) generation of RAT based on low-cost resource

architecture obtained through a heuristic, (b) IP vendor selected key for initial

state matrix generation, (c) IP vendor selected key for row-diffusion (d) IP

vendor selected key for byte concatenation, (e) IP vendor selected encoding

rule (f) IP vendor selected keys for TRIFID cipher computation.

Fig. 9.3. Reduction of global best solution design cost over the iteration counts during determining low-cost architecture

configuration for proposed approach. Note: Baseline parameters for PSO-based architecture exploration: 𝒌𝟏, 𝒌𝟐 = 0.5; 𝝎 = linearly

decreasing [0.9–0.1]; 𝒇𝟏, 𝒇𝟐 = 2; N = 3.

162

Proposed low-cost crypto-chain based security methodology: Table 9.5

illustrates a comparative study of Ci between the proposed and [44], [37], [32],

[43], [31], and [107]. The proposed FFA based crypto-chain security approach

surpasses all of the above-mentioned approaches with a lower value of Ci.

This is because the proposed approach facilitates determining and implanting

higher covert constraints (i.e., security constraints that provide stronger digital

evidence) than the related approaches. The production and implantation of a

greater count of security information into the design make the incidence of the

same security information in an unsecured design highly improbable for an

1.00E+00

1.00E+09

1.00E+18

1.00E+27

B
F

S
F

L
E

D

V
E

H
E

T
am

p
er

 t
o
le

ra
n

ce

Benchmark

Proposed approach

1.00E-03

1.00E-02

1.00E-01

1.00E+00

BF SF LED VE HE

P
ro

b
ab

il
it

y
 o

f
co

in
ci

d
en

ce

Benchmarks
Proposed approach (Sengupta et al., 2019)

1.00E-03

1.00E-02

1.00E-01

1.00E+00

BF SF LED VE HE

P
ro

b
ab

il
it

y
 o

f
co

in
ci

d
en

ce

Benchmarks
Proposed approach (Koushanfar et al., 2005)

1.00E-03

1.00E-02

1.00E-01

1.00E+00

BF SF LED VE HE

P
ro

b
ab

il
it

y
 o

f
co

in
ci

d
en

ce

Benchmarks
Proposed approach (Sengupta et al., 2016)

1.00E+00

1.00E+05

1.00E+10

1.00E+15

1.00E+20

1.00E+25

1.00E+30

BF SF LED VE HE

T
am

p
er

 t
o
le

ra
n

ce

Benchmark

Proposed approach

Fig. 9.8. Comparison of TT between the

proposed and (Sengupta et al., 2016) [32]

Fig. 9.4. Comparison of PC between the

proposed and (Sengupta et al., 2019) [37]

Fig. 9.5. Comparison of PC between the

proposed and (Koushanfar et al., 2005) [31]

Fig. 9.6. Comparison of PC between the proposed

and (Sengupta et al., 2016) [32]

Fig. 9.7. Comparison of TT between the

proposed and (Koushanfar et al., 2005) [31]

Benchmarks GEN Spacing

(SPA)

Spread

(SPD)

Weighted

metric (WEM)

BF 0.00 0.111 0.372 0.186

SF 0.00 0.745 0.611 0.306

VE 0.00 0.00 0.00 0.00

HE 0.00 0.00 0.00 0.00

LED 0.00 0.5 0.167 0.084

Table. 9.2: Result of the proposed approach in terms of optimality

163

adversary.

Next, Table 9.5 also shows a comparative investigation of To between the

proposed and [44], [32], [43], [31], and [107]. The proposed FFA based

crypto-chain security approach surpasses all of the above-mentioned

approaches with a higher value of To. Extracting the exact security constraints

from the derived crypto-chain signature combination amongst the innumerable

combinations in the signature space becomes impossible when the tamper

tolerance value is large, which is the case for the proposed approach. On the

contrary, the related approaches achieve lesser tamper tolerance magnitude, as

evident from Table 9.5. This indicates that the proposed approach is more

secure and robust than all the related approaches. Further, To corresponding to

[37] is not reported as this security mechanism does not employ signature

encoding to generate security constraints. Additionally, Table 9.6 reports

variations in the values of Ci and To w.r.t. embedded crypto-chain signature

bits into the design for JPEG-CODEC. The value of Ci decreases with an

increase in the embedded signature bits, while the value of To increases.

Furthermore, the presented FFA based security technique provides more

sturdy security due to the following reasons: (a) IP vendor specified encoding

rules, (b) IP vendor specified keys to drive crypto-chain based security

methodology, (c) IP vendor specified bit padding and embedding rules, (d) IP

vendor specified truncation length, and (e) scheduling information obtained

through transformed JPEG-CODEC SDFG.

(ii). Design Cost:

Proposed low-cost multiphase encryption based security methodology: The

design cost for the proposed approach is evaluated with the help of the design

cost function explained in equation (3.9). The evaluated design cost before and

after embedding the hardware security constraints for different image

processing filter benchmarks is reported in Table 9.1. Further, Table 9.1

reports the low-cost resource architecture explored with PSO-based

architecture exploration corresponding to the secured target image processing

filter IP core. Table 9.1 shows that the proposed approach obtains a secured

image processing filter IP core at zero design cost overhead. Moreover, Fig.

9.1. shows design cost comparison between the proposed approach and a

164

recent approach [31], [32], and [37]. As evident, the proposed approach offers

significant improvement in quality of results (QoR). It is evident from Fig. 9.1

that the proposed approach achieves a significantly better QoR as compared to

0

20

40

60

80

100

120

Convergence time

(sec)

Exploration time

(sec)

Convergence

iteration count

Y=3 Y=5 Y=7

Benchmarks FFA

explored

architecture

Initial design (i.e., pre

signature implanted unsecured

design)

Final secured crypto-chain

signature implanted design

Design

cost

overhead

%
Area

(um2)

Latency

(ps)

Design

cost

Area

(um2)

Latency

(ps)

Design

cost

JPEG-CODEC 6(+), 8(*) 818.67 3245.897 -0.3246 818.67 3245.897 -0.3246 0

Table. 9.3: Results of presented technique pre and post implanting crypto-chain signature

Fig. 9.9. Design cost evaluation of presented technique with Watermarking [31], Steganography [37],

Watermarking [32], Palmprint biometric[44], Encrypted signature [43], and DNA biometric [107] for JPEG-

CODED hardware IP core

Fig. 9.10. Comparison of convergence time, exploration time

and convergence iteration count corresponding to the swarm

(population) sizes (Y) = 3, 5, and 7 for the proposed FFA-

based security approach for secured JPEG-CODEC hardware

IP core design

Time (sec)

Swarm size

165

[31], and [37] with an average design cost reduction of 56.92 percent for all

benchmarks. Further, the average design cost reduction for the proposed

approach compared to [32] is 36.84 percent for all the benchmarks, indicating

a better QoR for the proposed approach than [32]. The integration of PSO-

based architecture exploration with the proposed multi-phase encryption

algorithm helps to determine low-cost optimal secured image processing filter

IP core datapath with significantly lower design cost (higher QoR). Further,

the convergence and exploration time of the proposed approach to obtain

secured target filter IP cores are reported in Fig. 9.2. The proposed algorithm

reports an average convergence time of 77.2ms and an average exploration

time of 462.8ms. This shows that the proposed low-cost multi-phase

Proposed approach [78]

Swarm size Y=3 Y=5 Y=7 Y=3 Y=5 Y=7

Convergence

time (sec)

65.80 57.22 35.47 103.68 70.65 40.69

Exploration

time (sec)

111.73 109.94 106.11 146.22 140.75 120.94

Convergence

iteration

20 16 7 31 15 9

Table. 9.4: Comparison of convergence and exploration time between presented technique and [78]

for generating low-cost optimized architectural solution against secured JPEG-CODEC IP core

datapath

Fig.9.11. Decrement of global best cost with progressing iterations corresponding to different swarm sizes (Y) during computing

low-overhead hardware configuration for presented method

Y=3

Y=5

Y=7

166

encryption algorithm converges to an optimal solution in an acceptable time.

Moreover, the global best design cost reduction graph corresponding to

different image processing filter benchmarks for PSO based architecture

exploration is reported in Fig. 9.3. The graph depicts the reduction in the

global best solution design cost over various iterations obtained using PSO

based architecture exploration in order to determine low-cost final resource

architecture. As evident from Fig. 9.3, the proposed algorithm converges to

the global optimal solution in fewer iterations for smaller image processing

filter applications such as vertical and horizontal embossment. However, it

consumes 2 or 3 additional iterations for slightly larger applications, such as

blur and sharpening filters. It is evident that the proposed algorithm can

provide robust security with zero overhead in final design cost (i.e., no extra

register is required).

Proposed low-cost crypto-chain based security methodology: The proposed

FFA-based crypto-chain based security approach’s design cost is computed

using area and latency-based design cost function shown in eqn. (3.9). Table

9.3 reports the computed design cost corresponding to low-cost JPEG-CODEC

IP core datapath before and after embedding the secret security constraints.

Further, Table 9.3 highlights the FFA-DSE based low-cost optimized

architectural solution corresponding to secured JPEG-CODEC hardware IP

core, design area, and design latency. It is clearly evident from Table 9.3 that

the proposed FFA-DSE based security incurs zero design cost overhead while

securing the JPEG-CODEC hardware IP core. Next, a comparative study of

design cost between the presented technique and [31], [32], [37], [43], [44],

and [107] is illustrated in Fig. 9.9. As apparent from Fig. 9.9, the proposed

methodology offers an average design cost saving of 71.11% in comparison to

[44], [43], [33], and [107]. Further, it reports an average design cost saving of

11.08 % compared to [32] and [37]. This indicates that the presented approach

provides a notable advancement in the quality of results (QoR). The

incorporation of FFA based resource exploration with the presented key-

driven crypto-chain based security algorithm facilitates the production of a

low-overhead optimized secured JPEG-CODEC hardware IP core with a

higher QoR (i.e., lower design cost).

167

Next, Fig. 9.10 reports the exploration and convergence time of the presented

approach to determine the secured JPEG-CODEC IP core datapath. The

average exploration and convergence times are 109.26 sec and 52.83 sec,

respectively. Additionally, Table 9.4 also reports the exploration time,

convergence time, and convergence iteration corresponding to different

population sizes (i.e., 3, 5and 7). The convergence iteration count (i.e., the

iteration required by the DSE algorithm to converge to the global best

architecture solution) decreases with an increase in the population size of

fireflies. Table 9.4 establishes that the probability of convergence toward the

global best solution increases with the increase in the population size. Further,

Table 9.4 compares the proposed approach (that uses FFA-driven DSE) with

Security approach Security parameters

 Embedded

security

constraints

(Ci) (TO)

Proposed approach 512 1.86E-02 1.34E+154

Palmprint biometric [44] 231 1.65E-01 3.45E+69

Steganography[37] 100 4.59E-01 NA

Watermarking [32] 240 1.54E-01 3.12E+144

Encrypted signature [43] 160 2.87E-01 1.46E+48

Watermarking [31] 240 1.54E-01 1.76E+72

DNA biometric [107] 128 3.69E-01 3.40E+38

Table. 9.5: Comparison of probability of coincidence (Ci) and tamper

tolerance (TO) between the proposed approach, [44], [37], [32], [43],

[31], and [107] corresponding to JPEG CODEC

Signature bits

(embedded into the

design)

Probability of

coincidence (Ci)

Tamper tolerance

(To)

32 7.79E-01 4.29E+09

64 6.07E-01 1.84E+19

128 3.69E-01 3.40E+38

256 1.36E-01 1.15E+77

512 1.86E-02 1.34E+154

Table. 9.6: Variation of probability of coincidence and tamper

tolerance corresponding to proposed approach w.r.t. embedded crypto-

chain signature bits into the design for JPEG-CODEC

Benchmarks Proposed approach

Proposed approach 5.61E-177

Palmprint biometric [44] 2.38E-87

Watermarking [32] 5.65E-73

Encrypted signature [43] 2.01E-87

Watermarking [31] 1.66E-111

DNA biometric [107] 2.9E-39

Table. 9.7: Comparison of entropy between the proposed approach,

[44], [32], [43], [31], and [107] corresponding to JPEG-CODEC

Parameters Values

Spacing (SPA) 0.476

Generational distance

(GEN)

0

Weighted metric (WEM) 0.232

Spread (SPD) 0.463

Table. 9.8: Optimality analysis of proposed technique for JPEG-CODEC

168

PSO-driven DSE [78] regarding exploration time, convergence time, and

convergence iteration corresponding to optimal secured JPEG-CODEC IP core

datapath. Table 9.4 indicates that the presented technique supersedes [78] in

terms of lower exploration and convergence time values to achieve the global

optimal solution. Moreover, [78] report the advancement of PSO-driven DSE

over other meta-heuristic based DSE approaches such as GA, ACO, etc.

Further, Fig. 9.11 depicts the design cost reduction graph while achieving the

global best configuration corresponding to JPEG-CODEC hardware IP core

for FFA-based architecture exploration. The graph illustrates the design cost

reduction while reaching the global best solution over various iterations. As

explained above in this sub-section, the FFA architecture exploration process

converges in fewer iterations with an increase in firefly population size

(shown in Fig. 9.11). Additionally, a design cost vs. probability of coincidence

tradeoff for the proposed approach corresponding to varying signature sizes is

shown in Fig. 9.12. As evidenced from Fig. 9.12, the proposed approach

incurs zero design cot overhead with significantly lower value of Ci on

increasing the embedded signature bits.

(iii). Entropy analysis: Entropy is described as the effort required by an

adversary and uncertainty encountered in decoding the embedded hidden

information inside the IP design [134]. The proposed approach’s entropy is

estimated using ET:

ET = ((1/2
Z
)*(1/En)*(1/R)*(1/2

64
))) (9.3)

Where ‘z’ is the magnitude of generated signature, ‘En’ is IP vendor specified

encoding rules, ‘R’ is the round computation’s maximum value, and (1/2
64

) is

1.00E-03

1.00E-02

1.00E-01

1.00E+00

32-bit 64-bit 128-bit 256-bit 512-bit

C
i

Ci Design cost

Fig. 9.12. Design cost vs probability of coincidence trade-off

for proposed approach corresponding to varying signature sizes

0.0

-0.2

-0.4

-0.6

169

the probability of finding the exact key hash buffer initialized value in SHA-

512 cryptographic module (each hash buffer is initialized with pre-defined 64-

bit value). Table 9.7 compares the entropy of the proposed approach with

similar approaches [31], [32], [43], [44], and [107]. The proposed approach

offers a stronger entropy value (lower probability value) compared to the prior

state-of-the-arts.

