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ABSTRACT 

The use of hardware intellectual property (IP) cores has become a key design 

approach in modern electronics, particularly in electronics, computing, and 

multimedia systems. This popularity stems from the ability of IP cores to 

enhance performance and efficiency by accelerating application processes. In 

addition, growing design complexities, shorter product lifecycles, and 

increasing pressure to bring products to market faster (time-to-market factor) 

have driven the adoption of reusable IP cores in modern system-on-chip (SoC) 

designs. These factors, coupled with the data and computation intensive nature 

of many modern applications, have made IP cores an essential component in 

these designs. However, the growing reliance on third-party IP vendors and a 

globally distributed design supply chain has introduced significant security 

risks. As IP cores are often sourced from multiple vendors to expedite the 

design process, the involvement of external parties create vulnerabilities that 

can be exploited by malicious actors. An untrusted design house, particularly 

in offshore locations, might steal or tamper with the IP core design, leading to 

piracy or malicious alterations, compromising the integrity and safety of the 

final product. On the other hand, it is also essential for the SoC integrator to 

demarcate between authentic and pirated products before integration into final 

SoC design to ensure the safety and security of end consumers. 

Applications that rely on multimedia, digital signal processing (DSP), image 

processing, healthcare, and machine learning have become more prevalent, 

making IP cores even more essential in sectors like healthcare, military, 

robotics, artificial intelligence, etc. These cores enable critical functions in 

advanced systems, making them a fundamental part of the technological 

infrastructure. As SoC designers increasingly integrate reusable IP cores 

sourced from various global vendors, the complexity of the IP supply chain 

amplifies security concerns. The most significant threats include IP piracy, IP 

counterfeiting, unauthorized claim of IP ownership, and hardware Trojans 

insertion. Given these risks, securing IP core has become a critical concern. 

Designer must implement comprehensive security measures to ensure that the 

hardware remains trustworthy throughout its lifecycle. Further, it is also 
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essential to incorporate low-cost design solutions to generate an optimal 

secure hardware IP core. 

For complex, data-heavy applications such as image processing, DSP, 

multimedia, healthcare, and machine learning, securing reusable hardware IP 

cores requires specialized approaches. One solution that has gained traction is 

the use of high-level synthesis (HLS) framework. This framework provides a 

means to incorporate security mechanisms into IP core designs at higher 

abstraction of design levels, while maintaining design flexibility and reducing 

complexity. HLS allows designers to integrate robust security features with 

minimal impact on the overall design cost, making it an attractive solution for 

securing IP core/design. One of the key features of HLS is the design space 

exploration (DSE) framework, which facilitates the generation of low-cost 

secure design solutions. This thesis provides several alternative paradigm for 

securing hardware IPs against IP piracy and hardware Trojan during HLS. 

Towards the security of IP cores, this thesis contributes the following: (a) low-

cost multiphase encryption and low-cost crypto-chain signature base security 

approaches against IP piracy and false IP ownership claim, (b) designing 

enhanced security framework for hardware IPs using IP seller’s protein 

molecular biometrics and facial biometric-based encryption key, (c) exploiting 

statistical hardware watermarking technique using encrypted dispersion matrix 

and eigen decomposition framework, (d) securing GLRT cascade hardware IP 

design framework for ECG detector (e) designing voice biometric-based 

hardware watermarking framework, and (f) designing HLS-based low-cost 

(optimal) functional trojan-resistant hardware IP design framework. 
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Chapter 1 

Introduction 

1.1. Hardware Systems: ASIC/IP Core 

We are fortunate to be part of a generation that benefits from the 

advancements in smart technology, all made possible by the relentless efforts 

of scientists and researchers. In this modern era, electronic/computing systems 

have been instrumental in realizing the vision of making technology smarter, 

more efficient, and accessible to everyone. Today, there is an increasing 

demand for systems and devices that offer rapid and cost-effective processing, 

whether for applications or hardware. As a result, various consumer 

electronics and computing devices, such as smartphones, smartwatches, 

tablets, digital cameras, computers, and audio headsets, have become integral 

to our daily lives, fulfilling both our needs and desires. Apart from consumer 

electronics and multimedia systems, these computing devices are also used in 

healthcare, military operations, and other real-world scenarios. Electronics and 

computing devices in smart healthcare enable remote monitoring, precise 

diagnostics, and personalized treatments, while in advanced military 

operations, they enhance communication, surveillance, and strategic decision-

making [1] - [4].  

Moreover, the need for application-specific computing is rapidly increasing in 

the current technological landscape. Unlike general-purpose systems that 

handle a wide range of functions, application-specific computing systems offer 

tailored performance, optimized power consumption, and enhanced efficiency 

for specific tasks. In the modern era, these systems provide faster processing, 

reduced energy use, and lower costs by focusing on specialized applications 

like image processing or data encryption, thereby improving overall 

performance. As they perform several complex data and computation-

intensive tasks like image processing, audio-video processing, and more, they 

are designed as application-specific integrated circuits (ASIC), also known as 

hardware accelerators. The base of these devices is a system-on-chip (SoC), 

which integrates various components, including functional blocks, memory 

units, memory controllers, and peripherals. Rather than designing a SoC 
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entirely from the ground up, manufacturer (SoC integrator/designer) often opt 

to acquire various modules or cores from third-party intellectual property (IP) 

vendors/sellers. This approach, known as the core-based design paradigm, has 

revolutionized the way electronic systems are developed, enabling faster 

production cycles and reducing costs while maintaining high performance and 

functionality. Generally, the complete design process, starting from the 

procurement of different IP cores to assembly and the release of the final 

product, involves multiple entities, locations, and design houses. This is 

because some places can afford lower technical costs while some cheap labor, 

besides time to market factor [5] - [11]. 

As discussed above, ASICs/hardware accelerators play a critical role in 

enhancing performance and efficiency for data-intensive tasks by speeding up 

the underlying processes. This is achieved by offloading specific computing 

tasks to specialized hardware components, known as hardware accelerator or 

IP core. An IP core is a reusable block of Boolean logic/functions, register 

transfer level (RTL) design, or gate-level design organization representing the 

designer’s intellectual property. Some examples of hardware accelerators/IP 

cores include cryptographic IP cores for performing specialized cryptographic 

operations, image processing or digital signal processing (DSP) IP cores used 

for performing image processing applications (such as blurring, sharpening, 

etc.), compression-decompression of images, biometric recognition tasks like 

facial, fingerprint, and palmprint detection. Similarly, artificial intelligence 

(AI) cores/machine learning (ML) cores are responsible for the execution of 

complex AI/ML applications. In consumer electronics and computing systems, 

data-intensive applications such as audio-video processing and image 

compression-decompression are effectively handled by these IP cores, offering 

high efficiency at reduced design costs. Fig. 1.1 highlights the examples and 

applications of different data and computation-intensive hardware IPs used in 

several consumer electronics and multimedia systems. IP cores execute 

complex algorithms like fast Fourier transform (FFT), finite impulse response 

(FIR) filtering, discrete cosine transformation (DCT), image compression and 

decompression (JPEG-CODEC), etc., which are fundamental in multimedia, 

machine learning, and digital signal processing applications. Due to the 
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complexities of design, cost, and time-to-market pressure, these application 

frameworks are developed as dedicated reusable IP cores. This approach 

reduces costs and accelerates design turnaround times. Consequently, SoC 

designers incorporate reusable IP cores from various vendors, which are mass-

produced, thoroughly tested, and verified by companies around the globe, 

ensuring a robust and diverse IP supply chain [12] - [14].  

Understanding the design and development process of such complex systems 

is crucial for researchers and users. The design cycle of these systems consists 

of multiple phases and involves various entities. These phases can be 

categorized based on design complexity, cost, and flexibility, making it 

essential to comprehend each stage thoroughly. Additionally, the entities 

involved in the design process—such as third-party IP vendors, system 

integrators (SoC), and foundries (fabrication houses)—play distinct roles in 

the integrated circuit (IC) design chain. Their involvement helps lower design 

costs, reduces complexity, and shortens development time. However, as the 

design passes through various entities in the global design supply chain 

process, it also necessitates robust security measures to protect designs from 

potential threats and ensure their safe use by end consumers. The participation 

of diverse entities, including offshore design houses, raises concerns about 

trustworthiness. Unreliable entities could engage in malicious activities, such 

as IP piracy or fraudulent claims of IP ownership. There is also the risk of 

 

FIR/IIR: Audio 

devices, such as 

loudspeakers 

 

DCT: Audio 

image video 

compression 

 

JPEG: Image 

and video 

compression  

 

FFT: Digital 

video 

broadcasting 
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covert malicious logic being implanted by a rouge entity in a counterfeited 

product. Thus, protecting the IP rights of IP vendors/sellers is vital, along with 

ensuring the safety of end-consumers. Given the significant role of 

multimedia, DSP, and ML IP cores in consumer electronics, IoT devices, 

smart healthcare, and mission-critical tasks, their security cannot be 

compromised. Incorporating a pirated IP version into the SoCs of these 

applications could jeopardize user safety and system integrity [15] - [26]. 

This chapter provides an overview of the foundational elements upon which 

the proposed hardware security techniques are developed. The second section 

outlines the different abstraction levels of the ASIC/IP core design process. 

The third section delves into the high-level synthesis (HLS) process, 

highlighting its significance in creating low-cost, secure reusable hardware IPs 

and some examples of data intensive DSP applications. The fourth section 

examines the various hardware threats and attacks in the ASIC/IP core design 

process. Finally, the fifth section details the overall structure and organization 

of the thesis. 

1.2. Abstraction Levels in ASIC Design Process  

To effectively manage the complexity of designing a hardware IP core, it is 

essential to begin at a higher abstraction level within the integrated circuit (IC) 

design process. This approach is advantageous because higher abstraction 

levels simplify the design process, provide greater flexibility, and make it 

easier to integrate cost-efficient (low-cost) architectures and robust security 

mechanisms compared to lower-level design abstractions. The design 

abstraction hierarchy generally consists of the following levels: (i) system 

level, (ii) algorithmic/behavioral level, (iii) register transfer level (RTL), (iv) 

logic/gate/netlist level, and (v) physical/layout/transistor level. Fig. 1.2 

illustrates the different abstraction level used in VLSI/digital ICs design process.  

The highest level in this hierarchy is the system level, where the design or 

application is characterized based on input, output, and transfer functions. At 

this level, key parameters such as functionality, size, speed, and power 

requirements are also taken into account. The next level is the algorithmic or 

behavioral level, where the design is represented in terms of its behavior. At 
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this stage, designers often use control data flow graphs (CDFG)/data flow 

graphs (DFG) to depict the system's behavior. The input transfer/mathematical 

function is converted into these graphical forms to serve as an intermediate 

representation, enabling further transformation into subsequent design levels.  