9.1.2. Optimality analysis

The optimality assessment of the proposed security methodologies with

respect to the determination of the explored architectural solution for secured

image filters and JPEG-CODEC IP core is performed using the following

optimality metrics: (a) spacing (SPA), (b) Generational distance (GEN), (c)

weighted sum (WEM), and (d) spreading (SPD). Table 9.2 and 9.8 highlight

the computed values corresponding to all optimality metrics for the proposed

low-cost multiphase encryption and low-cost crypto-chain based security

methodologies. A zero value of the 'G' shows that the list of obtained solutions

using the presented approach lies on the true Pareto front. Likewise, a zero

value (or marginally higher than zero) for the spacing parameter designates the

even scattering of Pareto points on the curve. Next, the spread metric

computes how comprehensively the true Pareto front is covered. The obtained

lower value (i.e., near to zero) corresponding to both spreading and spacing

metric indicates the scattering evenness of the obtained solutions along with

its extreme covering of true Pareto front.

9.2. Experimental Results: Enhanced Security for Hardware

IPs Using IP Seller’s Protein Molecular Biometrics and

Facial Biometric-based Encryption Key

The experimental results of the proposed encrypted protein molecular

biometric based security methodology (discussed in Chapter 4) are analyzed

and discussed in this section.

9.2.1. Experimental setup and benchmarks

The specification of the system used to implement the proposed approach is

processor-intel core2 duo, 2.10GHz RAM -3GB. A 15nm open-cell library

170

[86] is used to determine both the latency and area of a DSP hardware design,

corresponding to resource constraints.

9.2.2. Security analysis: Analysis of PC and TT

The probability of coincidentally detecting embedded security constraints in

an unsecured design is evaluated using PC metric. It is a measure of the false

positive of the methodology. The probability of coincidence, that the same

design with the security constraints (example, watermark) is produced by any

other authors (IP vendors) must be reduced. The probability is proportional to

the probability that any specific design is produced by a synthesis tool or by a

manual design. It also is an indicator of the presence of digital evidence inside

a secured design that can be used as a digital proof to handle IP piracy and

verify true IP vendor ownership. A lower value of PC indicates a more robust

security methodology with a higher value of digital evidence. Moreover, a

lower value of PC helps in the generation of signatures with greater

uniqueness (digital proof), which provides a smooth, definite, and robust

differentiation between authentic and pirated IP cores during the detection

process. Further, security against tampering attack is evaluated using the

tamper tolerance ability (TT) of the design. The larger is the key-space, the

harder it is for an attacker to find the exact embedded encrypted protein

molecular signature to tamper. The formulas of PC and TT are already

discussed in the previous section of this chapter.

The PC attained using proposed approach corresponding to DSP IP cores has

been reported for varying amino acid sequence length and encrypted protein

molecular signature size, as shown in Table 9.9. As evident from Table 9.9,

with the increase in the number of amino acids in the chain, the encrypted

protein molecular size increases, thereby resulting into larger number of

security constraints producing lower PC value. The proposed protein

molecular signature methodology is also compared with recent state-of-the art

hardware security approaches based on fingerprint biometric [40] and

chromosomal DNA [107]. The comparison of PC of proposed approach with

[40] and [107] are reported in Table 9.10 and 9.11, respectively. As evident,

the proposed approach attains lesser PC (higher strength of ownership proof)

compared to both [40] and [107]. Further, PC comparison has also been

171

reported for two different amino acid chains (protein sequence-1 and

sequence-2) for different DSP cores, as shown in Table 9.12. Moreover, the

PC comparison with conventional approaches [31], [36], [39], [43] has been

shown in Table 9.13. As evident the proposed approach attains lower PC value

(desirable) than the conventional approaches [31], [36], [39], [43]. This is

because the proposed protein molecular signature capacitates the IP vendor to

generate more secret security constraints as compared to generated using

related approaches.

#Amino

acids

Encrypted

protein

molecular

signature size

FIR DFT 4point DCT 8-point DCT JPEG

PC

Embedded security constraints

50 200 2.5E-12 9.8E-3 5.6E-3 5.4E-7 6.3E-2

200 30 18 108 200

150 599 3.4E-13 9.8E-3 5.6E-3 5.4E-7 2.5E-4

215 30 18 108 599

250 990 3.4E-13 9.8E-3 5.6E-3 5.4E-7 1.1E-6

215 30 18 108 990

350 1382 3.4E-13 9.8E-3 5.6E-3 5.4E-7 5.2E9

215 30 18 108 1382

Fingerprint image # of embedded

security

constraints of

fingerprint

approach

PC of

fingerprint

approach [40]

Proposed

amino acid

chain of

protein

sequence

of embedded

security

constraints of

proposed

approach

PC of

proposed

approach

% Reduction of

PC obtained

using proposed

approach

Image:101_1 350 8.0E-3 150 599 2.5E-4 96.8%

Image:101_2 418 3.1E-3 200 799 1.6E-5 99.4%

Image:101_8 526 7.0E-4 250 990 1.1E-6 99.8%

Image:102_3 538 5.9E-4 300 1184 8.0E-8 99.9%

Image:103_8 555 4.7E-4 350 1382 5.2E-9 99.9989%

Table. 9.9: Variation in PC for different size of encrypted protein molecular signature using proposed approach Table. 9.10: Comparison of security in terms of PC for jpeg-codec IP core between proposed approach and IP fingerprinting [40]

172

Next, the comparison of tamper tolerance of the proposed approach with [40]

and [107] is shown in Table 9.14 and Table 9.15, respectively. As evident, the

tamper tolerance of the proposed approach is significantly higher due to

generation of more security constraints using protein molecular biometric

signature than [40], [107]. Further, TT has also been compared corresponding

to two different amino acid chains using proposed approach. As evident from

Table 9.16, TT is higher for larger chain of amino acids (protein sequence-1).

Moreover, the TT comparison with conventional approaches [31], [36], [39],

[43] has been shown in Table 9.17. As evident the proposed approach attains

higher TT value (desirable) than the conventional approaches [31], [36], [39],

[43]. Thus, the proposed approach offers robust security than contemporary

approaches against piracy and fraudulent ownership claim.

9.2.3. Design cost analysis

The design cost DC, pre and post-embedding of generated secret hardware

security constraints corresponding to encrypted protein molecular signature is

evaluated using the following design metric [32]:

𝐷𝐶 = 𝑒1
𝑇𝑑

𝑇𝑚
+ 𝑒2

𝐴𝑑

𝐴𝑚
 (9.4)

Where, Pi denotes the resource constraints of the design, Td and Ad signify the

security constraint embedded design latency and design area respectively, Am

and Lm denote the maximum possible area and maximum possible latency of

the design. e1 and e2 denote weights of latency and area in the normalized cost

function. The used design cost function is similar to design cost function

discussed in previous section. Table 9.18 presents the design cost of proposed

security approach post embedding security constraints corresponding to two

different encrypted protein molecular signature extracted from two different

protein sequences. The proposed approach incurs negligible design cost

overhead post implanting facial biometric encrypted protein molecular

Bench-

marks

[84]

Proposed Related work [107]

Max.

constraints

Pc Max.

constraints

Pc

FIR 225 0.9E-13 128 3.7E-8

ARF 306 1.79E-18 128 3.7E-8

DWT 110 2.1E-11 92 1.2E-9

JPEG 1408 3.6E-9 128 1.7E-1

MESA 1408 1.3E-13 128 3.7E-8

Table. 9.11: Comparison of PC w.r.t. related work [107]

173

signature corresponding to different protein sequence of varying length.

Further, a particular molecular signature of appropriate signature length can be

chosen by considering the security-design cost tradeoff. The security (Pc)-

design cost tradeoff for two different protein sequences (sequence-1 and

sequence-2) corresponding to the varying strength of embedded security

constraints is shown in Fig. 9.13. As evident from Fig. 9.13, the lesser value of

probability of coincidence is achieved (desirable) with an increase in the

number of embedded security constraints for both the protein sequences (1 and

Fingerprint image # of embedded

security

constraints of

fingerprint

approach

TT of

fingerprint

approach

[40]

Proposed amino

acid chain of

protein

sequence

of embedded

security constraints

of proposed

approach

TT of

proposed

approach

% Increment of TT

obtained using

proposed approach

Image:101_1 350 2.29E+105 150 599 2.07E+180 9.0393E+76%

Image:101_2 418 6.76E+125 200 799 3.33E+240 4.92604E+116%

Image:101_8 526 2.19E+158 250 990 1.04E+298 4.74886E+141%

Image:102_3 538 8.99E+161 300 1184 ~1.0E+358 ~+198%

Image:103_8 555 1.17E+167 350 1382 ~1.0E+417 ~+253%

Amino acid

chain

sequence

#Amino acids #Constraints FIR DFT 4point

DCT

8-point DCT JPEG

PC

Embedded security constraints

Sequence-1 350 1382 3.4E-13 9.8E-3 5.6E-3 5.4E-7 5.2E-9

Sequence-2 51 197 3.76E-12 9.8E-3 5.6E-3 5.4E-7 6.6E-2

Benchmarks Proposed

approach

 [39] [36] [31] [43]

FIR 3.4E-13 1.09E-7 1.9E-8 2.1E-3 2.6E-1

ARF 1.79E-18 2.29E-5 2.8E-14 5.1E-2 5.2E-1

1D-DWT 1.95E-9 4.62E-7 1.7E-7 4.2E-3 1.6E-1

Table. 9.12: Variation in PC for two different encrypted protein sequence of varying length using proposed approach Table. 9.13: Comparison of PC with related approaches Table. 9.14: Comparison of TT for JPEG-CODEC between proposed approach and IP fingerprinting [40]

174

2). This is because embedding a higher number of security constraints makes

it more challenging for an adversary to detect the authentic signature in an

unsecured design version.

A lower value of PC depicts the presence of stronger digital evidence

(definitive proof of ownership). Further, embedding more security constraints

may impact the design cost. This is because embedding a higher number of

security constraints into a smaller IP design may require extra storage element

(registers) for accommodating storage variables post performing the local

alteration as per the constraints embedding rule (a single register cannot be

assigned with two storage variables at the same control step). Therefore,

sometimes, new registers may be required to accommodate all the generated

hardware security constraints into the design, which in turn may increase the

design cost of the secured IP. However, in the proposed methodology an IP

Bench-

marks

[84]

Proposed Related work [107]

Max.

constraints
TT Max.

constraints
TT

FIR 225 5.39E+67 128 3.40E+38

ARF 306 1.30E+92 128 3.40E+38

DWT 110 1.29E+33 92 4.95E+27

JPEG 1408 1.0E+421 128 3.40E+38

MESA 1408 1.0E+421 128 3.40E+38

Amino acid

chain sequence

#Amino

acids

Constraints

(z)

TT

Sequence-1 350 1382 ~1.0E+417

Sequence-2 51 197 2.0E+59

Benchmarks

[84]

Design cost of

encrypted protein

molecular signature

implanted design

corresponding to

Sequence-1 (1408

digits)

Design cost of encrypted

protein molecular signature

implanted design

corresponding to

Sequence-2 (128 digits)

8-point

DCT

0.473 0.473

FIR 0.569 0.567

ARF 0.476 0.473

DWT 0.615 0.617

JPEG 0.214 0.214

MESA 0.280 0.280

Benchmarks Proposed

approach

 [39] [36] [31] [43]

FIR 5.39E+67 1.32E+32 7.5E+38 7.0E+13 1.0E+3

ARF 1.30E+92 1020E+24 7.5E+38 7.0E+13 1.0E+3

1D-DWT 1.29E+33 1.20E+24 7.9E+16 1.0E+6 1.0E+3

Table. 9.15: Comparison of tamper tolerance (TT) w.r.t. related work [107]

Table. 9.16: Variation in TT for two different encrypted protein

sequence of varying length using proposed approach

Table. 9.17: Comparison of TT with related approaches

Table. 9.18: Design cost of embedding encrypted protein molecular signature

175

vendor can choose the strength of hardware security constraints for embedding

depending upon the size of application and desirable security strength.

9.2.4. Entropy analysis

The effort required to guess the exact protein molecular signature embedded

can be quantified as: , where 's' stands for the number of generated

protein molecular signature bits. For example, if the value of ‘s’ is 1382 bits

(protein molecular sequence-1), then the value of ‘e’ is 9.4742751E-417. This

is an estimation of the entropy of the proposed approach in terms of the

hardness of the adversarial guessing and effort. In the proposed approach, the

order in which the amino acid is sequenced in polypeptide chain to obtain the

protein molecular signature is unknown to an adversary. In the proposed

approach, 20 different amino acid elements can be concatenated to generate a

Facial

features

(m)

Facial

encryption

key size (k)

Generated

security

constraints (s)

Entropy

5 32 1382 2.27E-452

9 64 1382 5.28E-462

11 83 1382 1.01E-467

Proposed

approach

Key based RNG

techniques [31], [39]

SSL TRNG

[133]

1.01E-467 2.98E-39 9.33E-302

Benchmarks Computational

time without facial

encryption (msec)

Computational

time with facial

encryption (msec)

FIR 744 824

ARF 842 922

DWT 840 920

JPEG 1598 1678

MESA 1152 1232

Table. 9.19: Entropy of the proposed approach

Table. 9.20: Comparison of entropy between proposed approach

and RNG techniques (crypto key based and SSL TRNG)

Table. 9.21: Total computational time of the proposed approach

with and without facial encryption mechanism

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

32 64 108 32 64 116

P
ro

b
ab

ili
ty

 o
f

co
in

ci
d

en
ce

Protein sequence-1 Protein sequence-2

#Embedded security constraints Design cost

Fig. 9.13. Security-design cost trade-off for 8-point DCT corresponding

to two different protein sequences for varying security constraints

1.2

0.2

0.6

0.8

1.0

0.0

0.4

1.4

Design cost

176

robust protein molecular signature. This results in 20! (Factorial 20)

permutations. Further, 11 different facial features can also be concatenated to

generate facial encryption key. Therefore, the total effort (TE) required from an

adversarial perspective:

Entropy = 1/n!  1/2
s
  1/m!  1/2

k
 (9.5)

Where ‘n’ is the number of the different amino acid elements used for the

signature bit generation, ‘m’ is the number of facial features for generating the

encryption key and ‘k’ is the size of facial encryption key. For example, when

n=20, s=1382, m=11 and k=83 then TE= 1.01E-467. The larger the value of n,

s, m and k, the higher the effort required from an adversarial perspective. The

entropy in terms of the hardness of the adversarial guessing and effort of the

proposed approach corresponding to varying encryption key size (based on

different facial features), is shown in Table 9.19. Table 9.19 presents the

entropy corresponding to varying size of encryption key and embedded

security constraints generated through proposed protein molecular signature.