The algorithmic representation of the design is then converted into the register 

transfer level (RTL) using HLS tool. RTL describes the interconnection 

between different units such as arithmetic and logic unit (ALU), control unit, 

storage hardware. This RTL design, referred to as "soft IP," is usually 

available in the form of synthesizable code, such as schematic design files 

(.bdf) or hardware description language files (.vhd/.vhdl). One significant 

benefit of designing at higher abstraction levels is that integrating security 

mechanism is less complex and ensures robust security across all subsequent 

lower-level designs. The "soft IP" core provides a flexible foundation for chip 

designers, allowing them to modify and optimize design parameters to meet 

specific requirements. This flexibility is crucial for achieving a balance 

between performance, power efficiency, and security, thereby making the 

design process both efficient and adaptable to various technological needs. 

The gate level, also known as the netlist level, represents the next stage of 

design abstraction in the IP core design process. At this level, the RTL design 

is converted into a gate-level design using logic or RTL synthesis. The gate 

level defines the design in terms of the interconnections between various logic 

cells and represents the output of the synthesis process at the logic level. The 

resulting design, known as the gate-level netlist, is referred to as a "firm IP 

core." Unlike the soft IP core, a firm IP core is dependent on specific 

technology and is less flexible for modification. Both RTL and gate-level 
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netlist designs support further post-synthesis processes, such as placement, 

routing, and deployment on reconfigurable platforms like FPGAs. 

Following the gate level is the layout/physical/transistor level, which 

represents an even lower level of abstraction. At this stage, the gate-level 

design is transformed into a layout-level design through a process called 

layout synthesis. The resulting design, known as a "hard IP core," is typically 

presented in a fixed layout format, such as the graphic data system (GDS) or 

layout editor format (LEF). Unlike soft IP cores, hard IP cores are not 

modifiable by chip designers or system integrators. One significant drawback 

of hard IP designs is their lack of portability; they cannot be used in different 

foundries for which they were not originally designed. This limitation arises 

because the layout design is specific to the foundry's process technology and 

design rules, preventing its reuse across different manufacturing environments. 

Given the greater flexibility and portability of soft IP cores, they are often 

preferred over hard IP cores. Soft IP cores can be modified to suit specific 

functional requirements and can be reused across various platforms and 

foundries. However, this flexibility comes with a trade-off: soft IP cores are 

more vulnerable to intellectual property (IP) protection risks because they can 

be easily modified by system integrators. In contrast, hard IP cores, being 

unmodifiable, are more secure against such risks. Therefore, IP cores are 

generally designed and marketed in one of three forms: (a) soft IP cores, (b) 

firm IP cores, or (c) hard IP cores, depending on the level of flexibility, 

modifiability, and security required. 

In addition to their classification based on abstraction levels, IP cores are also 

categorized into two types based on their design sizes and computational 

capabilities: micro-IPs and macro-IPs. Micro-IPs are smaller logic blocks, 

such as individual logic gates, combinational circuits, and sequential circuits 

(like registers and memory). In contrast, macro-IPs represent larger, more 

complex logic designs and include components such as central processing 

units (CPUs), digital signal processors (DSPs), and application-specific cores. 

Examples of macro-IPs include cores designed for specific tasks like image 

processing is joint photographer expert group (JPEG-CODEC), video 

processing is moving picture expert group (MPEG), and digital filtering (finite 
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impulse response (FIR) and infinite impulse response (IIR) filters). These 

macro-IPs are particularly useful for applications that require intensive 

computations, such as audio processing,  image compression and 

decompression, digital data filtering, etc. The choice between micro-IPs and 

macro-IPs largely depends on the specific requirements of the application, 

including the level of computational complexity and the design size 

constraints. Overall, the categorization and abstraction levels provide a 

framework for selecting the appropriate IP core type, balancing flexibility, 

security, performance, and application needs.    

1.3. Introduction to HLS 

In the IC design chain process/cycle, synthesis is a critical process that 

involves transforming a design from one form to another to facilitate 

verification and analysis. Given the increasing complexity, design cost, and 

time constraints, it is vital for designers to start at a less complex and more 

flexible level. The choice of synthesis level depends on the required 

information for analysis and representation. Synthesis processes are generally 

categorized into three levels: (a) high-level synthesis (HLS), (b) logic 

synthesis, and (c) physical synthesis, corresponding from the highest to the 

lowest level of abstraction. Among these, HLS offers the most flexibility and 

the least complexity, making it a preferred starting point for many designers 

[83], [87]. 

HLS converts a behavioral description of the design—typically a 

mathematical equation representing the input-output relationship of a data-

intensive algorithm—into RTL design. This conversion involves several 

phases: transformation, scheduling, binding, and the final datapath and 

controller synthesis. The overview of HLS design flow is highlighted in Fig. 

1.3. Transfer/mathematical function of input application, resource constraints, 

and module library (containing details of area, power, latency corresponding 

to used functional units, such as adders and multipliers) are the primary inputs 

of HLS process. HLS begins with the transformation phase. In the 

transformation phase, the mathematical or behavioral description of the design 

is represented as a control data flow graph (CDFG). The CDFG is a structural 

model that captures the input-output relationships and data flow of the design. 
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For example, a CDFG for a FIR digital filter is depicted in Fig. 4 (a), where  

X[n], X[n-1], X[n-2], X[n-3] denote primary inputs, Z[0], Z[1], Z[2], Z[3] 

denote input coefficients and ‘+’ and ‘*’ denote corresponding multiplications 

and additions operations. 

The scheduling phase, one of the most critical stages in HLS, transforms the 

DFG into a scheduled version based on input resource constraints ( number of 

adders and multipliers) and scheduling algorithms. For instance, the 

CDFG/DFG of an FIR filter (shown in Fig. 1.4 (a)) can be scheduled with 

different resource constraints, such as one multiplier and one adder (shown in 

Fig. 1.4 (b)) or two multipliers and one adder (shown in Fig. 1.4 (c)). The 

scheduling algorithm used is LIST scheduling, which prioritizes operations 

that do not depend on others for execution and schedules them to maximize 

resource utilization (based on data dependency and input resource constraints). 

Conflicts are resolved by giving priority to operations higher on the list. 

Depending on the chosen resource constraints, the scheduled design may have 

different execution times. For example, a design with one multiplier and one 

adder may take more control steps (six CS, C0-C5) than one with two 

multipliers and one adder, but it uses fewer resources. However, using more 

resources can show lesser control steps (five CS, C0-C4), while resulting in a 

larger design area. Therefore, it is crucial for designers to select resource 

constraints that balance minimizing both design latency and area. This 

selection process can also be automated through the design space exploration 

(DSE) capabilities of the HLS framework. 
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The next phase, hardware allocation, involves assigning hardware resources 

(such as adders and multipliers) to the operations and storage registers for the 

design’s storage variables (used for storing input, intermediate and output 

values). This allocation considers constraints such as design latency, design 

area, and power consumption. More hardware resources reduce latency/delay 

due to parallel execution but increase the design area. Conversely, minimal 

hardware resources reduce area but may increase latency due to serial 

execution. Subsequently, the binding phase follows, where specific operations 

are assigned to particular instances of functional units, and storage variables 

are mapped to registers. For example, in an FIR filter design, multipliers and 

adders are allocated to specific operations, and storage variables are assigned 
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Fig. 1.4 (a). Control data flow graph (CDFG) of FIR filter, (b) Scheduled data flow graph 

(SDFG) of FIR filter scheduled with one multiplier and one adder, and (c) Scheduled data 

flow graph (SDFG) of FIR filter scheduled with two multipliers and one adder 
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to specific registers, which are depicted using different colors. Figures 4 (b) 

and (c) show scheduled data flow graph (SDFG) of FIR filter scheduled with 

one multiplier and one adder and SDFG of FIR filter scheduled with two 

multipliers and one adder, where S0 – S14 are the storage variables allocated to 

eight different resisters (R-Lg). 

After the scheduling, allocation, and binding phases, the datapath and 

controller synthesis phase is performed. This phase constructs the RTL 

datapath using the allocated functional units, registers, latches, and other 

components such as multiplexers and demultiplexers, as determined during 

binding. The controller is designed to generate control signals for different 

units of the datapath based on the scheduled operations. Thus, HLS transforms 

the behavioral description of a data-intensive application into an RTL design, 

also known as a soft IP core. Once the RTL design is obtained, it can be 

further transformed into a gate-level or netlist design through logic synthesis. 

The gate-level design represents a more detailed and complex circuit than the 

RTL design. Subsequently, this gate-level design is converted into a layout 

design using physical synthesis, which is then sent to foundries for chip 

fabrication. Designing an IP from a lower level of abstraction is generally not 

preferred due to the higher complexity involved. 

Security is another critical aspect of the synthesis process, particularly when 

designing IP cores. Various security mechanisms, such as hardware 

watermarking, steganographic constraints, and digital signatures, can be 

integrated into the design during the HLS phase. These approaches embed 

covert watermarking/security constraints into the design to detect unauthorized 

use or piracy of IP cores, ensuring that only legitimate IP versions are 

integrated into SoC systems. To further enhance security, the design can 

undergo high-level transformations, a process known as structural obfuscation. 

Structural obfuscation alters the design's structure without affecting its 

functionality, making it difficult for adversaries to interpret the design’s 

function or interconnectivity. Common high-level transformations include 

loop unrolling, tree height transformation, and redundant operation elimination 

[92]. These transformations prevent adversaries from reverse-engineering the 

design by obscuring its functionality and architecture [20]. Implementing 
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security mechanisms at lower abstraction levels is challenging due to the 

complexity and the unavailability of IPs at these levels, such as gate-level 

netlists. In contrast, many DSP and multimedia applications are available in 

their algorithmic descriptions and can be automatically synthesized into RTL 

designs using commercial or non-commercial tools. This capability allows 

designers to integrate security mechanisms with the computer-aided design 

(CAD) tools of HLS to create secure IP versions for data-intensive 

applications. 

In summary, the synthesis process in IC design is an essential step that 

involves converting designs from higher to lower levels of abstraction, starting 

with HLS, which provides greater flexibility and ease of integration for 

security mechanisms. By beginning at a higher abstraction level, designers can 

manage complexity more effectively, optimize design parameters, and ensure 

robust security, ultimately producing secure, efficient, and adaptable IP cores 

for various applications. 

Leveraging high-level synthesis for low-cost IP core design [32], [91]: HLS 

plays a vital role in achieving low-cost IP core designs by allowing the 

exploration of various resource constraints, which impact design latency and 

area. Optimal resource selection during scheduling is crucial for designers and 

integrating design space exploration (DSE) within HLS enables the 

identification of cost-effective architectural solutions that meet area and 

latency requirements. When secret hardware security constraints are 

embedded, they can increase design cost, making the exploration of low-cost 

resource options even more important. By incorporating security measures at 

the HLS stage, security is inherently propagated to lower design levels, 

ensuring protection across firm and hard IPs as synthesis progresses. 