Additionally, the comparison of entropy of the generated signature using

proposed approach with crypto key and semiconductor superlattice true

random number generator (SSL-TRNG) based approach, is shown in Table

9.20. The proposed approach depicts improved entropy (lesser probability

value) than techniques [31], [39] and [133]. Further, the computational time of

the proposed approach corresponding to different benchmarks in case of ‘with

and without facial encryption module’ is shown in Table 9.21. The

computational time corresponding to facial encryption key generation block is

adopted from [41].

9.3. Experimental Results: Securing Hardware IPs by

Exploiting Statistical Watermarking Using Encrypted

Dispersion Matrix and Eigen Decomposition Framework

The experimental results of the proposed statistical watermarking based

security methodology (discussed in Chapter 5) are analyzed and discussed in

this section.

9.3.1. Experimental setup and benchmarks

177

The experimental assessment of the proposed approach has been performed on

a system with a 2.30 GHz processor and 4 GB RAM. A 15 nm technology

scale based on the NanGate library [86] is used in the proposed approach to

evaluate design area and latency corresponding to IP vendor selected resource

configurations. The benchmarks used in the experimental analysis and their

details (including their CDFGs, scheduling, register count, etc.) are available

in [40],[41],[84]. The framework/tool used for characterizing area/latency is

adopted from [41] and is publicly available at [85]. The maximum design

space capacity (in terms of exhaustive resource configurations available) is as

follows: 8-point DCT – 8; FIR – 64; ARF- 32; DWT- 20; JPEG- 2048 [46].

9.3.2. Analysis of attack scenarios

(i). Security Against Forgery Attack: In the proposed approach, it is not

mandatory to store the embedded signature. The authentic IP vendor can easily

perform IP ownership resolution by matching the security constraints with the

embedded security constraints of the IP design. On the contrary, regeneration

of original encrypted security constraints is impossible for the adversary as the

regeneration process requires decoding of several security parameters such as

(a) IP vendor selected p-bit key for resource configuration generation, (b) IP

vendor chosen AES encryption key, (c) IP vendor chosen characteristic

security parameters such as: var (Ad), var (Ld), (cov (Ad, Ld), eigen roots, and

the number of resource configuration chosen, (d) concatenation rule for

appending the encrypted characteristic secret data to generate the final

encrypted signature, and (e) IP vendor specified encoding rule to convert the

encrypted signature into security constraints. Therefore, the proposed

approach is resilient against possible forgery attack by an SoC integrator. The

used acronyms are explained in Chapter 5.

178

(ii). Security Against Brute Force Attack: The proposed approach is capable

of providing resistance against brute force attack due to its very high tamper

tolerance ability. Due to greater size of the watermark signature generated, the

signature space of the proposed approach is extremely large. Therefore, from

an attacker’s perspective, the probability of finding the exact signature

combination used for embedding security constraints is extremely low.

Henceforth, the proposed approach provides sturdy resilience against brute

force attack used for tampering and/or removal of the embedded watermark.

(iii). Security against False Positive and Ghost Signature Search Attack:

The implanted secret mark (watermark) should be seamlessly detectable to

Benchmarks Proposed approach [41] [43]

 Register count

before

embedding

security

constraints

Embedded

security

constraints

(c)

(Ci) Embedded

security

constraints

(c)

(Ci) Embedded

security

constraints

(c)

(Ci)

8-point DCT 16 214 1.00E-06 81 5.36E-03 160 3.27E-05

FIR 16 343 2.43E-10 81 5.36E-03 160 3.27E-05

ARF 16 441 4.35E-13 81 5.36E-03 160 3.27E-05

DWT 10 164 3.13E-08 81 1.96E-04 160 4.77E-08

JPEG-CODEC 137 896 1.41E-03 81 5.52E-01 160 3.09E-01

Table. 9.22: Comparison of probability of coincidence (Ci) between the proposed approach, [41], [43]

Benchmarks Proposed approach [31] [40]

 Register count

before

embedding

security

constraints

Embedded

security

constraints

 (Ci) Embedded

security

constraints

(Ci) Embedded

security

constraints

(Ci)

8-point DCT 16 214 1.00E-06 128 2.58E-04 199 2.64E-06

FIR 16 343 2.43E-10 128 2.58E-04 199 2.64E-06

ARF 16 441 4.35E-13 128 2.58E-04 199 2.64E-06

DWT 10 164 3.13E-08 128 1.39E-06 164 3.13E-08

JPEG-CODEC 137 896 1.41E-03 128 3.91E-01 199 2.32E-01

Table. 9.23: Comparison of probability of coincidence (Ci) between the proposed approach, [31], [40]

Benchmarks Proposed

approach

[41] [43] [31] [40]

8-point DCT 2.63E+64 2.41E+24 1.46E+48 3.40E+38 8.03E+59

FIR 1.79E+103 2.41E+24 1.46E+48 3.40E+38 8.03E+59

ARF 5.67E+132 2.41E+24 1.46E+48 3.40E+38 8.03E+59

DWT 2.33E+49 2.41E+24 1.46E+48 3.40E+38 8.03E+59

JPEG-CODEC 5.28E+269 2.41E+24 1.46E+48 3.40E+38 8.03E+59

Table. 9.24: Comparison of tamper tolerance (Zt) between the proposed approach, [41], [43], [31], and [40]

179

establish the proof of authorship. This indicates the credibility of the

embedded watermark. No third party (i.e., other than the IP owner) should be

able to claim the watermark by chance. The probability of coincidence serves

as a metric to assess the likelihood of coincidently detecting the exact security

constraints within an unsecured IP design (false positive). The likelihood of a

successful ghost signature search attack is the same as the probability of

coincidence. In the proposed approach, the credibility of the embedded

watermark is extremely high due to its lower probability of coincidence. This

is because the proposed approach is capable of generating/embedding much

larger number of secret watermarking constraints into the IP design.

Therefore, the likelihood of launching successful ghost signature search attack

is extremely low.

9.3.3. Security analysis: PC, TT and entropy analysis

Tables 9.22 and 9.23 report the comparison of the probability of coincidence

between the proposed approach, [31], [40], [41], and [43]. In case of the

proposed approach, the security constraints that can be generated and

embedded are larger in size, therefore the maximum embedding possible (as

reflected in tables 9.22 and 9.23) corresponding to different applications are

higher and different, than prior approaches. On the other hand, for prior

approaches [40], [41], and [43], the security constraints in Tables 9.22 and

9.23 are same, because the maximum possible generation of security

constraints for embedding corresponding to different applications is exactly

same. Further, Table 9.25 shows the comparison of the probability of

coincidence with variation in signature strength corresponding to the JPEG-

CODEC IP for the proposed approach. The proposed approach depicts a lower

value of Ci as compared to the prior approaches [31], [40], [41], and [43],

indicating stronger digital evidence due to the generation and embedding of a

larger number of hardware security constraints. Table 9.25 shows, the Ci of the

p-bit key based resource

configuration

Variation in

signature

Ci Zt

[1,4], [1,1], and EK =128 bit 512-bit 2.34E-02 1.34E+154

[1,4], [1,1], [1,8], [1,5], and

EK =128 bit

896-bit 1.41E-03 5.28E+269

[1,4], [1,1], [1,8], [1,5], and

EK =256 bit

1792-bit 1.98E-06 2.79E+539

Table. 9.25: Comparison of probability of coincidence (Ci) and tamper

tolerance (Zt) with variation in signature strength corresponding to

JPEG-CODEC IP for the proposed approach

180

proposed approach decreases with the increase in signature strength. This

shows that the proposed approach carries the capability to generate and embed

larger signatures for achieving a lower Ci value (Note: the same resource

configuration and encryption key have been used for proposed approach and

prior works). The proposed approach is capable of producing larger number of

watermarking constraints for embedding as digital evidence due to the

following security variables in the framework: (a) creation of mathematical

watermark by extracting variance and covariance of IP vendor’s chosen design

space parameters, (b) creation of mathematical watermark by capturing

variance and eigen roots of the IP vendor’s chosen design space parameters

(such as resource configurations, area, latency, etc. corresponding to the

hardware application), (c) inherent capability of the proposed framework to

extract secret design parametric information for creation of watermarking

constraints. The above mentioned blocks exploited as watermarking

framework, has not been used in any prior approaches for

generation/embedding of security constraints. Therefore, the proposed

approach is more robust against standard attacks and is capable of offering

stronger digital evidence than prior approaches.

Next, Table 9.24 reports comparison of tamper tolerance between the

proposed approach, [31], [40], [41], and [43]. The proposed approach depicts a

higher value of TT/Zt as compared to the prior approaches [31], [40], [41], and

[43] due to the generation of a larger number of hardware security constraints

and a greater signature space. Further, Table 9.25 compares the tamper

tolerance with variation in signature strength corresponding to the JPEG-

CODEC IP for the proposed approach. As evident from the Table 9.25, the

proposed approach's tamper tolerance ability increases with an increase in

signature strength.

Further, the entropy of the proposed approach can be represented as follows:

ET = 1/2
d

 * 1/2
k
 * 1/2

p
 * (1/(AM*MM))

t
 (9.6)

Where 'd' is the length of the final generated encrypted signature, 'k' is the size

of the encryption key, 'p' is the size of the secret key used by the IP vendor for

deciding the input resource configuration, 'AM' is the maximum possible value

181

for adder, 'MM' is the maximum possible value for the multiplier corresponding

to the targeted application, and 't' is the IP vendor chosen number of resource

configurations from the design space. Table 9.27 reports the comparison of

entropy between the proposed approach, [31], [40], [41], and [43]. Further, as

evident from Table 9.27, the proposed approach offers a stronger entropy

value (i.e., a lower probability value) compared to prior approaches [31], [40],

[41], and [43]. Moreover, Table 9.28 illustrates a comparison between the

entropy of the proposed approach, cryptographic key random number

generator (RNG) [31] and a semiconductor superlattice true random number

generator (SSL-TRNG) [133] based approaches. The proposed approach

Benchmarks IP vendor

selected

resource

configuration

for scheduling

Initial design (i.e., pre signature

implanted unsecured design)

 Final secured signature implanted

design

Design

cost

overhead

%

 Area

(um2)

Latency

(ps)

Register

count

Design

cost

 Area

(um2)

Latency

(ps)

Design

cost

Register

count

8-point DCT 1(+), 2(*) 182.45 1324.86 16 0.446 182.45 1324.86 0.446 16 0

FIR 1(+), 2(*) 106.95 2583.46 16 0.569 109.31 2583.46 0.57 19 0.17

ARF 1(+), 2(*) 182.45 2450.98 16 0.412 187.95 2450.98 0.415 23 0.72

DWT 2(+), 3(*) 272.10 1722.31 10 0.656 275.25 1722.31 0.657 14 0.15

JPEG-

CODEC

6(+), 8(*) 824.96 3245.89 137 0.157 824.96 3245.89 0.157 137 0

Table. 9.26: Results of proposed approach pre and post implanting generated signature

Benchmarks Proposed

approach

[41] [43] [31] [40]

8-point DCT 1.09E-544 1.03E-32 2.01E-87 8.63E-78 3.08E-65

FIR 3.33E-549 1.03E-32 2.01E-87 8.63E-78 3.08E-65

ARF 1.06E-547 1.03E-32 2.01E-87 8.63E-78 3.08E-65

DWT 6.99E-547 1.03E-32 2.01E-87 8.63E-78 3.08E-65

JPEG 9.94E-577 1.03E-32 2.01E-87 8.63E-78 3.08E-65

Table. 9.27: Comparison of entropy between the proposed approach, [41], [43], [31], and [40]

182

demonstrates enhanced entropy, indicated by lower probability values

compared to [31] and [133]. This is because the proposed approach offers

more resistance and uncertainty to an attacker than other watermarking

approaches [31], [40], [41], and [43], and [133]. More explicitly, an attacker

needs to decode the following resistive parameters to overcome the

uncertainty in regenerating or forging the exact security constraints, which

offers stronger entropy than existing works: (a) The different p-bit key values

for deciding the number of input resource configurations, (b) Design

parameters chosen for dispersion matrix and Eigen matrix, (c) Encrypted

signature strength, (d) Size of the encryption key (k), (e) Maximum possible

value ('AM', 'MM') of the resources used, such as adders, multipliers, etc.

9.3.4. Design cost analysis

The design cost function used here is same as the design cost function

discussed in prior sections of this chapter. Table 9.26 reports the IP vendor's

chosen resource configuration for scheduling, its design area, latency, and cost

corresponding to the design. As evident from Table 9.26, the proposed

approach provides robust security at a negligible design overhead of 0.2 %.

Further, Fig. 9.14 illustrates the design cost vs. probability of coincidence

tradeoff for the proposed approach for varying IP vendor signature sizes. The

value of Ci decreases with an increase in signature size at a constant value of

design cost for JPEG-CODEC IP.

 Proposed approach Key based RNG [31] SSL TRNG [133]

9.94E-577 8.63E-78 9.33E-302

Table. 9.28: Comparison of Entropy between Proposed Approach

and RNG Techniques (Crypto Key based) for JPEG-CODEC

1.00E-03

1.00E-02

1.00E-01

1.00E+00

512-bit 640-bit 768-bit 896-bit
P

ro
b

ab
il

it
y
 o

f
co

in
ci

d
en

ce
 (

C
i)

Ci Design cost

0.3

0.2

0.1

0.0

Fig 9.14. Design cost vs probability of coincidence trade-off

for proposed approach for varying IP vendor signature sizes

corresponding to JPEG-CODEC IP

183

9.4. Experimental Results: Securing GLRT Cascade

Hardware IP using IP Seller’s Fingerprint and CIG

Framework for ECG Detector

The experimental results of the proposed secure GLRT cascade hardware IP

design framework (discussed in Chapter 6) are analyzed and discussed in this

section. The experimental assessment of the proposed secure GLRT hardware

IP core design for the ECG detector has been performed on a system with a

2.30 GHz processor and 4 GB RAM. A 15 nm technology scale based on the

NanGate library [86] is used in the proposed approach to evaluate design area

and latency corresponding to secure GLRT hardware IP core. The proposed

design in this paper is a simulated version of the secure GLRT hardware IP at

register transfer level (RTL). In case fabricated version of the design RTL is

intended using the layout level information, standard CAD tool based design

synthesis steps at lower levels can be employed to generate the layout level

representation of the designed secure GLRT hardware IP (at RTL).