Examples and importance of DSP applications: Further, DSP co-processors 

utilize various algorithms to perform specific tasks related to digital signal 

processing. Commonly employed DSP algorithms include the Haar wavelet 

transform (HWT), fast Fourier transform (FFT), discrete cosine transform 

(DCT), discrete wavelet transform (DWT), inverse discrete cosine transform 

(IDCT), and discrete Fourier transform (DFT). Each of these algorithms serves 

distinct purposes in processing signals and images. The DCT is primarily used 
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to convert an image from its spatial domain to the frequency domain and 

forms the core algorithm for image compression and decompression in JPEG-

CODEC co-processors. DFT and FFT, on the other hand, transform a discrete 

signal from the time domain to the frequency domain, which is essential for 

signal analysis in many applications. The HWT facilitates the transformation 

of a signal's waveform from the time domain to the time-frequency domain, 

making it effective for both lossy and lossless compression of signals and 

images. DWT plays a crucial role in denoising real signals by decomposing 

them into finer frequency and coarser time resolutions across different sub-

bands. DWT serves as the foundational algorithm for image compression in 

JPEG2000 standards. Additionally, digital filters like FIR and IIR filters are 

vital in modern electronics, finding applications in telecommunications, 

speech processing, and attenuation removal for specific frequency bands. Fig. 

1.1 highlights the application of several DSP applications in the real-world 

scenario.  

Next, machine learning IP cores are also integrated into DSP co-processors to 

handle tasks related to AI and machine learning algorithms, such as pattern 

recognition, classification, and predictive analytics. Meanwhile, multimedia 

processors rely on multimedia algorithms, such as those used in the JPEG 

compression-decompression and MPEG standards. The JPEG algorithm is 

widely employed for image compression. It operates by first converting an 

input image from the spatial domain to the frequency domain and then applies 

quantization, which involves discarding less important frequency components, 

resulting in a compressed image. This method is extensively used in fields like 

medical imaging and digital photography, where storage efficiency and 

transmission speed are crucial. 

In summary, DSP co-processors leverage a variety of signal processing 

algorithms and digital filters to manage tasks that range from image and signal 

compression to machine learning, contributing to a broad spectrum of 

applications in telecommunications, multimedia processing, and beyond.  

Next, to generate an application-specific processor for data-intensive tasks, the 

synthesis process begins with the algorithmic or behavioral description of the 

application as input [12], [91]. This description can take various forms, such 
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as C/C++ code, a transfer function, or a mathematical equation representing 

the input-output relationship. For instance, the algorithmic description of a 

FIR filter can be expressed as a mathematical function [81]: 

𝑂[𝑛] = ∑ 𝑍[𝑘] ∗ 𝑋[𝑛 − 𝑘]𝑁
𝑘=0                                                                      (1.1) 

Where, N represents the order of the FIR filter. Further, the mathematical 

equation based on the order of FIR filter, can be represented as follows: 

𝑂[𝑛] = 𝑍[0] ∗ 𝑋[𝑛] + 𝑍[1] ∗ 𝑋[𝑛 − 1] + 𝑍[2] ∗ 𝑋[𝑛 − 2] + ⋯ + 𝑍[𝑁] ∗

𝑋[𝑛 − 𝑁]                                                                                                      (1.2) 

Where, X[n] to O[n] denote the current input and output, and X[n-1], X[n-2] 

denote the previous input values and, 𝑍[0], 𝑍[1], … , 𝑍[𝑁] denote the FIR’s 

input coefficients. This transfer function or mathematical equation is 

converted into its corresponding CDFG.   

1.4. Hardware Threats and Attacks in the ASIC/IP Core 

Design Flow  

As discussed above, the semiconductor design and manufacturing process is a 

complex global network involving various offshore entities, such as third-

party intellectual property (3PIP) vendors, system integrators, and 

foundry/fabrication houses. This network is designed to accelerate the design 

process, reduce cost, and shorten the time to market. Within this framework, 

IP cores are often provided by multiple IP vendors, based on specific design 

requirements. These IPs are then supplied to a SoC integrator for integration 

into an SoC design or sent directly to foundry houses for fabrication as 

standalone integrated circuits (ICs). Once integrated at the SoC integrator, the 

design is passed to the foundry houses for fabrication. This sequential, 

unidirectional flow—from IP vendor to SoC integrator and then to foundry 

house—illustrates the asymmetric nature of the business model. Multiple IP 

vendors may provide different IP designs, and multiple foundries may handle 

the fabrication, which introduces various vulnerabilities to hardware security 

threats within the IC design supply chain process [15]-[26], [27]-[36], [53], 

[54]. 
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The involvement of multiple entities across different stages of the 

semiconductor supply chain exposes it to significant risks, including the 

infiltration of counterfeit components. Historical cases underscore the severity 

of these vulnerabilities. For instance, in 2007 and 2008, the United States 

Customs and Border Protection (CBP), in collaboration with European Union 

Customs, conducted joint operations to enforce intellectual property rights. 

These operations resulted in the seizure of hundreds of thousands of 

counterfeit ICs and computer network components. However, these seizures 

likely represented only a fraction of the counterfeit products that entered the 

market during that period.  

In 2010, a notable incident involved VisionTech, a company whose owner and 

administrative manager were charged with trafficking counterfeit 

semiconductors. They were responsible for importing thousands of shipments 

of counterfeit components into the United States, primarily targeting the U.S. 

Navy and defense contractors. This conspiracy, which spanned nearly five 

years, highlighted the potential for rogue brokers to severely compromise 

national security and jeopardize countless lives. VisionTech’s actions were 

estimated to have caused substantial damage to 21 semiconductor companies 

by supplying counterfeit components, demonstrating the far-reaching impacts 

of counterfeit products within the supply chain. 

The financial implications of counterfeit components are staggering. In 2012, 

a report by the market research firm iHS iSuppli estimated that counterfeit 

products/elements resulted in multibillion-dollar losses to the global 

electronics supply chain. In 2016, the European Union (EU) and Dutch 

customs conducted an operation targeting semiconductor imports from Hong 

Kong and China, seizing over one million counterfeit devices in just a few 

weeks. The 2018 report by the world semiconductor council (WSC) further 

emphasized the critical nature of the issue, noting that counterfeit components 

significantly undermine both security and economic stability. Pirated parts not 

only compromise the reliability of customer applications but also cost 

semiconductor companies billions of dollars annually in efforts to ensure the 

authenticity and reliability of their products. Despite the efforts to combat 

counterfeiting, accurately assessing the full impact of counterfeit 
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semiconductors remains challenging. Nonetheless, the available data and 

reports make it clear that counterfeit components pose a serious threat to the 

integrity of the global IC supply chain. This raises profound concerns about 

the trustworthiness of the supply chain, as the presence of counterfeit 

components can lead to severe financial losses, security vulnerabilities, and 

risks to human safety. The complexity of the semiconductor supply chain, 

combined with the involvement of multiple global entities, underscores the 

urgent need for enhanced security measures and stricter enforcement of 

intellectual property rights to protect against the proliferation of counterfeit 

components [20], [89], [90]. Fig. 1.5 shows the different hardware threats and 

attacks in the hardware IC design flow process [20].  

The red/pink-colored component depicted in Fig. 1.5 belongs to the 

untrustworthy sector of the hardware design supply chain process from an SoC 

integrators perspective, and orange colored component belongs to 

untrustworthy sector from an IP vendor’s perspective. Moreover, the green-

colored components signify the trusted sector. The input consists of system 

specifications, which are the behavioral descriptions of the intended hardware 

design, as illustrated in Fig. 1.5 These specifications are then progressed 
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through the hardware design process. This process entails acquiring various 

intellectual property cores or designs from multiple third-party IP vendors, 

followed by the integration of these imported cores into a single chip carried 

out by System-on-Chip (SoC) integrator. The necessity for involving multiple 

third-party entities was discussed earlier. After integration, a corresponding 

register transfer level (RTL) file is generated, which subsequently undergoes 

synthesis to transform it into a gate-level design file, also known as a netlist 

file. This netlist file is subsequently transmitted to fabrication and 

manufacturing facilities. As depicted in Fig 1.5, hardware attacks are 

categorized into three main types: (a) IP piracy and false claim of IP 

ownership can be potentially performed illegally by an adversary in the SoC 

integrator house, (b) netlist level attacks that can be potentially performed by 

an adversary in the foundry (fabrication house), and (c) backdoor hardware 

Trojan insertion through 3
rd

 party IP (3PIP) cores, (d) Integrated Circuit (IC) 

level attacks that can be potentially performed by an adversary in the foundry 

or open market. If an adversary gains access to the design netlist file, they 

could potentially execute attacks such as reverse engineering, and the insertion 

of hardware Trojan into the design file. Additionally, throughout the 

fabrication process and post-fabrication stage, an adversary situated within the 

fabrication facility might initiate attacks such as overproduction (exceeding 

the licensed IP limit) and false IC ownership claim. The dashed lines within 

Fig 5 delineates the various types associated with potential locations of attacks 

within the design supply chain process. Conversely, the solid lines, depicted in 

black color, represents the comprehensive hardware design flow from 

specification to IC manufacturing.      

The different types of possible attacks are as follows: (a) IP piracy 

(counterfeiting and cloning), (b) reverse engineering (RE), (c) hardware 

Trojan insertion (insertion of malicious logic), (d) fraudulent claim of IP 

ownership, and (e) overproduction (producing more than the licensing limit). 

Counterfeited and cloned IPs may contain malicious logic, which can cause 

severe problems to both end consumers and IP vendors. Moreover, these 

counterfeited IPs may not be rigorously tested as the genuine ones and may 

cause various erroneous behavior such as (i) leakage of sensitive information, 
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(ii) improper functional output, (c) excessive heat dissipation, and (d) loss of 

esteem for IP vendor and SoC integrator. Further, an adversary can covertly 

insert malicious logic (hardware Trojan) into the design by carefully 

inspecting the design through reverse engineering the netlist file. These Trojan 

remain dormant until triggered, thus escaping the standard detection process. 

Additionally, IPs/integrated circuits (ICs) can be fraudulently claimed or 

overproduced over the original licensing limit. Therefore, securing these IP 

cores against such hardware threats is essential to protect IP vendors. Further, 

the details on IP piracy, false claim of IP ownership and hardware Trojan 

attack is discussed below. 

1.4.1. IP piracy: counterfeiting and tampering  

The elaborate process of design and distribution of hardware IPs is highly 

vulnerable to a multitude of security risks, largely due to the intricate network 

of multiple third-party entities and units participating in the global design 

supply chain process. One significant area of concern revolves around the 

piracy of hardware IP design once they are transferred from an IP seller to a 

buyer (typically a SoC integrator). The risk arises when a malicious actor 

within the SoC integrator's organization endeavors to illicitly/unlawfully 

replicate/pirate the original design, subsequently marketing it either under the 

same or a different brand name. This not only complicates the authentication 

of genuine products but also leads to financial losses for the original IP seller. 

Furthermore, within a rogue foundry, an attacker might unlawfully pirate the 

IP without the designer's knowledge or consent. From the opposite 

perspective, it is also crucial for the SoC integrator to isolate 

pirated/counterfeited hardware IP designs before integration into the final 

product to uphold the safety and reliability standards for end-users. A SoC 

integrator can acquire IP cores either directly from an IP vendor or through a 

broker who acts as an intermediary between the IP designer and the SoC 

integrator. However, in some cases, rogue IP suppliers, motivated by national 

interests or the desire for illicit profit, may introduce counterfeit or pirated 

components into the design supply chain. These fake components, 

masquerading as genuine, can negatively impact both the consumer electronics 

(CE) system integrators and the end users. Ensuring security against IP piracy 
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is critical for several reasons: first, counterfeit designs are often not subjected 

to the rigorous testing necessary to guarantee reliability and safety. Second, 

these counterfeit IPs may contain hidden malicious logic, such as hardware 

Trojans, which compromise the security and functionality of the devices. 

When such infected IPs or ICs are integrated into CE systems, they become 

unreliable and pose significant safety risks to consumers.  

Moreover, the issue of IP counterfeiting becomes evident when individuals 

within a rogue foundry, in collaboration with new or secondary IP sellers, 

engage in the unauthorized replication or imitation of the original IP design. 

This illicit activity not only undermines the IP rights of the original IP seller 

but also poses grave risks to consumers. The compromised quality and 

performance of counterfeit products, often stemming from the use of inferior 

materials or outdated technology, have a detrimental impact on the overall 

functionality and reliability of the systems in which they are incorporated. 

Moreover, the proliferation of counterfeit components tarnishes the reputation 

of authentic IP sellers, casting doubt on the integrity of their products and 

services. This erosion of trust can have far-reaching consequences, particularly 

in critical sectors such as military systems, aviation, automotive industries, 

and beyond. These vital applications rely heavily on the authenticity and 

quality of the components they integrate, making them especially vulnerable 

to the repercussions of IP counterfeiting. Furthermore, the ease with which 

intentional hardware Trojans or malicious logic can be incorporated into 

counterfeit/pirated IPs exacerbates the security risks inherent in the integrated 

design supply chain system. This presents a significant challenge for ensuring 

the integrity and safety of the products and systems reliant on these 

components [20], [21], [31]-[41].  

1.4.2. False claim of IP ownership 

In the IC supply chain, an adversary/deceitful IP buyer, possibly within the 

SoC integrator and foundry houses, may fraudulently claim ownership of an 

IP, causing substantial financial loss to the original IP owner/seller. This false 

claim of ownership is a growing security concern. Traditional IP protection 

methods like trademarks, industrial design rights, patents, and copyright, are 

not effective for reusable IP designs. Therefore, safeguarding the ownership 
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rights of the actual IP owner is crucial. To address this, embedding a 

designer’s signature (watermark) covertly within the IP core during its design 

process can be an effective strategy. This hidden signature serves as proof of 

ownership, enabling the original IP vendor to verify their rights and counteract 

fraudulent ownership claim by the adversary [20], [21], [40], [41]. 

Hardware watermarking serves as an essential tool to secure the hardware 

design from hardware security threats. The importance of hardware 

watermarking in the field of hardware IP core protection includes (a) 

protection from IP piracy: hardware watermarking serves as a detective 

countermeasure against IP piracy and false IP ownership assertion. By 

embedding a unique watermark, the original seller/vendor/designer can assert 

their ownership and identify any instances of piracy, (b) enhancing design 

integrity: embedding a watermark within a hardware design also ensures the 

integrity of the design by making it difficult for malicious actors to alter the 

hardware without affecting the watermark. Any tampering with the watermark 

would indicate a potential breach or unauthorized modification, (c) enabling 

traceability and accountability: watermarked hardware can be traced back to 

the original designer or manufacturer, which is essential for accountability in 

the global supply chain. This traceability helps in maintaining a transparent 

and secure supply chain, reducing the risk of counterfeit components being 

introduced, and (d) fostering trust in the market: the use of hardware 

watermarking enhances trust among stakeholders, including manufacturers, 

designers, and end-users. When the authenticity and ownership of hardware 

can be reliably verified, it fosters a trustworthy market environment where 

high-quality and original designs are valued.  

1.4.3. Hardware trojan attack 

Hardware Trojans can be embedded by malicious actors at any stage of the 

chip design process, posing significant threats to the functionality and 

reliability of electronic systems. Research has demonstrated that functional 

hardware Trojans can lead to incorrect outputs, compromising the safety and 

dependability of the end product. When these Trojans are covertly inserted 

into real-time hardware systems of custom computing devices, they can cause 

unpredictable and unreliable behavior. From an attacker’s perspective, the 
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motivations behind Trojan attacks are varied and may include a) damaging a 

company’s reputation and market standing to gain a competitive advantage, 

and b) causing the malfunction of electronics used in critical infrastructure, 

which could disrupt safety and mission-critical applications. Therefore, it is 

the responsibility of system integrator to develop a Trojan free or resistant 

hardware design, as the third-party IP vendors supplying IPs for integration 

may contain functional hardware trojans in them. These Trojans can remain 

dormant and activate only under specific conditions, detecting and isolating 

them during the testing phase of the DSP hardware IP core is extremely 

challenging, complicating the defense against such attacks [25], [53], [57]. 

1.5. Structure of the Thesis 

The chapters of this thesis are structured as follows: Chapter 2 reviews the 

state-of-the-art techniques relevant to the proposed research. Chapter 3 

presents the proposed exploration of low-cost hardware IPs during HLS using 

multiphase encryption and crypto-chain signature framework. Chapter 4 

introduces an enhanced security framework for hardware IPs using IP seller’s 

protein molecular biometrics and facial biometric-based encryption key. 

Chapter 5 describes the proposed method for securing hardware IPs by 

exploiting statistical watermarking using encrypted dispersion matrix and 

eigen decomposition framework. Chapter 6 discusses the proposed security 

framework for securing GLRT cascade hardware IP using IP seller’s 

fingerprint and CIG framework for ECG detector. Chapter 7 outlines a novel 

security methodology by exploiting voice biometric-based watermarking 

framework for securing hardware IP cores. Chapter 8 proposes an HLS-based 

exploration of low-cost (optimal) functional trojan-resistant hardware IP 

designs. Chapter 9 presents the experimental results of the proposed 

techniques and compares them with existing state-of-the-art methods. Finally, 

Chapter 10 concludes the thesis and outlines potential directions for future 

research.  
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Chapter 2 

Literature Survey: State-of-the-Art 

Over the past few years, various hardware security techniques have been 

developed to address threats to IP cores during the IC design process. This 

chapter reviews these state-of-the-art techniques and identifies their 

limitations, forming the foundation for the proposed hardware security 

methods tailored for hardware IPs in this thesis. The first section covers the 

state-of-the-arts in countering IP piracy and false IP core ownership claim, as 

well as hardware Trojan detection methods. The second section outlines the 

objectives of the thesis, followed by a discussion of the key contributions 

made in this thesis in section three. 

2.1. State-of-the-Art on Hardware IP Attacks 

As discussed in the previous chapter, the incorporation of pirated IP versions 

into system in the hardware SoC designs can result in several significant 

consequences: (i) it can pose safety risks to end consumers, (ii) the system 

may malfunction (unreliable functioning) due to hidden malicious logic, such 

as hardware Trojans, within the IP. These compromised IPs or ICs are 

unreliable and unsafe when used in consumer electronics, (iii) they may create 

security vulnerabilities, particularly in critical applications like military 

systems , medical diagnostics, aerospace, etc., (iv) they can lead to financial 

losses for the original IP vendors/designers and tarnishes the reputation of the 

original IP vendor. Thus, detecting and isolating pirated/counterfeited IP 

versions is essential to maintaining system integrity and safety. Section 1.4.1 

of Chapter 1 discusses the threat of IP piracy/counterfeiting in detail. 

Additionally, protecting the rights of original IP vendors against false 

ownership claims is equally important. Section 1.4.2 of Chapter 1 discusses 

the threat of false IP ownership claim in detail. Moreover, the presence of 

hardware Trojans in IP designs is regarded as a significant threat, as they can 

lead to various security issues. Among these, the most alarming is the risk of 

incorrect functional computation. Section 1.4.3 of Chapter 1 discusses the 

threat of hardware Trojan in detail. In the literature, various detective control 
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mechanisms are explored to combat the challenges of IP piracy and resolve 

disputes over false IP ownership claims, emphasizing the need for robust 

security measures to safeguard intellectual property rights. Additionally, 

various hardware Trojan detective mechanism have been explored in the 

literature.   

Detective control mechanism against IP piracy and false IP ownership 

claim: To prevent the integration of pirated IP versions into multimedia, 

electronics and computing systems, various security techniques have been 

developed in the past. The techniques for hardware security against IP piracy 

and false IP ownership claim include hardware watermarking [31] - [35], [36], 

[42], [93] steganography [37], encryption based security approaches [38], 

[39], [43], and biometrics-based security techniques [40], [41], [44]. Apart 

from security, there also exists some works on generating low-cost hardware 

designs, such as [32], [45], [46] - [49]. 

As  discussed in the introduction section, one common approach at this level is 

hardware watermarking, which embeds a unique identifier into the design to 

secure IP designs. Koushanfar et al. [31] discusses a dynamic watermarking 

methodology for DSP IP cores using a binary variable (0/1) encoding process. 

This is achieved by adding watermarking constraints (additional edges) into a 

color interval graph (CIG) of the hardware design, which represent the IP 

vendor's watermark. Initially, the author's signature data is processed through 

the MD5 cryptographic hash function. This hash is then encrypted using the 

designer's RSA public key. The resulting cipher is inputted into the RC4 

stream cipher, which creates a pseudorandom keystream. This keystream is 

combined with the original signature data using a bitwise ex-or operation to 

generate the ciphertext signature data. Lastly, this ciphertext is embedded as 

additional watermark constraints in the design. Post-generation of 

watermarking constraints, they are embedded during the register allocation 

phase of HLS process using CIG framework. The embedded 

watermarking/security constraints provides detective countermeasure against 

IP piracy and false IP ownership claim. 

Next, Sengupta and Bhadauria [32] proposed hardware watermarking 

approach with a quadruple variable encoding mechanism by exploiting the 
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register allocation phase of HLS process. This approach uses multi-variable 

(quadruple variable) signature encoding, which enhances robustness by 

employing a complex encoding process with four watermarking variables, 

resulting in multiple constraints for embedding into the design. To optimize 

the process, Particle Swarm Optimization (PSO) is used to balance latency and 

area overhead, achieving a cost-effective solution. The embedded security 

constraints enable the detection of piracy and resolution of false IOP 

ownership claim in case of an ownership conflict, providing a reliable means 

of safeguarding IP. Another notable approach by Hong and Potkonjak [33] 

involves using a watermarking technique where the vendor’s signature or 

covert mark is encoded as a set of design and timing constraints and embedded 

into the IP core during behavioral synthesis. Detection of pirated IPs is 

facilitated by identifying the presence of the vendor's watermark, thereby 

ensuring that only authorized versions of the IP are used. 