9.4.1. Analysis of attack scenarios

(i). Security against Forgery and Spoofing Attack: Forgery and spoofing are

not feasible in the case of the proposed approach. This is because the

biometric fingerprint minutiae points are pre-stored in an encrypted format in

a safe database for validation/detection later. Any attacker endeavoring to

forge the stored encrypted biometric fingerprint template would be

unsuccessful in using it since he/she does not have the knowledge of the

advanced encryption standard (AES) private key needed for decryption.

Furthermore, a spoofing attack is not applicable in the case of IP piracy

detection. This is because the attacker's goal is to evade/escape IP piracy

detection by re-moving/tampering with the original embedded secret signature

(security constraints). However, an attacker may attempt to launch spoofing to

falsely claim IP ownership, which is not possible as spoofing of encrypted

biometric fingerprint template requires forgery of the pre-stored encrypted

biometric fingerprint template, which is not useful until an attacker is capable

of successfully decrypting the encrypted template using the AES private key.

Besides, an attacker also needs to decode the following security parameters:

184

(a) the number of features used in each template for fingerprint, (b) number of

minutiae points and their exact 4-dimensional coordinates used for template

regeneration, and (c) concatenation order of minutiae points used for

regenerating the fingerprint template, for performing successful and accurate

spoofing to falsely claim IP ownership. Therefore, forgery and spoofing attack

is not possible in the proposed approach.

(ii). Security against Side Channel Attack (SCA) and Machine Learning

(ML)-based Attack: The proposed security methodology stands strong against

SCA and ML-based attacks, in contrast to PUF-based techniques. This

resilience is attributed to the fact that the proposed security approach incurs a

zero impact on the overall design cost of GLRT IP. Hence, the secret

biometric fingerprint watermark embedded design does not leak significant

side-channel information (such as delay, power, etc.). In the proposed

approach, the biometric fingerprint watermark constraints (digital evidence)

are embedded solely by locally modifying the register assignments (through

swapping). Consequently, there is no noticeable impact on side channel

parameters from an attacker's perspective. Furthermore, ML attacks are not

applicable to a design with an embedded watermark (in case of proposed

approach), as it does not rely on challenge-response pairs, which are prime

targets for adversarial/modelling attacks, contrary to PUF-based systems.

(iii). Security against Brute-Force Attack (Tamper Tolerance): An attacker

may attempt to perform a brute-force attack to remove/tamper the original

embedded secret watermark (fingerprint security constraints). Tamper

tolerance measures security in terms of the brute force attempts by adversaries

to tamper the design or guess the exact signature combination. A higher TZ

value is desirable as it indicates a larger signature space, resulting in huge

possible signature combinations. A higher TZ value increases the complexity

for attackers in their attempts to discover the exact watermark signature

combination (security constraints). In the case of the proposed approach, TZ is

extremely high when launching a brute-force attack. Therefore, removing the

embedded biometric fingerprint based watermark (security constraints) of the

proposed approach is highly challenging.

185

(iv). Security against Ghost Signature Search Attack and False

Positive/Watermark Collision (Probability of Coincidence): The credibility

of the embedded secret watermark should be seamlessly detectable for the

evidence of authorship. No third party (i.e., other than the IP owner) should be

able to claim the watermark by chance (in order words watermark collision

should be as low as possible). The probability of coincidence serves as a

metric to assess the likelihood of coincidently detecting the exact security

constraints within an unsecured IP design (false positive). The likelihood of a

successful ghost signature search attack is the same as the probability of

Proposed secure GLRT IP

with fingerprint

Design with facial

constraints [40]

Design with digital

signature [39]

Security

constraints

Ci Security

constraints

Ci Security

constraints

Ci

250 3.57E-10 16 2.48E-01 16 2.48E-01

275 4.05E-11 32 6.17E-02 32 7.71E-02

300 4.60E-12 64 3.81E-03 64 3.81E-03

346 8.41E-14 81 8.69E-04 128 1.45E-05

Table. 9.29: Comparison of probability of coincidence (Ci) between the proposed fingerprint

embedded secure GLRT cascade IP with facial biometric [40] embedded IP design and

digital signature embedded IP design [39]

Proposed secure GLRT IP

with fingerprint

Design with encrypted

signature [43]

Design with watermark

[31]

Security

constraints

Ci Security

constraints

Ci Security

constraints

Ci

250 3.57E-10 32 6.17E-02 32 6.17E-02

275 4.05E-11 64 3.81E-03 64 3.81E-03

300 4.60E-12 128 1.45E-05 128 1.45E-05

346 8.41E-14 160 8.99E-07 240 8.52E-10

Table. 9.30: Comparison of probability of coincidence (Ci) between the proposed fingerprint

embedded secure GLRT cascade IP with encrypted signature embedded IP design [43] and

hardware watermarking embedded IP design [31]

Proposed secure GLRT IP

with fingerprint

Design with encrypted

signature [43]

Design with watermark

[31]

Security

constraints

Ti Security

constraints

Ti Security

constraints

Ti

250 1.80E+75 32 4.29E+09 32 4.29E+09

275 6.07E+82 64 1.84E+19 64 1.84E+19

300 2.03E+90 128 3.40E+38 128 3.40E+38

346 1.43E+104 160 1.46E+48 240 1.76E+72

Table. 9.32: Comparison of tamper tolerance (Ti) between the proposed fingerprint embedded

secure GLRT cascade IP with encrypted signature embedded IP design [43] and hardware

watermarking embedded IP design [31]

Proposed secure GLRT IP

with fingerprint

Design with facial

constraints [40]

Design with digital

signature [39]

Security

constraints

Ti Security

constraints

Ti Security

constraints

Ti

250 1.80E+75 16 6.55E+04 16 6.55E+04

275 6.07E+82 32 4.29E+09 32 4.29E+09

300 2.03E+90 64 1.84E+19 64 1.84E+19

346 1.43E+104 81 2.41E+24 128 3.40E+38

Table. 9.31: Comparison of tamper tolerance (Ti) between the proposed fingerprint

embedded secure GLRT cascade IP with facial biometric [40] embedded IP design and

digital signature embedded IP design [39]

186

coincidence. Thus, a lower Ci value signifies more robust security and stronger

credibility, indicating higher level of security.

9.4.2. Security analysis

Embedding the IP vendor's digital fingerprint template provides robust

security to the designed GLRT hardware IP core of the ECG detector. This is

because of the following reasons: (a) IP vendor's fingerprint digital template

facilitates the integration of a unique natural identity with the design synthesis

flow that increases the robustness of the proposed approach against IP piracy

and false claim of IP ownership, and (b) the inclusion of several IP vendor

specific parameters and rules such as concatenation rule, mapping rule,

truncation length, etc. hinders the adversary from exactly regenerating the

digital fingerprint template. The security analysis of the proposed secure

GLRT hardware IP core is performed using established security metrics in the

literature [25], [31], [32], [33] such as (a) probability of coincidence (false

positive), (b) tamper tolerance. These metrics are already defined in section

9.1.1 of this chapter.

Tables 9.29 and 9.30 report the comparison of Ci between the proposed secure

GLRT cascade hardware IP with embedded fingerprint and secure GLRT

cascade hardware IP with facial biometric [40], digital signature [39],

encrypted signature [43] and hardware watermarking [31]. The proposed

secure GLRT cascade hardware IP core with embedded fingerprint surpasses

[40], [39], [43], and [31], as clear from Tables 9.29 and 9.30. The

determination of the larger number of security constraints in the proposed

approach helps in achieving a lower value of Ci than [40], [39], [43], and [31].

Embedding a larger number of security constraints (i.e., the presence of

greater digital evidence in the design) increases the attacker's effort to locate

the same security constraints in an unsecured GLRT hardware IP design. Next,

Tables 9.31 and 9.32 show the comparison of Ti between the proposed secure

GLRT cascade hardware IP with embedded fingerprint and secure GLRT

cascade hardware IP with facial biometric [40], digital signature [39],

encrypted signature [43] and hardware watermarking [31]. The proposed

approach supersedes [40], [39], [43], and [31], as clear from Tables 9.31 and

9.32, due to the determination of larger security constraints. A higher value of

187

Ti signifies a larger signature space because of greater signature combinations.

This makes it significantly harder by increasing the attacker's effort/time to

guess the exact embedded signature combination from larger signature space.

9.4.3. Design cost analysis

The design cost is computed using equation (9.7):

𝐷𝑐 = (𝑒1 (
𝐿𝑇

𝐿𝑚𝑎𝑥
)) + (𝑒2 (

𝐴𝑅

𝐴𝑚𝑎𝑥
)) (9.7)

where, e1 = e2 = 0.5 for giving equal weightage to design latency and area, LT

and AR are design latency and area corresponding to GLRT hardware IP.

Further, Lmax and Amax are their corresponding maximum latency and area,

respectively. Table 9.33 reports the design latency, area, and IP vendor

specified resource configuration of the proposed secure GLRT hardware IP for

the ECG detector before and after embedding the fingerprint template. As

evident from Table 6, the proposed secure GLRT hardware IP core with

Application Resource

configurati

on

Unsecured design (before

fingerprint embedding)

Proposed fingerprint

embedded secure

design

Design

area

(um2)

Design

latency (ps)

Design

area

(um2)

Design

latency

(ps)

GLRT cascade

hardware IP core

2(+), 3(*) 273.67 1656.07 273.67 1656.07

Table. 9.33: Design latency, area, and resource configuration of proposed secure GLRT IP

before and after embedding fingerprint signature

Application Resource

configurati

on and

registers

Unsecured design (before

fingerprint embedding)

Proposed fingerprint

embedded secure

design

Design

cost

Leakage

power

Design

cost

Leakage

power

GLRT cascade

hardware IP core

2(+), 3(*),

and 13

registers

0.43

8.57 μw

0.43

8.57 μw

Table. 9.34: Design cost, leakage power, register count and resource configuration of

proposed secure GLRT hardware IP before and after embedding fingerprint signature

Fig. 9.15. Design cost vs probability of coincidence trade-off for

proposed secure GLRT cascade for varying fingerprint signature sizes

188

fingerprint biometric provides robust security at zero design cost overhead

(i.e., no extra registers are required). As evident from Table 9.34, the power

overhead of the proposed approach is 0%, as the post fingerprint embedded

design does not incur any extra functional units or registers. Table 9.34 also

reports the leakage power value of pre-embedded and post fingerprint

embedded GLRT IP core. Therefore, the proposed secure GLRT IP core

produces reliable designs as low-power designs result into lesser heat

dissipation.

Further, Fig. 9.15 highlights the design cost vs. probability of coincidence

tradeoff for the proposed secure GLRT cascade for varying fingerprint

signature sizes. The value of Ci decreases with an increase in signature size at

constant value of design cost.

9.5. Experimental Results: Exploiting Voice Biometric-Based

Watermarking Framework for Securing Hardware IP

Cores

The experimental results of the proposed voice biometric based security

methodology (discussed in Chapter 7) are analyzed and discussed in this

section.

9.5.1. Experimental setup and benchmarks

The experimental validation and analysis of the proposed approach are

performed on Intel(R) Core (TM) i7-9700 CPU @ 3.00GHz and 4GB RAM.

We analyze the impact of a varying number of selected voice biometric

features on the signature template size. Further, the security of the proposed

approach has been analyzed in terms of (i) strength of IP ownership proof

using the probability of coincidence metric, (ii) tamper tolerance of the

proposed voice signature, and (iii) security against forgery attack.

Additionally, we evaluated the impact of voice biometric-based hardware

security on design metrics such as area and latency (delay) and the final design

cost for various DSP benchmarks [84]. A 15nm technology scale-based Nan

Gate library [86] has been used to compute the design metrics.

189

9.5.2. Effect of feature selection on voice signature size and sensitivity

analysis

The impact of varying number of selected features, such as pitch and intensity,

on voice signature size has been analyzed for different benchmark applications

in Table 9.35. This table compares different signature strengths generated

from a different number of selected timestamps (Ts) or pitch and intensity

features (such as 10, 12, 14, and 15 Ts). As shown, the signature size increases

with the increase in Ts or the number of features extracted. Hence, a larger

number of Ts can be chosen to generate a higher size signature for higher

security. Further, a slight variation in the timestamp does not affect the

signature size but affects the voice features, viz. pitch, intensity, Jitter and

Shimmer. This results in a completely different signature template. It is

noteworthy that there is an infinite number of timestamps possible for

extracting pitch and intensity values for a particular voice sample. This may

lead to an infinite number of possible signatures through variations in

timestamps or features. However, the genuine IP vendor being aware of the

selected value of the timestamp, can generate the same signature template for

verification. On the other hand, the variation in signature with timestamps

thwarts an adversary from reproducing the same signature template for misuse

or during verification.

Scalability of the proposed approach: The proposed approach can generate

very long size signatures by extracting the features (pitch and intensity) at

large number of timestamps. Further, the strength of the signature generated

from a voice sample also depends on the size of the targeted IP core.

Therefore, the proposed technique is scalable in nature as it provides the

ability to accommodate more constraints in big size applications like moving

picture expert group (MPEG) IP for securing them.

9.5.3. Security evaluation and comparison with prior watermarking

techniques

The security evaluation of the proposed approach is performed using

probability of coincidence and tamper tolerance security metric. The

probability of coincidence is the measurement of the strength of IP ownership

190

proof. The lower the probability of coincidence, the higher the strength of IP

ownership proof will be. The PC value corresponding to the target applications

decreases with the increase in signature size (or timestamps) as shown in

Table 9.36. Further, the PC achieved using the proposed methodology is

compared with different state-of-the-art watermarking techniques [31], [36],

[37], [40], [41], [43] and [44] in Table 9.37. As shown, the proposed approach

offers a lower probability of coincidence as compared to state-of-the-arts [31],

[36], [37], [40], [41], [43] and [44], indicating higher strength of IP ownership.