Next, Gal and Bossuet [34] developed a watermarking technique based on 

mathematical relations between input/output data and initial internal values at 

certain timing values. This watermark not only protects the IP owner's rights 

but also ensures that the design meets user constraints related to latency and 

area. To minimize overhead in terms of area, delay, power consumption, and 

design time, the watermark is integrated automatically during the behavioral 

synthesis phase using the HLS tool. This method leverages "temporally free" 

output slots to embed watermarking constraints. The watermark in [34] 

comprises of mathematical relationships among the IP’s input data, initial 

internal values, and output data, referred to as sub-marks. These sub-marks are 

indistinguishable from normal output data, making the watermark invisible to 

IP buyers, integrators, and users, and undetectable during static analysis. Two 

watermarking algorithms are proposed in [34]: (i) a low-cost watermark and 

(ii) a costless watermark. The low-cost version randomly selects internal 

computation values and transfers them to free output slots, while the costless 

version further reduces the set of internal values. The technique is effective for 

applications like digital signal, image, and video processing but is unsuitable 

for data security applications due to potential security breaches from exposed 

internal data. This method allows the integration of security features without 
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significantly impacting the performance of the design. Subsequently, 

Karmakar and Chattopadhyay [35] explored IP protection through a 

combination of watermarking and logic encryption. They examined 

vulnerabilities in existing logic encryption techniques and proposed the use of 

cellular automata to watermark finite state machine designs. This approach not 

only enhances the security of the IP but also adds a layer of protection against 

unauthorized modifications and use.  

A three-phase watermarking-based security technique is proposed by Sengupta 

et al. [36] for securing IP designs. [36] involves multi-variable signature 

encoding, using seven variables to generate and embed the watermark into 

three different phases of HLS process, to secure the design against IP piracy 

and illegal IP ownership claim. The vendor's signature is embedded during 

three separate phases of the HLS process: the scheduling phase, the hardware 

allocation phase, and the register allocation phase. Initially, operations are 

sorted in ascending order within each control step (CS). During the first phase, 

non-critical operations (starting from CS-1) are shifted to the next CS for each 

occurrence of signature bit γ, ensuring data dependency and hardware 

constraints are maintained. This generates a modified timing table for non-

critical operations. In the second phase, functional units (FUs) are reallocated 

based on the encoding rules α and β, creating an updated hardware allocation 

table. Storage variables in the SDFG are then allocated. A register allocation 

table (RAT) is then generated from the SDFG. Watermarking constraints, 

determined by the IP seller’s selected encoding digits i, I, T, and !, are 

embedded into the RAT/CIG. Finally, the RAT of the triple-phase 

watermarked hardware IP core is generated using HLS. This phased approach 

ensures that the watermark is deeply integrated and uniformly distributed into 

the design, making it difficult to remove or alter. 

Next, Roy and Sengupta [93] developed a multi-level watermarking technique, 

specifically designed to secure DSP IP cores against piracy. This approach 

involves embedding hardware security constraints that correspond to the 

vendor's signature at multiple design abstraction levels, including high-level 

and register transfer level. The process begins by accepting the CDFG of the 

DSP application and performing key tasks such as scheduling based on 
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resource constraints, allocation, and resource binding. Afterward, the RTL 

design is obtained using an HLS framework, which includes components like 

multiplexers, demultiplexers, and registers. The vendor's signature is then 

decoded to generate watermarking constraints, which are embedded by 

adjusting the hierarchy of multiplexers and demultiplexers and encoding 

register sharing. The resulting multilevel watermarking-based RTL design 

provides a comprehensive and robust solution for securing IP cores against 

piracy and false IP ownership claim. 

Next, Chen and Schafer in [42] have discussed a practical watermarking 

method for commercial HLS tools. The approach exploits pragma directives 

for embedding watermark signature in the functional unit allocation phase of 

HLS process. The process begins by taking the initial behavioral description to 

be watermarked and transforming it to highlight all operations requiring a 

functional unit (FU). Next, the expanded behavioral description is synthesized 

to determine the scheduling of operations across clock cycles. This yields a 

scheduling report and an FU constraint file from the HLS process. The core 

watermarking step involves creating a distinct FU binding solution, ensuring 

the resulting RTL code is unique. Since the watermark relies on FU binding, it 

remains undetectable. Inputs for this step include the expanded C code, HLS 

scheduling report, FU constraint file, and the watermark key. The output is a 

modified C code with pragmas linking operations to specific FUs. The 

objective is to follow the sequence defined by the watermark key and balance 

FU usage to minimize multiplexer area. Finally, the uniquely watermarked C 

code is synthesized to produce the watermarked RTL code with a distinct FU 

binding pattern. The primary weakness of this approach is its limited security 

strength due to lesser watermark strength.    

Further, Sengupta and Rathor [37] introduced a hardware steganography-

based technique aimed at detecting pirated DSP IP versions before their 

integration into electronics and computing systems. [37] generates stego-

constraints based on design data, secret stego-keys, thresholding parameter, 

and mapping rules. Further, it embeds these generated stego-constraints in the 

form of secret information into target hardware. The complex process of 

stego-constraints generation using secret stego key that renders the 
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steganography approach stronger than watermarking. This method embeds 

covert stego-marks directly into the hardware IP design without relying on any 

external signature. The amount of covert digital evidence (stego-constraints) 

embedded is controlled by a thresholding parameter set by the designer. The 

process begins with accepting the CDFG of the hardware application, which is 

then transformed into a scheduled data flow graph (SDFG). Next, the 

corresponding CIG is constructed, and stego-constraints (artificial edges) are 

determined for insertion into the CIG. Swapping pairs are identified for each 

stego-constraint, and the maximum entropy is calculated. A subset of stego-

constraints are selected based on a threshold value chosen by the designer,  

and added to the CIG, resulting in a secured design with embedded stego-

constraints. Next, Yu and Zhu [38] presented a hardware description language 

(HDL) design-level IP watermarking approach using SHA1 and RSA. In [38], 

a specialized watermark module is introduced into the original HDL code, 

replacing a specific set of stable register data. This watermark remains intact 

through the synthesis, placement, and routing stages, providing resistance 

against forgery and removal attack also. 

Moreover, Sengupta et al. [39] proposed a digital signature-based approach for 

providing detective countermeasure against piracy and false IP ownership 

claim, utilizing encrypted-hash techniques to secure reusable IP cores. Authors 

in [39] employed the RSA cryptosystem and SHA-512 hash computations to 

generate security constraints. The process begins by taking the CDFG of the 

hardware application and IP vendor-specified resource constraints as inputs. 

Based on this, the input CDFG undergoes scheduling, and the resulting SDFG 

is input into a phase-1 encoding process, which generates a bitstream using 

specific encoding rules. This bitstream is then processed through the SHA-512 

hashing algorithm, resulting in a bitstream digest of the DSP application. The 

generation of this digest involves various computations, including circular 

right shifts, left shifts, and modulo additions on 64-bit arguments. In the 

subsequent post-processing phase, the generated bitstream is divided into 

equal-sized blocks and converted into their equivalent decimal values. These 

decimal values are then encrypted using the IP owner's private key through 

RSA encryption, enhancing the security of the embedded digital signature. 
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The encrypted data is converted back into a binary bitstream during further 

post-processing steps. This encrypted bitstream is then used as input for the 

phase-2 encoding process, which generates covert security constraints that 

correspond to the digital signature's strength—a parameter chosen by the IP 

designer, balancing security needs with design cost considerations. Finally, 

these covert security constraints are embedded during the register allocation 

phase of the HLS process, resulting in a secured reusable hardware IP core 

with an embedded digital signature. Next, Castillo et al. [43] presented an 

encryption-based hardware watermarking approach using MD5 and SHA-

crypto algorithm. This method involves embedding the bits of a digital 

signature directly at the HDL design level, utilizing resources already present 

within the original system. It also incorporates a secure signature extraction 

process that necessitates only minor adjustments to the existing system. 

Further, the biometric-based hardware watermarking techniques are the most 

recent one, which includes the use of IP vendor’s/seller’s biometric traits, to 

generate and embed a robust watermark. Hardware watermarking [31], [32], 

[33], [34], [35], [36], [38], [39], [42], [43], [93] methodologies involve 

embedding a seller's signature into hardware IP design. Adversaries might be 

able to forge and replicate the watermark to evade detection or make false 

ownership claim. Further, regular watermarking and steganography techniques 

are not capable of producing large-size signature strength, which in turn leads 

to a lack of sufficient uniform distribution of the watermark constraints during 

embedding. Weak distribution is prone to removal by an attacker, thereby 

compromising security. Therefore, using the IP seller's biometric traits for 

sophisticated watermarking ensures a unique and tamper-resistant watermark 

signature of large strength, facilitating seamless detection of piracy and 

verification of genuine ownership. Biometric-based watermarking offers 

several advantages over traditional methods, including uniqueness, robustness, 

and stronger security. Authors in [41], [44], and [41] have exploited IP seller’s 

facial, palmprint, and fingerprint biometric information, respectively to 

generate a robust watermark. Initially, a high-resolution image of the IP 

seller’s facial and palmprint biometric is captured using digital cameras. 

Similarly, a fingerprint biometric scanner is used to capture the image of an IP 
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seller’s fingerprint. Subsequently, the captured biometric image is subjected to 

the IP seller’s specified grid size and spacing to extract the precise feature 

nodal and minutiae points. Additionally, the fingerprint image is subjected to 

various preprocessing steps such as FFT enhancement, binarization, and 

thinning to improve the quality of the image, which facilitates a smooth 

extraction of minutiae feature points. Post-generation of nodal points, the 

corresponding features are generated on the facial and palmprint biometric 

image. Similarly, the minutiae points (comprising of bifurcation and ridge 

ending points) are generated on the fingerprint image. The coordinates 

corresponding to each nodal and minutiae point are extracted for feature 

dimension computation Similarly, the parameters corresponding to fingerprint 

minutiae feature points, such as x-coordinate, y-coordinate, ridge angle, and 

minutes type (i.e., ridge ending and bifurcation), are extracted. Post feature 

dimension computation, all decimal values are converted into their binary 

equivalents, which are further concatenated as per IP seller’s concatenation 

fashion to generate the final corresponding facial, palmprint, and fingerprint 

biometric watermark signatures. The generated individual biometric 

watermark signature is converted into watermarking constraints using 

mapping/embedding rules. Finally, the determined watermarking constraints 

are implanted into the hardware design as the IP seller’s digital evidence 

during the register allocation phase of the HLS process. The implanted digital 

evidence provides a detective countermeasure against IP piracy and an 

instance of false assertion of IP ownership. Overall, by embedding security 

measures directly into the design process, these aforementioned techniques 

provide security/detective countermeasure against IP piracy and false IP 

ownership claim. Each approach offers a unique way to integrate security into 

different phases of the IC design process. 

In addition to security-focused designs, several studies [32], [45], [46], [47], 

[48], [49] have explored methods for generating low-cost hardware designs 

through design space exploration (DSE). These works often emphasize 

optimizing factors such as power performance, power-delay tradeoffs, and 

multi-objective optimization to develop cost-effective solutions. For instance, 

the study in [45] used HLS methodologies aimed at creating low-power 
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designs on FPGAs, concentrating on throughput constraints without 

addressing area-delay tradeoffs for secure designs. Other research, such as 

[46], applied machine learning techniques for DSE but did not focus on 

generating secure, low-cost architectures for image processing cores. Tools 

like Autopilot for HLS [47] and approaches such as simulated annealing [48] 

have also been utilized to explore power-performance tradeoffs, though these 

methods often overlook tradeoffs involving design area, latency, and security. 