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

IIR 8-point

DCT

FIR MPEG 4-point

DCT

Voice-001 Voice-002 Voice-003

Voice-004 Voice-005

Table. 9.35: Variation in Signature Size (in bits) with variation in

selected number of Timestamps (Ts) or pitch and intensity values for

Voice-001

Variation in

number of

timestamps

Signature size variation

IIR IDCT FIR MPEG 4point

DCT

10 Ts 191 191 191 191 77

12 Ts 205 220 220 220 77

14 Ts 227 249 249 249 77

15 Ts 234 262 264 264 77

Table. 9.37: Comparison of probability of coincidence of

proposed with other watermarking techniques

Water-

marking

techniques

Pc

4-point

DCT

8-point

IDCT

FIR MPEG

Proposed 3.42E-5 4.53E-8 3.94E-8 6.76E-5

[36] 2.08-2 7.8E-2 7.8E-2 7.27E-1

[37] 3.2E-3 1.9e-6 4.9E-4 1.3E-2

[40] 3.54E-2 2.36E-4 4.93E-7 2.79E-4

[41] 2.0E-5 5.36E-3 5.36E-3 5.25E-2

[44] 2.71E-2 3.13E-4 3.35E-7 2.24E-4

[31] 2.63E-1 3.79E-1 3.79E-1 5.79E-1

[43] 2.63E-1 5.24E-1 5.24E-1 6.95E-1

Table. 9.36: Comparison of PC value with variation in signature size for

varying # of timestamps or pitch and intensity values

#Ts

variation

IIR 8-point

IDCT

FIR MPEG 4point DCT

10 Ts 7.12E-7 4.43E-6 4.43E-6 9.62E-4 3.42E-5

12 Ts 2.52E-7 6.81E-7 6.81E-7 3.35E-4 3.42E-5

14 Ts 4.94E-8 1.04E-7 1.04E-7 1.64E-4 3.42E-5

15 Ts 2.94E-8 4.53E-8 3.98E-8 6.76E-5 3.42E-5

Fig. 9.16. Comparison of PC of the proposed approach among 5

different voice samples (15 timestamps)

191

The higher PC is achieved due to the ability to generate a larger voice

signature template, embedding a higher number of hardware security

constraints. Further, the PC value for five different voice samples is reported

in Fig. 9.16.

Next, the TT value of the proposed voice signature increases with an increase

in the signature strength as shown in Table 9.38. The higher tamper tolerance

helps preserve the author's signature for seamless verification of IP. Further,

Table 9.39 shows that the proposed approach has a higher value of TT as

compared to state-of-the-art [31], [36], [40], [41], [43] and [44]. The high

value of TT is achieved due to the larger size of the signature and the multiple

encoding used. Further, the TT value for five different voice samples is also

reported in Fig. 9.17.

9.5.4. Design cost analysis and security trade-offs

1.00E+00

1.00E+21

1.00E+42

1.00E+63

1.00E+84

1.00E+105

1.00E+126

1.00E+147

IIR 8-piont

IDCT

FIR MPEG 4-point

DCT

Voice-001 Voice-002 Voice-003

Voice-004 Voice-005

#Ts 8-point

IDCT

FIR MPEG 4point

DCT

10 Ts 9.8E+114 9.8E+114 9.8E+114 2.3E+46

12 Ts 6.8E+132 6.8E+132 6.8E+132 2.3E+46

14 Ts 8.2E+149 8.2E+149 8.2E+149 2.3E+46

15 Ts 5.5E+157 8.8E+158 8.8E+158 2.3E+46

 Table. 9.38: Comparison of tamper tolerance with variation in

signature size for varying timestamps or pitch and intensity values

Fig. 9.17. Comparison of TT of the proposed approach among 5

different voice samples (15 timestamps)

Table. 9.39: Comparison of tamper tolerance of proposed with

other watermarking techniques [36],[40], [41], [44], [31], and [43]

Water-

marking

techniques

Pc

4-point

DCT

8-point

IDCT

FIR MPEG

Proposed 2.28E+46 5.49E+157 8.78E+158 8.78E+158

[36] 5.08E+50 4.1E+67 4.1E+67 4.1E+67

 [40] 8.47E+11 5.39E+57 2.25E+107 2.25E+107

 [41] 2.41E+24 2.41E+24 2.41E+24 2.41E+24

 [44] 7.62E+12 4.36E+59 1.64E+110 1.64E+110

 [31] 1.02E+3 3.27E+4 3.27E+4 3.27E+4

[43] 1.04E+6 1.04E+6 1.04E+6 1.04E+6

192

The design cost function used in the proposed approach has already been

discussed in prior sections of this chapter. Table 9.40 illustrates the design

area, execution latency or delay, and design cost before and after embedding

the voice signature constraints for different benchmarks. Further, it reports the

incurred design cost overhead due to the embedding of voice biometric-based

signature into the designs and compares it with the most recent

watermarking/steganography approaches [36], [37], [44]. The average design

cost overhead of the proposed technique is 0.18% which is lesser than the

related approaches [36], [44]. However, the design cost overhead of [37] is

slightly lower as it embeds a lesser number of constraints than the proposed

approach. The overhead of PUF based techniques [135], [136] are reported as

Benchmarks Baseline design (before

signature embedding)

Voice biometric signature

embedded design

Design cost overhead %

Design

area

Design

latency

Design

cost

Design

area

Design

latency

Design

cost

proposed [36] [37] [44]

8-point

IDCT

182.752 1324.856 0.447 186.384 1324.856 0.449 0.4 3.5 0.1 0.4

FIR 106.954 2583.469 0.569 106.954 2583.469 0.569 0.0 2.3 0.0 0.8

MPEG 305.135 1391.099 0.436 305.135 1391.099 0.436 0.0 7.8 0.0 0.0

4-point DCT 176.161 662.428 0.563 178.52 662.428 0.565 0.3 5.5 0.1 0.2

Benchmarks Design cost on varying signature strength

Signature size

(32-bits)

Signature size

(64-bits)

Signature size

(128-bits)

Signature size

(192-bits)

Signature size

(256-bits)

8-point IDCT 0.447 0.447 0.447 0.447 0.449

FIR 0.569 0.569 0.569 0.569 0.569

MPEG 0.436 0.436 0.436 0.436 0.436

4-point DCT 0.563 0.565 0.565 0.565 0.565

Table. 9.40: Area(um), latency (ps) and design cost analysis of proposed approach and comparison with related works Table. 9.41: Analysis of design cost tradeoff with security for the proposed hardware security approach

193

follows. In the case of [135], area overhead of 52% in LUT, 55% in slices

count and delay overhead of 17%; and in the case of [136], 5.16% delay

overhead has been reported previously [136]. Hence, this implies that the

proposed watermarking is more design cost-efficient than the PUF based

techniques. Further, Table 9.41 presents a security cost tradeoff analysis of the

proposed approach. It is evident from the table that embedding a smaller

signature (such as 32 bits) and a larger one (such as 256 bits) has almost a

similar effect on design cost with minimal overhead. Hence, the proposed

approach is capable of offering higher security using larger signature strength

without significantly affecting design cost.

9.6. Experimental Results: HLS-Based Exploration of Low-

Cost (Optimal) Functional Trojan-Resistant Hardware

IP Designs

The experimental results of the proposed HLS based Trojan resistant approach

(discussed in Chapter 8) are analyzed and discussed in this section

9.6.1. Experimental setup and benchmarks

The proposed approach, [45], [46] and [53] have been implemented using a

system with 2.30 GHz processor with 4 GB RAM. Further, ten runs have been

performed to obtain the final result, and the average value has been reported.

We have given equal weightage (e1 = e2 = 0.5) to both delay and area

objective to the proposed PSO-DSE-based optimal Trojan resistant hardware

design approach. Providing equal weightage to the design cost function

(discussed in Chapter 8) for evaluating fitness ensures both design area and

schedule delay are given equal priority. This is because, from an SoC

integrator perspective, designing Trojan resistant may cause area and delay

overhead concurrently. Therefore, it is necessary for the SoC integrator to

provide equal preference to both the design parameters during fitness

evaluation. On the contrary, providing unequal weightage to e1 and e2 in the

context of area and delay shall provide an imbalanced fitness evaluation,

causing exploration of results that are not truly optimal. Henceforth, providing

equal weightage to e1 and e2 = 0.5 in the context of normalized design cost

function has been established practice for design space exploration in HLS

194

[45], [78]. However, the proposed approach is scalable, i.e., capable of

handling small and large hardware applications in minimal exploration time.

The PSO-DSE settings used for generating results (based on empirical

analysis) for proposed framework are acceleration coefficient (b1 and b2) = 2;

inertia weight (ω) = linearly decreasing between 0.9 to 0.1; swarm size (n) = 3

or 5 or 7; random numbers (r1 and r2) = 1; stopping criterion = T1 or T2 [79].

9.6.2. Security evaluation and comparison with prior techniques

The proposed PSO-driven TMR-based approach has been compared with the

state-of-the-art methodology proposed by [45], [46], [53]. The proposed work

and [45], [46], [53] deal specifically with Trojans that affect the computational

output. The cost function used in both approaches above considers the

complete SoC design area, including all types of functional resources used and

the required execution time. The area and the execution time have equal

weightage in the design cost function. PSO-DSE module integrated with the

proposed Trojan resistance TMR logic is used for generating optimal Trojan

resistance architecture of hardware IP cores, while in [45], [46] PSO-DSE

module is used to generate low-cost Trojan detectable architectures. The PSO-

DSE module in the proposed approach accepts input from the TMR schedule

(allocated with three IP vendors), while in [45], [46], PSO-DSE accepts inputs

from the DMR schedule (allocated with two IP vendors). Further, the PSO-

DSE module in the proposed approach generates outputs in the form of

Trojan-resistant TMR schedule latency and area for iteratively pruning the

search space of Trojan-resistant architectures, while in [45], [46], PSO-DSE

produces output in the form of Trojan detectable schedule latency and area.

Moreover, in the proposed approach, the distinct vendor allocation policy

deployed inside PSO-DSE based scheduling and allocation differs from the

one used in [45], [46]. Finally, the particle configurations used during the

initialization process in the proposed approach are different than [45], [46].

Further, Table 9.45 compares the proposed approach with [45] and [46] in

terms of design cost and overhead. The proposed TMR-based design is more

robust than [45] and [46] in terms of security. This is because the proposed

approach uses three distinct vendors to implement the TMR-based design, thus

providing greater defense to the hardware IP core in terms of Trojan detection

195

ability and Trojan resistance compared to the [45] and [46], which provide

only Trojan detection. From Table 9.45, we can observe that with a minimal

average overhead of 4.6%, the proposed IP core design can provide Trojan

resistance (isolation) compared to [45] and [46], which only provide Trojan

detection. Therefore, the proposed approach enables the Trojan resistance

capability of hardware IP/SoC design with minimal design overhead and

ensures correct output functionality through a distinct multivendor allocation

policy. However, the probability of obtaining identical wrong outputs from

any two of the TMR units is improbable. Further, Table 9.46 compares the

proposed approach with [53] in terms of design cost overhead while handling

Trojans. The proposed approach provides Trojan defense (isolation) at an

average design cost overhead of 2.5 % compared to [53], which only provides

Trojan detection.

Further, Table 9.47 provides a comparison of Trojan defense capability

between the proposed approach and [45], [46] in terms of the respective output

generated from the Trojan detection DMR unit in [45], [46] and Trojan

resistant TMR unit in the proposed approach, corresponding to test vectors,

random sequences, malicious vendor (assuming VD1 has Trojan (i.e., vendor

VD1 inserted with Trojan logic); or assuming VD2 has Trojan (i.e., vendor VD2

inserted with Trojan logic)) and its defense status. Since the proposed

Table. 9.43: Comparison of exploration time (msec) for generating

trojan resistant hardware designs w.r.t. swarm size ‘n’
S. No. Benchmark n=3 n=5 n=7

1. 4-point DCT 96 130 190

2. FIR 674 867 973

3. ARF 231 416 868

4. JPEG 299 485 1048

5. DWT 267 281 353

Table. 9.42: Comparison of convergence time (msec) for

generating trojan resistant hardware designs w.r.t. swarm size ‘n’
S. No. Benchmark n=3 n=5 n=7

1. 4-point DCT 16 24 27

2. FIR 196 200 200

3. ARF 32 57 96

4. JPEG 44 48 93

5. DWT 65 68 68

Table. 9.44: Area, cost, and time of proposed TMR based design
S. No DSP IP Global optima TTMR (µs) ATMR (au) Design cost

1. 4-

pointDCT

3(+), 9(*) 45.635 25808 -0.120

2. FIR 3(+), 9(*) 79.77 28272 -0.165

3. ARF 3(+), 6(*) 264.1 20880 -0.173

4. JPEG 3(+), 3(*) 88.76 13488 -0.059

5. DWT 6(+), 9(*) 112.37 31904 -0.091

196

approach handles only IPs where the functionality of the third-party modules

(IPs) is changed, hence, the process of Trojan insertion in the HDL codes of IP

modules (such as adders, subtractors, etc.) was imitated by functionality

altering the hardware operation through insertion of Trojan logic in the HDL

code as follows: ‘+’ function was modified to ‘⁕’ function, ‘-’ function to ‘+’

function and ‘*’ function to ‘+’ function. As evident from this table, the

proposed approach is capable of providing Trojan detection and isolation

(Trojan resistance) with the aid of TMR logic, distinct multivendor allocation

policy and voter, which [45], [46] are unable to provide. The greater the

number of computations in the proposed design, the greater the vulnerability,

Table. 9.45: Comparison of the proposed approach with [45], [133]
S. No. Benchmark Final architecture

solution for proposed

approach

Final architecture

solution [45], [133]

Cost of the final

solution for

proposed

approach

Cost of the

final solution

[45], [133]

% Change

(overhead)

1. 4-point DCT 3(+), 9(*) 2(+), 6(*) -0.120 -0.121 0.82

2. FIR 3(+), 9(*) 2(+), 6(*) -0.165 -0.176 6.25

3. ARF 3(+), 6(*) 2(+), 4(*) -0.173 -0.187 7.48

4. JPEG Sample 3(+), 3(*) 2(+), 2(*) -0.059 -0.062 4.8

5. DWT 6(+), 9(*) 4(+), 6(*) -0.091 -0.095 4.09

Table. 9.46: Comparison of the proposed approach with [53]
S. No. Benchmark Final architecture

solution for proposed

approach

Final architecture

solution [53]

Cost of the final

solution for

proposed

approach

Cost of the

final solution

[53]

% Change

(overhead)

1. 4-point DCT 3(+), 9(*) 2(+), 6(*) -0.120 -0.121 0.82

2. FIR 3(+), 9(*) 8(+), 8(*) -0.165 -0.152 0

3. ARF 3(+), 6(*) 2(+), 4(*) -0.173 -0.187 7.48

4. JPEG Sample 3(+), 3(*) 8(+), 4(*) -0.059 -0.055 0

5. DWT 6(+), 9(*) 4(+), 6(*) -0.091 -0.095 4.09

197

as each untrustworthy 3PIP core used during the hardware design is

considered a potential vulnerability. In the proposed approach, each such

potential vulnerability has been addressed by using individual distinct vendor

allocation policy to both original, duplicate, and triplicate units of the design

of TMR logic. The number of potential vulnerabilities the proposed TMR-

based approach handles for various applications is shown in Fig. 9.18.

9.6.3. Design cost and optimality analysis

Table 9.42 compares convergence time (in msec) for generating Trojan

resistant hardware design w.r.t. swarm size (n) 3, 5, and 7. Further, Table 9.42

dictates that the convergence time of the proposed method to find the optimal

Trojan-resistant DSP core architectural solution nominally increases with the

increase in swarm size, while the same final solution is obtained in each case.

The increase in the convergence time w.r.t. swarm size is because the time

required for the cost computation increases with the rise in the number of

Table. 9.47: Comparison of Trojan defense capability of proposed approach and [45], [46]

198

swarm positions (n) or resource architectures. A similar pattern can also be

observed in the case of Table 9.43 (showing exploration time (in msec) for

generating Trojan-resistant hardware design w.r.t. swarm size (n) = 3, 5, and

7). Because of this, the computation time increases with the rise in the number

of swarm positions while yielding the exact optimal solution in each case.

Table 9.44 shows the global best resource architecture obtained for Trojan

resistant hardware IP core using PSO-DSE. For instance, if we take the

example of the FIR IP core, then three adders and nine multipliers (from three

different vendors) are required to design the proposed TMR-based Trojan-

resistant logic. Further, Table 9.44 depicts the hardware area (ATMR),

corresponding execution time (TTMR), the global best resource architecture,

and the design cost for the respective TMR-based Trojan-resistant IP core.

The benchmarks (adopted from [84]) have been evaluated for design area and

the latency (delay). Further, the total design area and latency are computed

using (8.1) and (8.2), respectively. Here, the normalized design cost is

computed by providing equal weightage to both hardware area and execution

time, as shown in (8.3). For instance, for the FIR IP core, the execution time

0 100 200 300

4-DCT

8-DCT

FIR

ARF

JPEG

MESA

IDCT

WDF

DWT

Total # of Vulnerabilities corresponding to DSP

frameworks

Benchmarks GEN Spacing

(SPA)

Spread

(SPD)

Weighted

metric

(WEM)

DCT-4 0.00 0.00 0.00 0.00

FIR 0.00 1.16 0.54 0.27

ARF 0.00 1.41 0.66 0.132

JPEG-sample 0.00 0.00 0.00 0.00

DWT 0.00 0.47 0.34 0.17

Table. 9.48: Optimality Analysis of the proposed approach

Fig. 9.18. Number of potential untrustworthy 3PIPs

vulnerabilities handled using proposed approach

199

required for the scheduling Trojan-resistant design with explored 3(+) and 9(*)

resources is 79.77µs, while the area required and design cost are 28272au and

0.41, respectively.

Further, in order to determine the quality of the Trojan-resistant solution

explored using PSO, it is essential to analyze the optimality of the proposed

approach using various key metrics, such as generational distance (GEN),

spacing (SPA), spreading (SPD) and weighted sum (WEM). The optimality

analysis for the proposed strategy is presented in Table 9.48. A zero value for

the GEN parameter indicates that the solutions obtained using the proposed

methodology are on the true Pareto front. Similar to the GEN parameter, a

value of zero (or slightly greater than zero) for spacing denotes a uniform

distribution of Pareto points along the curve. Additionally, the spread metric

measures the extent to which the true Pareto front is covered. It is clear from

Table 9.48 that the proposed approach is capable of achieving a lower value

(i.e., either zero or close to zero) for both spacing and spreading metrics,

which shows that the achieved solutions cover the extremes of the true Pareto

Front in addition to their uniform distribution on the curve.

200

Chapter 10

Conclusion and Future work

10.1 Conclusion

The rise of DSP, multimedia, machine learning, and healthcare applications

has become central to modern electronics ecosystem. Designing secure

hardware IP cores for these SoC is therefore vital. Given the global nature of

SoC design, where multiple design houses collaborate from different regions,

it is crucial to establish trust in the hardware design before integrating third-

party IP cores. This necessitates the development of robust security measures

to counter external hardware threats, which can negatively impact not only the

end-user but also the system itself and the IP vendors/designers. This thesis

introduces various innovative security techniques for securing IP cores in

computing and consumer electronics systems. The objectives achieved are the

following:

 Proposed two novel security techniques were proposed: (a) PSO-driven

multi-phase encryption and (b) firefly algorithm-based, low-cost

crypto-chain frameworks for designing secure IP cores in image

processing and JPEG-CODEC applications. The PSO-driven multi-

phase encryption employs a series of strong security layers including

bit manipulation, row diffusion, TRIFID cipher computation,

alphabetic substitution, and byte concatenation. These layers work

together to form a highly resilient and tamper-resistant signature aimed

at countering IP piracy and false ownership claim. The threat model

assumes that the IP vendor is defending against attacks from attackers

in SoC integrators or foundries. In the second approach, the low-cost

crypto-chain method incorporates an encoding mechanism specified by

the IP vendor, combined with cryptographic keys, SHA-512 hash

slices, and mapping rules to produce security constraints. These are

embedded into the hardware IP core, which has been optimized using

the firefly algorithm, ensuring that the IP cores remain protected

against piracy with minimal design overhead.

201

 Proposed a protein molecular biometric signature based watermarking

approach, derived from a human body sample, with a facial biometric

encryption key unique to the IP vendor. During the HLS process, an

encrypted version of this protein molecular signature is embedded into

the design, preventing counterfeit IPs and false IP ownership claim.

This dual-layer security approach, combining molecular and facial

biometrics, offers stronger tamper resistance and a lower probability of

coincidence than current state-of-the-art methods.

 Proposed a statistical modelling based hardware watermarking

approach using 2D encrypted dispersion matrix combined with an

eigen decomposition security framework. This approach secures IP

cores from piracy and false IP ownership claim by embedding a

tamper-resistant mathematical watermark signature within the

hardware design. This framework relies on the IP vendor’s specific

resource configurations, combined with AES, to ensure robust

protection. The embedded watermark is highly resistant to tampering

(as it is generation from the hardware design space parameters) and

facilitates the detection of pirated versions with minimal design cost

overhead.

 Proposed a novel secure GLRT cascade IP cores with embedded

fingerprint biometric-based watermarking constraints, specifically for

medical applications like ECG detectors. The fingerprint watermark is

unique to the IP seller and ensures that only authentic GLRT IP cores

are integrated into medical devices. This approach not only prevents

counterfeit IPs from entering sensitive medical systems but also

guarantees the safety and accuracy of critical medical devices like

ECG detectors and cardiac pacemakers. The inclusion of authentic

GLRT IP in ECG SoCs ensures that only verified cores are used,

thereby safeguarding patient health from the risks associated with

counterfeit components.

 Proposed a security/watermarking technique using voice biometrics,

which captures unique features such as jitter, shimmer, pitch, and

202

intensity at different timestamps of IP seller’s voice sample to create a

distinct watermark signature. This signature is embedded into the

target IP core design during the HLS process. This approach provides

robust security with enhanced tamper tolerance and a lower probability

of coincidence, making it a robust method for securing IP cores against

piracy and false ownership claim.

 Proposed a low-cost solution to protect hardware IP designs from

functional hardware Trojans. This method combines PSO-based design

space exploration with triple modular redundancy (TMR) to create a

secure, low-cost SoC. The system employs a distinct multi-vendor-

specific allocation policy for original, duplicate, and triplicate units.

Even if one unit is compromised by a Trojan, the system continues to

function correctly. Further, the integration of PSO based design space

exploration module leads to the generation of optimized Trojan

resistant design. This methodology provides comprehensive security

against functional Trojans with minimal design overhead, ensuring that

malicious blocks are isolated from the rest of the system.

10.2 Future work

This thesis has presented various alternative paradigms hardware security

techniques for generating low-cost secure hardware IP cores/designs

corresponding to different data intensive applications from the various

domains such as DSP, electronic, multimedia, healthcare applications, etc.

Future research in the security of hardware IP cores can focus on multiple

promising directions to address evolving challenges.

 One key area involves developing security-aware synthesis flows using

HLS and physical design methodologies. Security features, such as

watermarks, can be covertly embedded during the design process to

detect and deter IP piracy with greater resistance to tampering and

minimal false positives. By incorporating these security constraints in

both the HLS and physical design phases (e.g., floorplanning and

routing), we can ensure that they impose minimal overhead on the final

hardware layout.

203

 Another important focus is creating hybrid security solutions for IP

cores to handle a wider range of hardware security threats, particularly

for fields like medical devices and the Internet of Things (IoT).

Additionally, more robust alternative paradigms for securing hardware

IP design can be explored than the proposed ones (such as protein

molecular, statistical modelling, and voice biometric based hardware

watermarking).

 To explore beyond traditional watermarking techniques, such as using

molecular and cognitive biometrics (e.g., DNA or cognitive data) for

IP authentication. These techniques offer a stronger defense against

piracy and replication, with the potential to provide more distinct and

robust watermark signature.

 Combining watermarking with logic encryption can offer dual

protection against IP piracy and reverse engineering for data-intensive

hardware applications, such as multimedia and healthcare devices.

Further, integrating fault tolerance mechanisms alongside piracy

detection systems would further enhance security.

 Future work should also aim to overcome the limitations of current

systems, such as improving the generation of optimal datapath for

loop-based applications (such as FIR, etc.) through advanced

optimization algorithms. This would enable efficient resource

configuration with reduced costs in terms of area and latency.

Additionally, exploration of optimal watermarking constraints, so that

they do not incur any design cost overhead is also crucial from future

research perspective.

 Furthermore, investigating hardware Trojan (HT) attacks introduced

via compromised computer-aided design (CAD) tools, including HLS

tools, is another critical area. Rogue insiders or external attackers could

potentially insert malicious code during the design cycle. Detecting

such Trojans at the RTL level, especially attacks that degrade

performance or exhaust system resources, will be crucial for ensuring

hardware security in future designs.

204

REFERENCES

[1] Mahdiany H. R., Hormati A. and Fakhraie S. M. (2001). A hardware

accelerator for DSP system design. in Proc. ICM, pp. 141-144.

[2] Schneiderman R. (2010), “DSPs evolving in consumer electronics

applications,” IEEE Signal Process. Mag., vol. 27(3), pp. 6–10.

[3] Castillo E., Meyer-Baese U., Garcia A., Parilla L., Lloris A. (2007).

IPP@HDL: Efficient intellectual property protection scheme for IP

cores. IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 5,

pp. 578–590.

[4] J. A. Roy, F. Koushanfar and I. L. Markov (2008), “EPIC: ending piracy

of integrated circuits,” in Proc. DATE, Munich, pp. 1069-1074.

[5] F. Koushanfar et al. (2012), “Can EDA combat the rise of electronic

counterfeiting?,” in Proc. DAC, San Francisco, CA, pp. 133-138.

[6] B. Colombier and L. Bossuet (2015), “Survey of hardware protection of

design data for integrated circuits and intellectual properties,” IET

Computers & Digital Techniques, vol. 8, no. 6, pp. 274-287.

[7] B. Colombier (2017), “Methods for protecting intellectual property of IP

cores designers,” Micro and nanotechnologies/Microelectronics,

Université de Lyon, NNT : 2017LYSES038.

[8] C. Pilato, S. Garg, K. Wu, R. Karri and F. Regazzoni (2018), “Securing

hardware accelerators: a new challenge for high-level synthesis,” IEEE

Embedded Syst. Lett., vol. 10, no. 3, pp. 77-80.

[9] G. He, C. Dong, Y. Liu and X. Fan (2020), “IPlock: An Effective

Hybrid Encryption for Neuromorphic Systems IP Core Protection,” 2020

IEEE 4th Information Technology, Networking, Electronic and

Automation Control Conference (ITNEC), pp. 612-616.

[10] Y. Xie, C. Bao and A. Srivastava (2017), “Security-Aware 2.5D

Integrated Circuit Design Flow Against Hardware IP Piracy,” in

Computer, vol. 50, no. 5, pp. 62-71.

[11] X. Wang, Y. Zheng, A. Basak and S. Bhunia (2015), "IIPS:

Infrastructure IP for Secure SoC Design," IEEE Trans.Comput., vol. 64,

no. 8, pp. 2226-2238.

205

[12] A. Sengupta, S. P.Mohanty (2016), “High-Level Synthesis of Digital

Circuits in the Nanoscale Mobile Electronics Era”, IET Book: Nano-

CMOS and Post-CMOS Electronics: Circuits and Design, pp: 219 - 261.

[13] B. K. Mohanty and P. K. Meher (2016), “A High-Performance FIR

Filter Architecture for Fixed and Reconfigurable Applications,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 2, pp. 444-452.

[14] S. Sitjongsataporn, A. Thitinaruemit and S. Prongnuch (2021),

“Implementation of High Level Synthesis for Adaptive FIR Filtering on

Embedded System,” 2021 7th International Conference on Engineering,

Applied Sciences and Technology (ICEAST), pp. 257-260.

[15] S. Chen, J. Jung, P. Song, K. Chakrabarty and G. -J. Nam (2020),

“BISTLock: Efficient IP Piracy Protection using BIST,” 2020 IEEE

International Test Conference (ITC), pp. 1-5.

[16] M. T. Arafin, A. Stanley and P. Sharma (2017), “Hardware-based anti-

counterfeiting techniques for safeguarding supply chain integrity,” 2017

IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1-

4.

[17] M. Yasin, J. J. Rajendran, O. Sinanoglu and R. Karri (2016), “On

improving the security of logic locking,” IEEE Trans. on CAD of Integr.

Circuits Syst., vol. 35, no. 9, pp. 1411-1424.