Additionally, the bacterial foraging-driven DSE approach discussed in [49] 

targets the creation of low-cost designs for fault-tolerant hardware systems, 

further highlighting the diverse approaches to achieving efficient hardware 

designs. 

Detective control mechanism against hardware Trojans: Further, over the 

years, various methods have been developed to detect hardware Trojans in 

ICs, with some approaches focusing on Trojan detection without necessarily 

making the designs resistant to such threats. For example, research by 

Sengupta and Mohanty [45] explored low-cost scheduling strategies during 

HLS to develop DSP IP cores that can detect Trojans but cannot prevent them. 

Another approach by Sengupta et al., [46] used property checking techniques, 

where specific properties of the IP are verified to ensure they meet expected 

behaviors. If discrepancies are found, they may indicate the presence of a 

Trojan. 

Next, code-coverage analysis, as proposed by Hu [47], is another technique 

used for hardware Trojan detection. This method identifies suspicious signals 

in the RTL design by analyzing which signals remain stable during coverage 

testing. Since Trojans typically activate only under specific conditions, these 

stable signals are flagged as potential indicators of malicious hardware. 

Additional test vectors can then be applied to further investigate uncovered 

parts of the design. However, this approach can be time-consuming and may 

not definitively distinguish all Trojans from other anomalies. To refine this 

method, Bushnell and Agrawal [48] employed equivalence analysis, which 

helps reduce the number of flagged suspicious signals, although it introduces 

runtime overhead and may still misclassify some non-Trojan signals (as not all 

suspicious signals are Trojans). 



30 

Some researchers have developed system-level Trojan detection techniques, 

such as those presented by Tehranipoor and Koushanfar [49], while others 

have explored lower-level detection methods [50], [51]. A notable technique 

proposed by Wang et al., [52] involves using multiple supply transient current 

integration to detect Trojans by monitoring abnormal current variations in the 

IC. Once detected, Trojans are isolated from the system through a defined 

isolation process. Another strategy, concurrent error detection (CED), was 

utilized by Rajendran et al., [53], although it relied on multiple sets of third-

party IP (3PIP) vendors for identifying Trojans, which complicates 

implementation and still does not render the system Trojan-resistant. 

Despite the advances in Trojan detection, most of these methods only focus on 

identifying the presence of Trojans without enhancing the resistance of the 

hardware against such attacks. To further improve hardware security, 

researchers have explored various other mechanisms, including the use of 

approximate circuits to reduce the risk of Trojan insertion [54], obfuscating 

triple modular redundancy (TMR) techniques [55], and neutralizing Trojans in 

Supervisory Control and Data Acquisition (SCADA) systems [56]. In [54], a 

gate-level approximation circuit scheme was proposed, demonstrating its 

effectiveness on ISCAS C-series benchmark circuits by reducing the 

likelihood of Trojan insertion. The obfuscated TMR approach discussed in 

[55] was also applied to C-series benchmark circuits, enhancing Trojan 

detection coverage by camouflaging low-observable signals. The work in [56] 

focused on securing SCADA systems commonly used in industrial control 

applications, employing TMR on select pathways to neutralize potential 

hardware Trojans. Additionally, [57] explored functional camouflage to design 

adversarial hardware that covertly inserts Trojans in low-centrality locations 

within the circuit, making them harder to detect. Moreover, [58] utilized 

equivalence checking based on finite state machines with datapath (FSMD) to 

identify Trojans that cause functional changes in the hardware. 

Machine learning (ML) has also been leveraged for real-time hardware Trojan 

detection, as highlighted by Kulkarni et al., [59], which presents an ML-based 

methodology that improves the accuracy of Trojan detection in many-core 

designs. Further, Kulkarni et al., [60] introduced a discrepancy analysis (DA) 
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based security approach that automatically detects hardware bugs, while 

Abderehman et al., [61] proposed a C/C++ to RTL equivalence checking 

framework specifically for HLS verification. Moreover, Fern and Cheng [62] 

utilized a simulation-based assertion set completeness analysis to uncover 

hardware Trojans and address verification blind spots. A reconfigurable 

assertion checker-based security framework was also suggested by Alsaiari 

and Gebali [63] for detecting hardware Trojans within SoC designs. Overall, 

while numerous Trojan detection techniques have been developed, many still 

focus primarily on detection rather than prevention or resistance. There 

remains a need for more robust, integrated solutions that can secure hardware 

IP cores against both the insertion and activation of Trojans, ensuring 

comprehensive protection throughout the design and manufacturing processes. 

Limitations: In hardware watermarking techniques [31], [32], [33], [34], [35], 

[36], [42], [93], the generated signatures rely on factors like the number of 

variables, their combinations, watermark signature length, and encoding rules. 

This dependency on intermediate factors makes watermarking susceptible to 

attacks, as these elements can be easily compromised. On the other hand, 

hardware steganography [37] offers a signature-free method to protect 

hardware IP cores, providing stronger security with lower design overhead 

compared to watermarking. However, steganography also has its 

vulnerabilities; an adversary could potentially exploit stego-keys, encoding 

methods, and threshold entropy value, undermining the security of the system. 

The primary weakness of the above methods [31]-[38] lies in their limited 

security variables, such as private keys, encoding algorithms, and signature 

combinations. These factors can be targeted by adversaries to replicate or 

regenerate signatures, compromising the security of hardware IP cores against 

piracy. Additionally, these methods do not focus on creating cost-effective 

(low-cost), secure RTL IP datapath architecture. Apart from all of the above 

limitations, these watermarking approaches leads to generation of limited 

watermarking (security) constraints, which in turn decreases the robustness of 

the security methodology.  

Next, the digital signature based approaches [38], [39], [43] involves 

generating digital signatures (watermark) through encryption algorithms, such 
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as MD5, SHA, SHA-512, and RSA cryptosystem, and encodings. While these 

approaches use intricate calculations/computations to prevent 

watermark/signature replication, their reliance on standard encryption 

algorithms still make them vulnerable to key-based attacks. In case of a 

leaked/forged encryption key, the overall security can be compromised. The 

attacker can easily regenerate the exact watermarking constraints with the help 

of compromised encryption key and encoding rules. These approaches have 

also a primary limitation of limited watermarking constraints generation, apart 

from generation of a low-cost secure RTL design. Additionally, the hardware 

watermarking and digital signature/encryption based security approaches do 

not integrate/embed any unique natural identity of original IP seller with the 

hardware design.  

The biometric-based approach [40] for generating accurate fingerprint 

signatures involves an image enhancement phase using FFT, which adds 

complexity and also requires an optical scanner to capture the IP vendor’s 

fingerprint. This method is also susceptible to inaccuracies due to injuries or 

external factors that can affect the accurate fingerprint generation. 

Alternatively, facial [41] and palmprint  [44] biometric approaches use 

naturally unique IP vendor’s facial and palmprint features to generate 

signatures. While these methods embed the IP vendor’s natural identity into 

the design, they still fall short in providing robust security because they 

generate fewer watermarking constraints. Consequently, despite leveraging 

unique biometric features, these approaches do not fully ensure the protection 

of hardware IP cores, leaving room for potential security breaches. A more 

resilient strategy that combines enhanced security measures with biometric 

uniqueness is needed to overcome these limitations and offer comprehensive 

protection against piracy and unauthorized use.  

In summary, more comprehensive and resilient approaches are needed to 

safeguard hardware IPs effectively from unauthorized replication and 

exploitation. Security approaches that have capability to generate massive 

watermark strength along with IP vendor’s natural uniqueness are the need of 

the hour, as they are able to provides robust digital evidence (author credibility 

proof) against IP piracy and false claim IP ownership. Further, they must also 



33 

depict higher withstand ability against standard threats of ghost insertion 

search attack (watermark collision), tampering attack (brute force), forgery 

attack and watermark removal attack. 

Further, existing research on Trojan detection, such as in [45] and [46], 

addressed detection but lacks comprehensive resistance strategies against 

hardware Trojans. Further, [47]-[53] also discussed Trojan detection; 

however, fails to provide complete Trojan resistance. Next, [54] and [55] do 

not focus on functional hardware Trojan isolation within DSP hardware IP 

cores, particularly in the context of third-party IP (3PIP) cores. Moreover, 

these works do not explore the development of optimized (low-cost), secure 

architectures resistant to Trojans. [55] falls short in handling DSP hardware 

IPs, while [56] struggles with managing the design overhead caused by 

triplication logic. Although the approaches in [57]-[63] present various Trojan 

detection techniques, they do not extend to providing Trojan resistance, 

particularly in DSP hardware circuits. This highlights a significant gap in the 

field: the need for more robust and integrated solutions that not only detect but 

also resist functional Trojan insertions and activations, ensuring complete 

protection of hardware IP cores throughout the design and manufacturing 

lifecycle. 

2.2. Objective of the Thesis 

The objective of the thesis is to develop novel alternative paradigms of 

hardware security for addressing threats of IP piracy and Trojan during HLS. 

This is achieved by setting out the following goals and objectives: 

1. To explore low-cost secure hardware IP design during HLS using 

multiphase encryption and crypto-chain signature. 

2. To develop enhanced security framework for hardware IPs using IP 

seller’s protein molecular biometrics and facial biometric-based encryption 

key. 

3. To develop a statistical watermarking framework using encrypted 

dispersion matrix and eigen decomposition framework for securing 

hardware IPs. 
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4. To develop a secure GLRT cascade hardware IP using IP seller’s 

fingerprint and CIG framework for ECG detector. 

5. To develop a voice biometric-based watermarking framework for securing 

hardware IP cores. 

6. To develop an HLS-based, low-cost (optimal) functional trojan-resistant 

hardware IP designs security framework. 

2.3.Overview of Key Contributions 

 A novel low-cost security framework for hardware IP design during HLS 

using multiphase encryption and crypto-chain signature. (Publications: 

#10, #11, #15, #28, #30) 

- Proposes a novel low-cost exploration framework of secured image 

processing filter IP core datapath architecture for detective control 

against IP piracy during HLS. 

- Exploits PSO based design space exploration process for performing 

design area-delay tradeoff of secured image processing filter IP core 

datapath. 

- The proposed approach explores low-cost optimized design architecture 

of filter IP core datapath that embeds robust security constraints based on 

the proposed multi-phase encryption algorithm at zero design cost 

overhead. The proposed approach demonstrates the exploration and 

embedding of low-cost resource configuration and watermarking 

constraints on sharpening filter.  

- It also proposes a firefly based design space exploration to determine an 

optimal JPEG-CODEC IP core datapath after performing the design area-

delay tradeoff. 

- Presents low-cost hardware security approach to explore optimal 

architecture (design) for JPEG-CODEC IP core datapath that contains 

secret watermarking/security constraints. 