[18] S. A. Islam, L. K. Sah, and S. Katkoori. 2020. High-Level Synthesis of

Key-Obfuscated RTL IP with Design Lockout and Camouflaging. ACM

Trans. Des. Autom. Electron. Syst. 26, 1, Article 6 (January 2021), 35

pages.

[19] S. M. Saeed, A. Zulehner, R. Wille, R. Drechsler and R. Karri (2019),

“Reversible Circuits: IC/IP Piracy Attacks and Countermeasures,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 11, pp. 2523-

2535.

[20] A. Anshul and A. Sengupta, "A Survey of High Level Synthesis Based

Hardware Security Approaches for Reusable IP Cores [Feature],"

in IEEE Circuits and Systems Magazine, vol. 23, no. 4, pp. 44-62,

Fourthquarter 2023.

206

[21] M. Rostami, F. Koushanfar and R. Karri, "A Primer on Hardware

Security: Models, Methods, and Metrics," in Proceedings of the IEEE,

vol. 102, no. 8, pp. 1283-1295, Aug. 2014.

[22] D. Mouris, C. Gouert and N. G. Tsoutsos (2022), “Privacy-Preserving IP

Verification,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

vol. 41, no. 7, pp. 2010-2023.

[23] A. Hroub and M. E. S. Elrabaa (2022), “SecSoC: A Secure System on

Chip Architecture for IoT Devices,” 2022 IEEE International

Symposium on Hardware Oriented Security and Trust (HOST), 2022,

pp. 41-44.

[24] M. Rathor and A. Sengupta (2021), “Signature Biometric based

Authentication of IP Cores for Secure Electronic Systems,” 2021 IEEE

International Symposium on Smart Electronic Systems (iSES), 2021, pp.

384-388.

[25] W. Hu, C. -H. Chang, A. Sengupta, S. Bhunia, R. Kastner and H. Li

(2021), “An Overview of Hardware Security and Trust: Threats,

Countermeasures, and Design Tools,” IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 40, no. 6, pp. 1010-1038.

[26] M. Srivastava, P. SLPSK, I. Roy, C. Rebeiro, A. Hazra and S. Bhunia,

"SOLOMON: An Automated Framework for Detecting Fault Attack

Vulnerabilities in Hardware," 2020 Design, Automation & Test in

Europe Conference & Exhibition (DATE), Grenoble, France, 2020, pp.

310-313.

[27] D. Ziener and J. Teich (2008), “Power signature watermarking of IP

cores for FPGAs,” J. Signal Process. Syst., vol. 51, no. 1, pp. 123–136.

[28] A. Cui and C. Chang (2007), “Watermarking for IP protection through

template substitution at logic synthesis level,” Proc. ISCAS, New

Orleans, LA, pp. 3687-3690.

[29] M. Ni and Z. Gao (2005), “Detector-based watermarking technique for

soft IP core protection in high synthesis design level,” Proc. CCS, Hong

Kong, pp. 1348–1352.

[30] M. Lewandowski and S. Katkoori, "A Darwinian Genetic Algorithm for

State Encoding Based Finite State Machine Watermarking," 20th

207

International Symposium on Quality Electronic Design (ISQED), Santa

Clara, CA, USA, 2019, pp. 210-215.

[31] F. Koushanfar, I. Hong, and M. Potkonjak (2005), “Behavioral synthesis

techniques for intellectual property protection,” ACM Trans. Des.

Autom. Electron. Syst., vol. 10, no. 3, pp. 523–545.

[32] A. Sengupta and S. Bhadauria (2016), “Exploring low cost optimal

watermark for reusable IP cores during high level synthesis,” IEEE

Access, vol. 4, pp. 2198–2215.

[33] M. Potkonjak and I. Hong (1999), "Behavioral Synthesis Techniques

for Intellectual Property Protection," IEEE/ACM Design Automation

Conference, New Orleans, Louisiana, United States, pp. 849-854.

[34] B. Le Gal and L. Bossuet (2012), “Automatic low-cost IP watermarking

technique based on output mark insertions,” Design Autom. Embedded

Syst., vol. 16, no. 2, pp. 71–92.

[35] R. Karmakar and S. Chattopadhyay (2020), “Hardware IP Protection

Using Logic Encryption and Watermarking,” 2020 IEEE International

Test Conference (ITC), 2020, pp. 1-10.

[36] A. Sengupta, D. Roy and S. P. Mohanty (2018), “Triple-Phase

Watermarking for Reusable IP Core Protection During Architecture

Synthesis,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

vol. 37, no. 4, pp. 742-755.

[37] A. Sengupta and M. Rathor (2019), “IP core steganography for

protecting DSP kernels used in CE systems,” IEEE Trans. Consum.

Electron., vol. 65, no. 4, pp. 506-515.

[38] T. Yu and Y. Zhu, "A new watermarking method for soft IP

protection," 2011 International Conference on Consumer Electronics,

Communications and Networks (CECNet), Xianning, China, 2011, pp.

3839-3842.

[39] A. Sengupta, E. R. Kumar and N. P. Chandra (2019), “Embedding

digital signature using encrypted-hashing for protection of DSP cores in

CE,” IEEE Trans. Consum. Electron., vol. 65, no. 3, pp. 398-407.

[40] A. Sengupta and M. Rathor (2020), “Securing hardware accelerators for

CE systems using biometric fingerprinting,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 28, no. 9, pp. 1979-1992.

208

[41] A. Sengupta and M. Rathor (2021), “Facial Biometric for Securing

Hardware Accelerators,” IEEE Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 29, no. 1, pp. 112 – 123.

[42] J. Chen and B. C. Schafer, "Watermarking of Behavioral IPs: A

Practical Approach," 2021 Design, Automation & Test in Europe

Conference & Exhibition (DATE), Grenoble, France, 2021, pp. 1266-

1271.

[43] E. Castillo, L. Parrilla, A. Garcia, U. Meyer-Baese, G. Botella and A.

Lloris, "Automated Signature Insertion in Combinational Logic Patterns

for HDL IP Core Protection," 2008 4th Southern Conference on

Programmable Logic, Bariloche, Argentina, 2008, pp. 183-186.

[44] A. Sengupta, R. Chaurasia and T. Reddy, "Contact-Less Palmprint

Biometric for Securing DSP Coprocessors Used in CE Systems," IEEE

Transactions on Consumer Electronics, vol. 67, no. 3, pp. 202-213, Aug.

2021.

[45] A. Sengupta, S. Bhadauria and S. P. Mohanty, "TL-HLS: Methodology

for Low Cost Hardware Trojan Security Aware Scheduling With

Optimal Loop Unrolling Factor During High Level Synthesis," in IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 36, no. 4, pp. 655-668, April 2017.

[46] A. Sengupta, S. Mohanty, Trojan security aware DSP IP core and

integrated circuits, in: IET Book: IP Core Protection And Hardware-

Assisted Security For Consumer Electronics, 2019. Book ISBN: 978-1-

78561-799-7.

[47] A. J. Hu, "Formal hardware verification with BDDs: an

introduction," 1997 IEEE Pacific Rim Conference on Communications,

Computers and Signal Processing, PACRIM. 10 Years Networking the

Pacific Rim, 1987-1997, Victoria, BC, Canada, 1997, pp. 677-682 vol.2.

[48] M. Bushnell, V. Agrawal, Essentials of electronic testing for digital,

memory, and mixed-signal VLSI circuits, IEEE Circuits and Devices

Mag 17, 2001, pp. 39–40. July.

[49] M. Tehranipoor and F. Koushanfar, "A Survey of Hardware Trojan

Taxonomy and Detection," in IEEE Design & Test of Computers, vol.

27, no. 1, pp. 10-25, Jan.-Feb. 2010.

209

[50] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi and B. Sunar,

"Trojan Detection using IC Fingerprinting," 2007 IEEE Symposium on

Security and Privacy (SP '07), Berkeley, CA, USA, 2007, pp. 296-310.

[51] S. Narasimhan et al., "Multiple-parameter side-channel analysis: A non-

invasive hardware Trojan detection approach," 2010 IEEE International

Symposium on Hardware-Oriented Security and Trust (HOST),

Anaheim, CA, USA, 2010, pp. 13-18.

[52] X. Wang, H. Salmani, M. Tehranipoor and J. Plusquellic, "Hardware

Trojan Detection and Isolation Using Current Integration and Localized

Current Analysis," 2008 IEEE International Symposium on Defect and

Fault Tolerance of VLSI Systems, Cambridge, MA, USA, 2008, pp. 87-

95.

[53] J. J. Rajendran, O. Sinanoglu and R. Karri, "Building Trustworthy

Systems Using Untrusted Components: A High-Level Synthesis

Approach," IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 24, no. 9, pp. 2946-2959, Sept. 2016.

[54] H. Martin, L. Entrena, S. Dupuis and G. Di Natale, "A Novel Use of

Approximate Circuits to Thwart Hardware Trojan Insertion and Provide

Obfuscation," 2018 IEEE 24th International Symposium on On-Line

Testing And Robust System Design (IOLTS), Platja d'Aro, Spain, 2018,

pp. 41-42.

[55] M. M. Siboni and S. Mohammadhossein Shekarian, "An Effective

Application of Obfuscated TMR to Tackle Hardware Trojans," 2019 9th

International Conference on Computer and Knowledge Engineering

(ICCKE), Mashhad, Iran, 2019, pp. 12-17.

[56] N. B. Gunti and K. Lingasubramanian, "Neutralization of the Effect of

Hardware Trojan in SCADA System Using Selectively Placed

TMR," 2017 IEEE International Symposium on Nanoelectronic and

Information Systems (iNIS), Bhopal, India, 2017, pp. 99-104.

[57] H. Li, A. Abdelhadi, R. Shi, J. Zhang and Q. Liu, "Adversarial

Hardware With Functional and Topological Camouflage," in IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 5,

pp. 1685-1689, May 2021.

210

[58] M. Abderehman, R. Gupta, R. R. Theegala and C. Karfa, "BLAST:

Belling the Black-Hat High-Level Synthesis Tool," IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 41,

no. 11, pp. 3661-3672, Nov. 2022.

[59] A. Kulkarni, Y. Pino and T. Mohsenin, "Adaptive real-time Trojan

detection framework through machine learning," 2016 IEEE

International Symposium on Hardware Oriented Security and Trust

(HOST), McLean, VA, USA, 2016, pp. 120-123.

[60] P. Fezzardi, F. Ferrandi and C. Pilato, "Enabling Automated Bug

Detection for IP-Based Designs Using High-Level Synthesis," IEEE

Design & Test, vol. 35, no. 5, pp. 54-62, Oct. 2018.

[61] M. Abderehman, T. Rakesh Reddy and C. Karfa, "DEEQ: Data-driven

End-to-End EQuivalence Checking of High-level Synthesis," 2022 23rd

International Symposium on Quality Electronic Design (ISQED), Santa

Clara, CA, USA, 2022, pp. 64-70.

[62] N. Fern and K. -T. Cheng, "Evaluating Assertion Set Completeness to

Expose Hardware Trojans and Verification Blindspots," 2019 Design,

Automation & Test in Europe Conference & Exhibition (DATE),

Florence, Italy, 2019, pp. 402-407.

[63] U. Alsaiari and F. Gebali, "Hardware Trojan Detection Using

Reconfigurable Assertion Checkers," IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 27, no. 7, pp. 1575-1586, July

2019.

[64] S. Sadangi, S. Baraha, D. K. Satpathy and P. K. Biswal, "FPGA

implementation of spatial filtering techniques for 2D images," 2017 2nd

IEEE International Conference on Recent Trends in Electronics,

Information & Communication Technology (RTEICT), Bangalore, India,

2017, pp. 1213-1217.

[65] D. Tsiktsiris, D. Ziouzios and M. Dasygenis, "A portable image

processing accelerator using FPGA," 2018 7th International Conference

on Modern Circuits and Systems Technologies (MOCAST),

Thessaloniki, Greece, 2018, pp. 1-4.

[66] J. V. Vourvoulakis, J. Lygouras and J. A. Kalomiros, "Acceleration of

Image Processing Algorithms Using Minimal Resources of Custom

211

Reconfigurable Hardware," 2012 16th Panhellenic Conference on

Informatics, Piraeus, Greece, 2012, pp. 68-73.

[67] D. Davalle, B. Carnevale, S. Saponara, L. Fanucci and P. Terreni,

"Hardware accelerator for fast image/video thinning," 2014 IEEE

International Conference on Imaging Systems and Techniques (IST)

Proceedings, Santorini, Greece, 2014, pp. 64-67.

[68] A. Ansari, K. Gunnam and T. Ogunfunmi, "An efficient reconfigurable

hardware accelerator for convolutional neural networks," 2017 51st

Asilomar Conference on Signals, Systems, and Computers, Pacific

Grove, CA, USA, 2017, pp. 1337-1341.

[69] M. -C. Chang, Z. -G. Pan and J. -L. Chen, "Hardware accelerator for

boosting convolution computation in image classification

applications," 2017 IEEE 6th Global Conference on Consumer

Electronics (GCCE), Nagoya, Japan, 2017, pp. 1-2.

[70] S. B. Choi, S. S. Lee and S. J. Jang, "CNN inference simulator for

accurate and efficient accelerator design," 2019 International SoC

Design Conference (ISOCC), Jeju, Korea (South), 2019, pp. 283-284.

[71] C. Shu, W. Pang, H. Liu and S. Lu, "High Energy Efficiency FPGA-

Based Accelerator for Convolutional Neural Networks Using Weight

Combination," 2019 IEEE 4th International Conference on Signal and

Image Processing (ICSIP), Wuxi, China, 2019, pp. 578-582.

[72] Koff DA, Shulman H. An overview of digital compression of medical

images: can we use lossy image compression in radiology? Can Assoc

Radiol J. 2006 Oct;57(4):211-7.

[73] S. B. Gokturk, C. Tomasi, B. Girod and C. Beaulieu, "Medical image

compression based on region of interest, with application to colon CT

images," 2001 Conference Proceedings of the 23rd Annual International

Conference of the IEEE Engineering in Medicine and Biology Society,

Istanbul, Turkey, 2001, pp. 2453-2456 vol.3.

[74] Chen YY. Medical image compression using DCT-based subband

decomposition and modified SPIHT data organization. Int J Med Inform.

2007 Oct;76(10):717-25.

[75] R. H. Alshammari et al., "A Survey On Image Filtring

Algorithms," 2020 3rd International Conference on Computer

212

Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia,

2020, pp. 1-5.

[76] T. Huang, J. Burnett and A. Deczky, "The importance of phase in image

processing filters," in IEEE Transactions on Acoustics, Speech, and

Signal Processing, vol. 23, no. 6, pp. 529-542, December 1975.

[77] J. Yang, G. Zhu and Y. -Q. Shi, "Analyzing the Effect of JPEG

Compression on Local Variance of Image Intensity," IEEE Transactions

on Image Processing, vol. 25, no. 6, pp. 2647-2656, June 2016.

[78] V. Mishra and A. Sengupta, “MO-PSE: Adaptive Multi Objective

Particle Swarm Optimization Based Design Space Exploration in

Architectural Synthesis for Application Specific Processor Design”,

Elsevier Journal on Adv. in Eng. Softw., Vol. 67, pp. 111-124, 2014.

[79] I. C. Trelea, The particle swarm optimization algorithm: convergence

analysis and parameter selection, Information Processing Letters, Vol

85, Issue 6, 2003, pp 317-325.

[80] P. Sarkar, A. Sengupta, S. Rathlavat and M. K. Naskar, "Designing

Low-Cost Hardware Accelerators for CE Devices [Hardware

Matters]," IEEE Consumer Electronics Magazine, vol. 6, no. 4, pp. 140-

149, Oct. 2017.

[81] Sait, S. M., & Youssef, H. (1999). VLSI physical design automation:

theory and practice (Vol. 6). World Scientific Publishing Company.

[82] X.-S. Yang, X. He, "Firefly algorithm: Recent advances and

applications," Int. J. Swarm Intell., vol. 1, no. 1, 2013, pp. 36–50.

[83] Sengupta A. (2020). Frontiers in securing IP cores - Forensic detective

control and obfuscation techniques. The Institute of Engineering and

Technology (IET) Book, ISBN-10: 1-83953-031-6, ISBN-13: 978-1-

83953-031-9.

[84] Express benchmark suite, University of California San Diego, 2016,

https://www.ece.ucsb.edu/EXPRESS/benchmark/.

[85] CAD for Assurance, IEEE Hardware Security and Trust Technical

Committee, https://cadforassurance.org/tools/ip-ic-

protection/faciometric-hardware-security-tool/, accessed on Jan 2022.

[86] 15 nm open cell library. [Online]. Available: https://si2.org/open-cell-

library/, last accessed on Jan. 2020.

213

[87] G. Martin and G. Smith (2009), "High-Level Synthesis: Past, Present,

and Future," in IEEE Design & Test of Computers, vol. 26, no. 4, pp.

18-25.

[88] Gorman, C. (2012). Counterfeit Chips on the Rise. IEEE Spectrum. 49.

16-17. 10.1109/MSPEC.2012.6203952.

[89] Guin U., Huang K., DiMase D., Carulli J. M., Tehranipoor M. and

Makris Y. (2014). Counterfeit Integrated Circuits: A Rising Threat in the

Global Semiconductor Supply Chain. Proceedings of the IEEE, vol. 102,

no. 8, pp. 1207-1228.

[90] Mitra S., Wong H.P. and Wong S. (2015). The Trojan-proof chip. IEEE

Spectrum, vol. 52, no. 2, pp. 46-51.

[91] Rajendran, J., Zhang, H., Sinanoglu, O., & Karri, R. (2013). High-level

synthesis for security and trust. In On-Line Testing Symposium (IOLTS),

2013 IEEE 19th International, pp. 232-233.

[92] Y. Lao and K. K. Parhi (2015), “Obfuscating DSP Circuits via High-

Level Transformations,” IEEE Trans. Very Large Scale Integr. Syst.,

vol. 23 (5), pp. 819–830.

[93] D. Roy and A. Sengupta (2019), "Multilevel Watermark for Protecting

DSP Kernel in CE Systems, “IEEE Consum. Electron. Mag., vol. 8, no.

2, pp. 100-102.

[94] X.-S. Yang, "Firefly algorithms for multimodal optimization," in Proc.

5th Int. Conf. Stochastic Algorithms: Foundations and Applications

(SAGA'09), 2009, pp. 169–178.

[95] A. Sengupta, R. Sedaghat, "A Multi Structure Genetic Algorithm for

Integrated Design Space Exploration of Scheduling and Allocation in

High Level Synthesis for DSP Kernels", Elsevier Journal of Swarm and

Evolutionary Computation, Vol. 7, pp. 35-46, 2012.

[96] V. Krishnan and S. Katkoori, "A genetic algorithm for the design space

exploration of datapaths during high-level synthesis," IEEE

Transactions on Evolutionary Computation, vol. 10, no. 3, pp. 213-229,

June 2006.

[97] A. Sengupta and S. Bhadauria, "Automated exploration of datapath in

high level synthesis using temperature dependent bacterial foraging

optimization algorithm," 2014 IEEE 27th Canadian Conference on

214

Electrical and Computer Engineering (CCECE), Toronto, ON, Canada,

2014, pp. 1-5.

[98] Y. Kao, M. Chen, & Y. Huang, A Hybrid Algorithm Based on ACO and

PSO for Capacitated Vehicle Routing Problems. Mathematical Problems

in Engineering, 2012.

[99] Z. Zukhri, U. Islam, & Z. Zukhri, A Hybrid Optimization Algorithm

based on GeneticAlgorithm and Ant Colony Optimization. International

Journal of Artificial Intelligence and Application, Vol. 4, pp. 63–75,

2013.

[100] F. Wihartiko,H. Wijayanti, and F. Virgantari, “Performance

Comparison of Genetic Algorithms and Particle Swarm Optimization for

Model Integer Programming Bus Timetabling Problem,” In: IOP

Conference Series: Materials Science and Engineering, vol. 332, pp.

012020, 2018.

[101] B. Ge, Y. Han, & C. Bian, Hybrid Ant Colony Optimization Algorithm

for Solving the OpenVehicle Routing Problem. Journal of Computers,

27(4), pp. 41–54, 2016.

[102] Duong, V.-A.; Park, J.-M.; Lim, H.-J.; Lee, H. “Proteomics in Forensic

Analysis: Applications for Human Samples”. Appl. Sci. 2021, 11, 3393.

[103] E.D. Merkley, D.S. Wunschel, K.L. Wahl, K.H. Jarman, “Applications

and challenges of forensic proteomics,” Forensic Science International,

Volume 297,2019, Pages 350-363, ISSN 0379-0738.

[104] Parker GJ, Leppert T, Anex DS, Hilmer JK, Matsunami N, Baird L, et

al. (2016) “Demonstration of Protein-Based Human Identification Using

the Hair Shaft Proteome,” PLoS ONE 11(9): e0160653.

[105] Chen, Lorenzo & White, Camille & Babbitt, Patricia & Mcleish,

Michael & Kenyon, George. (2000), “A Comparative Study of Human

Muscle and Brain Creatine Kinases Expressed in Escherichia coli,”

Journal of protein chemistry, 19. 59-66. 10.1023/A:1007047026691.

[106] K. Steendam, M. Ceuleneer, M. Dhaenens, et al. “Mass spectrometry-

based proteomics as a tool to identify biological matrices in forensic

science,” Int J Legal Med 127, 287–298 (2013).

215

[107] A. Sengupta and R. Chaurasia, “Securing IP Cores for DSP Applications

Using Structural Obfuscation and Chromosomal DNA Impression,”

IEEE Access, vol. 10, pp. 50903-50913, 2022.

[108] RR. Chamley et al, ECG interpretation. European Heart Journal; 40:

32, 2019, pp. 2663-2666.

[109] S. Jarvis, S. Saman, Cardiac system 1: anatomy and physiology. Nursing

Times [online]; 114: 2, 2018), pp. 34-37.

[110] Kirti, H. Sohal and S. Jain, "Interpretation of Cardio Vascular Diseases

using Electrocardiogram: A Study," 2018 Fifth International Conference

on Parallel, Distributed and Grid Computing (PDGC), Solan, India,

2018, pp. 159-164.

[111] A. Kumar, R. Komaragiri, & M. Kumar, From Pacemaker to Wearable:

Techniques for ECG Detection Systems. J Med Syst 42, 34 (2018).

[112] A. Uma, P. Kalpana. (2021). Area efficient folded undecimator based

ECG detector. Sci Rep 11,3756.

[113] J. A. Roy, F. Koushanfar and I. L. Markov, "EPIC: Ending Piracy of

Integrated Circuits," 2008 Design, Automation and Test in Europe,

Munich, Germany, 2008, pp. 1069-1074.

[114] U. Satija, B. Ramkumar and M. S. Manikandan, "A New Automated

Signal Quality-Aware ECG Beat Classification Method for

Unsupervised ECG Diagnosis Environments," in IEEE Sensors Journal,

vol. 19, no. 1, pp. 277-286, 1 Jan.1, 2019.

[115] U. Satija, B. Ramkumar and M. S. Manikandan, "A Review of Signal

Processing Techniques for Electrocardiogram Signal Quality

Assessment," in IEEE Reviews in Biomedical Engineering, vol. 11, pp.

36-52, 2018.

[116] National Library of Medicine, https://www.ncbi.nlm.nih.gov

/books/NBK2214/#:~:text=At%20every%

20beat%2C%20the%20heart,skin%20and%20displays%20it%20graphic

ally, accessed on 5 May 2023.

[117] S. Kadambe, R. Murray and G. F. Boudreaux-Bartels, "Wavelet

transform-based QRS complex detector," in IEEE Transactions on

Biomedical Engineering, vol. 46, no. 7, pp. 838-848, July 1999.

https://www.ncbi.nlm.nih.gov/

216

[118] J. N. Rodrigues, T. Olsson, L. Sornmo and V. Owall, "Digital

implementation of a wavelet-based event detector for cardiac

pacemakers," in IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 52, no. 12, pp. 2686-2698, Dec. 2005.

[119] F. Zhao, X. Tang, Preprocessing and postprocessing for skeleton-based

fingerprint minutiae extraction, Pattern Recognition, Volume 40, Issue

4, 2007, Pages 1270-1281.

[120] Voice Biometrics Market- Growth, “Trends, COVID-19 impact, and

forecasts (2022- 2027),” Jun. 2022. Accessed: Aug. 2022.

[121] Voice Biometrics Market by Component, “Type, application, authen

tication process, organization size, deployment mode, vertical, and

region- global forecast to 2026,” Rep. No. TC7070,May2021.Accessed:

Aug. 2022.

[122] Mireia Farrús and Javier Hernando, “Using jitter and shimmer in speaker

verification,” IET Signal Process., vol. 3, pp. 247–257, 2009.

[123] I. Daly, M. Novotny, Z. Hajaiej and A. Garsallah, "Accuracy of jitter

and shimmer measurements for speaker in the database TIMIT and

NTIMIT," 2016 10th International Symposium on Communication

Systems, Networks and Digital Signal Processing (CSNDSP), Prague,

Czech Republic, 2016, pp. 1-5.

[124] Deepak Kachave, Anirban Sengupta, “Integrating Physical Level Design

and High Level Synthesis for Simultaneous Multi-Cycle Transient and

Multiple Transient Fault Resiliency of Application Specific Datapath

Processors”, Elsevier Journal on Microelectronics Reliability, Volume

60, Pages 141-152, May 2016.

[125] A. Nejat, Z. Kazemi, V. Beroulle, D. Hely and M. Fazeli, "Restricting

Switching Activity Using Logic Locking to Improve Power Analysis-

Based Trojan Detection," 2019 IEEE 4th International Verification and

Security Workshop (IVSW), Rhodes, Greece, 2019, pp. 49-54.

[126] S. Mobaraki, A. Amirkhani and R. E. Atani, "A Novel PUF based Logic

Encryption Technique to Prevent SAT Attacks and Trojan

Insertion," 2018 9th International Symposium on Telecommunications

(IST), Tehran, Iran, 2018, pp. 507-513.

217

[127] S. Moein, T. A. Gulliver, F. Gebali and A. Alkandari, "A New

Characterization of Hardware Trojans," in IEEE Access, vol. 4, pp.

2721-2731, 2016.

[128] S. Hazra, J. S. Sattenapalli, A. Roy and M. Dalui, "Evaluation and

Detection of Hardware Trojan for Real-Time Many-Core

Systems," 2018 8th International Symposium on Embedded Computing

and System Design (ISED), Cochin, India, 2018, pp. 31-36.

[129] M. Fyrbiak et al., "HAL—The Missing Piece of the Puzzle for Hardware

Reverse Engineering, Trojan Detection and Insertion," in IEEE

Transactions on Dependable and Secure Computing, vol. 16, no. 3, pp.

498-510, 1 May-June 2019.

[130] A. Sengupta, "Hardware Vulnerabilities and Their Effects on CE

Devices: Design for Security Against Trojans [Hardware Matters],"

in IEEE Consumer Electronics Magazine, vol. 6, no. 3, pp. 126-133,

July 2017.

[131] A. Sengupta, "Hardware Security of CE Devices [Hardware Matters],"

in IEEE Consumer Electronics Magazine, vol. 6, no. 1, pp. 130-133, Jan.

2017.

[132] R.V. Kshirsagar, R.M. Patrikar, Design of a novel fault-tolerant voter

circuit for TMR implementation to improve reliability in digital circuits,

Microelectronics Reliability, Volume 49, Issue 12, 2009,Pages 1573-

1577.

[133] J. Liu, J. Xie, L. Chao, H. Wu, P. Ding, X. Chen, and H. Feng, ‘‘Min

entropy estimation for semiconductor superlattice true random number

generators,’’ Sci. Rep., vol. 12, no. 1, p. 2948, Feb. 2022.

[134] NIST Computer Security Resource Center, Glossary,

https://csrc.nist.gov/glossary/term/entropy#:~:text=A%20measure%20of

%20the%20amount,is%20usually%20stated%20in%20bits, accessed on

Feb 2022.

[135] J. Zhang, Y. Lin, Y. Lyu and G. Qu, "A PUF-FSM Binding Scheme for

FPGA IP Protection and Pay-Per-Device Licensing," in IEEE

Transactions on Information Forensics and Security, vol. 10, no. 6, pp.

1137-1150, June 2015.

218

[136] D. B. Roy, S. Bhasin, I. Nikolić, and D. Mukhopadhyay. 2019.

Combining PUF with RLUTs: A Two-party Pay-per-device IP Licensing

Scheme on FPGAs. ACM Trans. Embed. Comput. Syst. 18, 2, Article 12

(March 2019), 22 pages.