- The secret security constraints are generated using the proposed key-

driven crypto-chain based security methodology/algorithm. It explores a 
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secured JPEG-CODEC IP core datapath capable of providing detective 

control against IP piracy and fraudulent claim of IP ownership using the 

HLS framework. 

- Presents the optimality analysis of the proposed low-cost multi-phase 

encryption algorithm and proposed low-cost key-driven crypto-chain 

based security methodology. 

 A novel enhanced security framework for hardware IPs using IP seller’s 

protein molecular biometrics and facial biometric-based encryption key. 

(Publications: #1, #18, #24) 

- Proposes a novel molecular biometric-based hardware security 

approach based on protein molecule sequence to secure hardware IP 

cores.  

- In the proposed approach, an IP vendor selected protein sequence 

comprising of 20 unique amino acid combinations, is used for 

molecular signature generation. 

- The generated signature (watermark) is then encrypted through AES 

using an encryption key generated with the facial biometric of authentic 

IP vendor. Thus, the proposed approach incorporates two classes of 

biometrics of IP vendor to ensure highly robust and unique 

authentication. 

 A novel statistical watermarking framework using encrypted dispersion 

matrix and eigen decomposition framework for securing hardware IPs. 

(Publications: #6, #17) 

- Proposes an HLS based watermarking methodology using design 

parameter driven encrypted dispersion matrix with eigen decomposition 

based security framework for protecting hardware IP cores. 

- Presents a security framework that extracts the characteristics of the IP 

vendor selected design space parameters and the design space’s 

characteristics in terms of IP vendor chosen resource configuration 

values and exploits them as unique features to act as digital evidence 

for securing hardware IP cores. 
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- Exploits HLS design methodology for embedding the mathematical 

watermark signature, generated using dispersion matrix, Eigen 

decomposition, and AES encryption block, during the register 

allocation phase. It also demonstrates the complete end-to-end 

watermarking algorithm and its embedding on an 8-point DCT 

hardware IP core. 

- Depicts stronger security with a lower probability and higher tamper 

tolerance value at minimal design cost overhead. 

- Presents security analysis of the generated template against forgery, 

ghost signature search and brute-force/tampering attack.  

 A novel secure GLRT cascade hardware IP design using IP seller’s 

fingerprint and CIG framework for ECG detector. (Publications: #4) 

- Presents the design methodology of GLRT hardware IP core for ECG 

detector for the first time in the literature.  

- Presents secure GLRT hardware IP core for ECG detector using 

fingerprint biometric-based security methodology during HLS. 

- Presents CIG framework and RTL datapath of a secure GLRT hardware 

micro IP core and secure GLRT hardware cascade IP core. 

- Discusses the security of life-critical critical medical hardware systems 

for first time in literature. 

 A novel voice biometric-based watermarking framework for securing 

hardware IP cores. (publications: #2) 

- Proposes a novel contactless voice biometrics-based hardware 

watermarking technique for robust IP core authentication and 

verification. This is the first voice biometric-based hardware IP 

protection technique. 

- Presents a security framework for generating a unique voice signature 

digital template using distinct voice features such as jitter and shimmer 

along with pitch and intensity values. 
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- Present a feature extraction scheme for extracting different pitch and 

intensity values at different timestamps from the spectrograph of the 

voice sample. 

- Present a scheme of encoding voice signature template into covert 

hardware security/watermarking constraints based on four-fold 

mapping. 

- Presents the HLS design methodology of embedding a voice signature 

during the register allocation phase to generate secured IP cores. It 

demonstrates the embedding of voice signature on IIR filter. 

- Depicts stronger security with a lower probability and higher tamper 

tolerance value at minimal design cost overhead. 

- Presents security analysis of the generated template against forgery, 

side channel attack (SCA), ML-attacks, ghost signature search and 

brute-force/tampering attack.  

 A novel HLS-based, low-cost (optimal) functional Trojan-resistant 

hardware IP designs security framework. (Publications: #12) 

- Presents a novel exploration framework of optimized Trojan resistant 

(capable of detection and isolation both) hardware design architecture 

during HLS process. 

- Exploits particle swarm optimization-driven design space exploration 

(PSO-DSE) to determine an optimal hardware IP core datapath after 

performing the design area-delay tradeoff. 

- Proposes a Trojan-resistant design flow for the reusable hardware IP 

core using TMR-based distinct multivendor allocation policy.  
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Chapter 3 

Exploration of Low-Cost Hardware IPs during HLS 

using Multiphase Encryption and Crypto-Chain 

Signature 

The widespread use of electronics and multimedia devices, such as 

smartphones, digital cameras, and IoT devices, underscores the importance of 

efficient data processing and management technologies. Key among these are 

JPEG-CODEC and image processing filters, which play pivotal roles in 

enhancing the functionality and performance of these devices. JPEG-CODEC, 

a popular compression-decompression standard, enables efficient storage and 

transmission of multimedia content by significantly reducing the file sizes of 

images and videos without compromising essential quality. This is particularly 

crucial in scenarios where storage space and bandwidth are limited, such as in 

digital cameras and medical imaging equipment like MRI and CT scanners. In 

medical applications, the JPEG-CODEC facilitates the handling of high-

resolution images by compressing them, thus optimizing storage and 

streamlining the transfer of critical data for remote diagnosis and treatment. 

Further, image processing filters are equally important, as they perform a 

range of functions that are essential for extracting meaningful information 

from images. These filters are used for tasks such as noise reduction, edge 

detection, and image enhancement, which are critical in applications spanning 

from military and robotics to advanced medical imaging and biometric 

systems. For instance, they help in analyzing medical images for disease 

diagnosis or in identifying objects in automated systems [72] - [76]. The 

development of these technologies as dedicated, low-cost reusable hardware 

IP cores using HLS and DSE enhances their performance and cost-efficiency, 

making them integral components in the modern digital ecosystem. By 

optimizing (using DSE) these hardware designs, it is possible to meet the 

stringent requirements of speed, power efficiency, and accuracy that are 

demanded in real-world applications.  

Further, with the globalization of the digital design process, these hardware IP 

cores face significant security challenges, including IP piracy, counterfeiting, 
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and false IP ownership claim. These threats can lead to unpredictable device 

behaviors, such as incorrect pixel computation in medical imaging or data 

leaks, posing risks to users and manufacturers. Therefore, it is essential to 

prioritize security alongside performance and cost optimization during the 

design of these IP cores using high-level synthesis frameworks to ensure 

reliable and secure hardware solution. The details on the involved threat model 

is discussed in the first section of this chapter.  

Previous research has explored the design of hardware accelerators for image 

processing, including FPGA-based solutions [64] - [67] and those utilizing 

convolutional neural networks (CNNs) [68] - [71] for convolutional tasks. 

However, these studies have not presented a dedicated low-cost design 

framework for JPEG-CODEC and image processing filters, beside addressing 

the security challenges, such as IP piracy, associated with dedicated hardware 

accelerators for image processing filters. Further, several state-of -the-art 

watermarking techniques and their limitation  has already been discussed in 

the previous chapter. The proposed low-cost security (watermarking) 

approaches involves multi-layer security through usages of several IP vendor 

selected key values, apart from the generation of greater watermarking 

constraints. Moreover, the proposed approaches incorporates design space 

exploration block along with security block to generate a low-cost optimized 

hardware architecture.   

This chapter presents the proposed two low-cost security approaches for 

generating low-cost secure image filters and JPEG-CODEC RTL datapath. 

The first section of the chapter outlines the problem formulation, threat model 

and undelaying motivation. The second section discusses the details of 

proposed low-cost multiphase encryption and crypto-chain signature based 

security methodologies. Following this, the third section illustrates the 

embedding of the proposed watermarking constraints with relevant examples. 

The fourth section then covers the process of watermark detection. Lastly, the 

fifth section provides the chapter's conclusion.  

3.1. Problem Formulation 
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3.1.1 Threat model and underlying motivation 

Both JPEG-CODEC and image processing filter IP cores face significant 

security threats, including piracy, counterfeiting, cloning, and fraudulent IP 

ownership claim. These vulnerabilities arise particularly when multiple third-

party entities are involved in the design process, making it easier for adversary 

in the SoC integrator and fabrication houses, to pirate and resell the original 

IPs or fraudulently claim ownership. Such actions not only lead to revenue 

loss for the original IP vendors but also pose risks to end consumers, as pirated 

IP cores may not undergo rigorous testing and could contain malicious logic. 

The presence of malicious logic inside a pirated/counterfeited IP version may 

lead to incorrect pixel computation value (causing severe consequences for 

end patient in case of medical imagining system), unpredictable device 

behavior (such as excessive heat dissipation, etc.), and leakage of sensitive 

information. The designed dedicated reusable IP core is susceptible to piracy 

when an IP vendor sells the IP core/design to the customer (SoC integrator). 

Here, a potential adversary or threat actor may be an SoC integrator who may 

pirate the original design and resell it under the same brand name, making it 

challenging to make a clear distinction between the authentic and the pirated 

one. Further, adversary can also claim the ownership of the IP design. Thus, 

ensuring robust security measures (detective countermeasure) to protect these 

IP cores is essential. Further, a low-cost design is also crucial to generate an 

optimized design within given design (area and latency/delay) constraints. 

3.1.2. Input and Outputs 

The primary inputs are (a) input image pixel matrix, (b) transfer and 

computation function obtained through image filter kernel coefficients, (c) 

particle swarm optimization (PSO) initialization parameters (such as swarm 

size, random number, social and cognitive factors, acceleration coefficients, 

termination criterion, and inertia weight), (d) module library, (e) LIST 

scheduling algorithm, (f) different IP vendor selected key values for multi-

phase encryption, (g) truncation length, (h) keys for TRIFID cipher 

computation, (g) encoding rules, (i) transfer function of JPEG-CODEC, (j) 

firefly algorithm (FFA) initialization parameters (such as attractiveness 

parameter, step size control parameter, design constraints, absorption 

coefficients, and population size), (k) IP vendor selected keys for crypto-chain 
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algorithm, (l) bit-padding and embedding rules, and (m) mapping/embedding 

rule. And the final outputs consists of low-cost secure RTL datapath 

corresponding to image processing filter and JPEG-CODEC application. 

3.1.3 Target platform 

The proposed security methodologies can be seamlessly integrated with any 

electronic design automation (EDA) tools. The techniques can easily be 

combined with HDL, or any high-level language used for IP generation within 

design tools. 

3.2. Low-Cost Multiphase Encryption and Crypto-Chain 

Signature based Security Methodologies 

Fig. 3.1 depicts the overview of the low-cost multi-phase encryption based 

security methodology and Fig. 3.2 depicts the overview of low-cost crypto-

chain signature based security methodology. As shown in Fig. 3.1, the 

proposed multi-phase encryption-based hardware security methodology for 

protecting image processing filter IP cores involves several key steps. First, 

the input image and target filter kernel are provided to the approach to 

generate a secure hardware accelerator design. The image is then converted 

into its pixel values, which are used along with filter kernel coefficients to 

formulate the mathematical function of the target image filter IP core. This 

function is converted into a data flow graph (DFG), which undergoes 

structural transformations like loop unrolling and tree height transformation to 

enable parallel pixel computation and improve performance by reducing 

latency. Next, a heuristic-based architectural exploration, using PSO, is 

employed to identify a low-cost resource configuration from various potential 

designs. The inputs for this exploration include the transformed DFG, PSO 

parameters, and a module library, producing an optimal low-cost 

configuration. This configuration, along with the transformed DFG, is input 

into the scheduling, allocation, and binding block of the HLS process, 

resulting in a SDFG. An initial RAT is generated using the SDFG, and multi-

phase encryption-based security constraints are embedded into the RAT, 

producing a secure RAT. The design cost is then calculated, and the global 

best solution is identified using PSO. Finally, a low-cost secured hardware 

accelerator datapath is generated through HLS, embedding security constraints 
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to provide detective countermeasure against piracy while effectively 

performing various image processing functions. 

Next, as shown in Fig. 3.2, the proposed approach for generating a low-cost 

secure JPEG-CODEC IP design employs the firefly algorithm-based DSE and 

proposed key-driven crypto-chain hardware security methodology. The 

methodology comprises two main components: (a) a firefly-based architecture 

exploration block, which identifies an optimal secured architecture for the 
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JPEG-CODEC IP core, and (b) a key-driven crypto-chain hardware security 

module. The process begins by feeding the JPEG-CODEC algorithmic 

description into the system, from which a corresponding mathematical 

function is derived. This function is then converted into a DFG or CDFG. The 

CDFG undergoes structural transformation using the tree height 

transformation (THT) technique, which reduces latency by allowing parallel 

evaluation of sub-computations, thereby enhancing performance. The 

transformed DFG is fed into the firefly-based architecture exploration block to 

find an optimal low-cost resource configuration. This configuration, along 

with the transformed DFG, is then input to the scheduling, allocation, and 

binding unit of the HLS framework, using the LIST scheduling algorithm to 

manage control steps and allocate functional units (FUs) and registers. 

Subsequently, a RAT is generated based on the SDFG. The key-driven crypto-
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chain module then produces secret security/watermarking constraints, which 

are embedded during the register allocation phase (in the RAT) to secure the 

JPEG-CODEC IP core against hardware threats. The firefly algorithm 

continues to explore configurations until the optimal, secure architecture is 

found, resulting in the generation of a secure and optimized JPEG-CODEC IP 

core RTL datapath design. The details are discussed in the following 

subsections.    

3.2.1. Overview of image processing applications/ filters and jpeg-codec 

The filter kernel coefficients of the target image processing filter IP core and 

input image pixels are used to derive the mathematical function, which is used 

to generate the DFG of the respective filter IP core. The mathematical kernel 

function with filter kernel coefficients corresponding to some important image 

processing filter IP cores such as blur filter (BF), sharpening filter (SF), 

laplace edge detection filter (LED), vertical embossment filter (VE), and 

horizontal embossment filter (HE) are given as:  

 

For the sake of demonstration, we have considered SF here. The derived 

function corresponding to SF using sharpening filter kernel coefficients 

(KernelSF) and input image pixels for performing two parallel pixel 

computations (by exploiting loop unrolling (LU) transformation) is mentioned 

in equations (1) and (2), respectively.  

O0 = [(I00*(-1)) + (I01*(-1)) + (I02*(-1))] +[(I10*(-1)) + (I11*(9)) + (I12*(-1))] 

+[(I20*(-1)) + (I21*(-1)) + (I22*(-1))]                                                           (3.1) 

O1 = [(I01*(-1)) + (I02*(-1)) + (I03*(-1))] +[(I11*(-1)) + (I12*(9)) + (I13*(-1))] 

+[(I21*(-1)) + (I22*(-1)) + (I23*(-1))]                                                           (3.2)                                                   

Here, I00-I23 are input image pixel values. The final DFG is generated using 

equations (3.1) and (3.2), which further undergo another structural 

transformation, viz. tree height transformation (THT), to optimize schedule 
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latency. The obtained structurally modified SDFG of SF is scheduled based on 

the output of heuristic-based architecture exploration, viz., four adders and two 

multipliers using LIST scheduling. Note: heuristic-based architecture 

exploration is explained in the next subsection. An initial RAT is designed 

using obtained SDFG, which is further used to extract the designer's secret 

information required to generate secret hardware security constraints based on 

the proposed multi-phase encryption algorithm. 

The JPEG-CODEC application is responsible for performing JPEG 

compression on the images and is commonly used in several multimedia and 

consumer electronic devices. The input of the JPEG-CODEC application is a 

pre-processed image. Mathematically a grayscale image is represented using a 

pixel intensity matrix ranging from 0 to 255, where 0 denotes pure black, and 

255 denotes pure white (this scale is for 8-bit depth grayscale images). 

Further, 'F' denotes a generic 2D- discrete cosine transform (DCT) matrix 

used to process input grayscale images. As 'F' is an 8×8 matrix and can 

process a maximum of 8×8 pixel values at one time. Further, fn indicates the 

elements of the F matrix. Therefore, the input image data is divided and 

grouped into 8×8 matrix blocks. 'Z' represents an 8×8 matrix block of the input 

image in a generic form. The relationship between Wij and Zst variables is 

defined in equations (3.4), (3.5), and (3.6). The standard quantization matrix 

(Q) is also an important input component. Next, each pixel intensity value 

from the input 8×8 matrix block is subtracted with 128 as discrete cosine 

transform coefficient matrix can only handle pixel values from range -128 to 

127. Moreover, the JPEG algorithm comprises of steps such as zigzag 

scanning and run-length encoding to generate a compressed image from an 
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input image. Similarly, the process for decompression is the reverse of the 

compression process algorithm. The first compressed image pixel data is 

represented using equation (3.3) [77]. 

I11 = (f4 * W11 + f4 * W12 + f4 * * W13 + f4 * W14 + f4 * W15 +f4 * W16 + f4 * W17 

+ f4 * W18)                                                                                                     (3.3) 

where, W11, W12, W13, ……W18 is evaluated as follows: 

W11 = (f4 * Z11 + f4 * Z21 + f4 * * Z31 + f4 * Z41 + f4 * Z51 +f4 * Z61 + f4 * Z71 + 

f4 * Z81)                                                                                                          (3.4) 

W12 = (f4 * Z12 + f4 * Z22 + f4 * * Z32 + f4 * Z42 + f4 * Z52 +f4 * Z62 + f4 * Z72 + 

f4 * Z82)                                                                                                          (3.5) 

Similarly, 

W18 = (f4 * Z18 + f4 * Z28 + f4 * * Z38 + f4 * Z48 + f4 * Z58 +f4 * Z68 + f4 * Z78 + 
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f4 * Z88)                                                                                                          (3.6) 

Next, the remaining pixel value output is computed in a similar fashion. A 

control data flow graph corresponding to the untransformed JPEG image 

compression IP core is shown in Fig. 3.3. There are eight micro IP 

components (namely from IP1 to IP8) in Fig. 3. Moreover, Fig. 3.3 contains a 

zoomed image of one of the micro IP cores. Fig. 3.3  also highlights the 

quantization operation as each final generated output is multiplied with 'Q'. 

JPEG algorithm uses different quantization matrixes to generate better results. 

Now, tree height transformation is applied to the initially generated DFG of 

the JPEG-CODEC IP core to obtain a structurally transformed DFG 

corresponding to the original one. This structural transformation (i.e., THT) 

induces several interconnection-level changes while preserving the original 

functionality. As explained in the overview section, this produces a 

structurally different but functionally equivalent design. The final structurally 

transformed DFG of JPEG-CODEC IP core is shown in Fig. 3.4.  Further, the 

obtained structurally transformed DFG is scheduled using the resource 
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configuration generated as output of firefly-based resource exploration (for 

example, three adders and three multipliers) and LIST scheduling algorithm. 

Post generation of scheduled DFG (SDFG), bitstreams corresponding to each 

IP vendor/designer specified encoding rules are generated using scheduling 

information (i.e., control step and operation numbers in SDFG). These 

bitstreams are fed as input to key-driven crypto-chain-based security block to 

produce the final signature that is subsequently converted to hardware security 

constraints using IP vendor chosen embedding/mapping rules. 

3.2.2. Low-cost secure architecture exploration using PSO-DSE 

Fig. 3.5 highlights the details of PSO-DSE. The process of PSO-based 

architecture exploration is as follows: At first, the swarm population (N) and 

its dimensions (d), corresponding to resource types, are initialized (assuming 

N=3 and d=2 for adder and multiplier resource types). The first particle 

position (P1) of the swarm is initialized with the maximum number of resource 

configurations (functional resources) possible corresponding to the image 

processing filter (taken from the module library). Similarly, the second particle 

position is initialized with the minimum number of functional resources 

possible. The third position is initialized with the average of the first and 

second particle position values. The initial velocity (Vi) corresponding to all 

particle positions is assumed to be zero. Next, the initial design cost (in terms 

of area and latency) is computed for all particles, and respective local best 

(Plbi) and global best (Pgb) are evaluated. The particle having minimum design 

cost is termed as Pgb. The functions used for the calculation of design area 

(AIP), design execution latency (L), and design cost (quality of results – QoR) 

are shown in equation numbers (3.7), (3.8), and (3.9), respectively.  

𝐴𝑟𝑒𝑎 (𝐴𝐼𝑃) = ∑ (𝐴(𝑋𝑖) ∗ (𝑋𝑖))
2

𝑖=1
                                                             (3.7) 

Where 𝐴(𝑋𝑖) indicates the area of a resource type (𝑋𝑖) and (𝑋𝑖) shows the 

number of instances utilized for a particular resource type. 

Latency (L) = (𝐶𝑀 ∗ 𝐿𝑀) + (𝐶𝐴 ∗ 𝐿𝐴)                                                         (3.8)                                                             

𝐷𝑒𝑠𝑖𝑔𝑛 𝑐𝑜𝑠𝑡 = 𝑤1 ∗ (
(𝐴𝐼𝑃−𝐴𝐶)

𝐴𝑚𝑎𝑥
) + 𝑤2 ∗ (

(𝐿−𝐿𝐶)

𝐿𝑚𝑎𝑥
)                                        (3.9)                                       

Where w1=0.5 and w2=0.5 are designer-defined weighing factors that provide 
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equal weightage to design area (AIP) and execution latency (L) during design 

cost function evaluation. ‘CM’, ‘CA’, ‘LM’, and ‘LA’ are control steps required 

using multiplier, control step required using adder, latency of a multiplier, and 

latency of an adder, respectively. Further, 𝐴𝑚𝑎𝑥 and 𝐿𝑚𝑎𝑥 represents 

maximum design area and maximum latency. And AC and LC are IP vendor 

defined area and latency constraints.  

Further, new particle positions (Pi
+
) are determined based on computed new 

velocity (Vi
+ 

using inertia weight). The function used for computing new 

particle position and new velocity is shown in equations (3.10) and (3.11).  

𝑃𝑖
+ = 𝑃𝑖 + 𝑉𝑖

+                                                                                            (3.10) 

Start 

Input: Control data flow graph (CDFG) of the target image 

filter core (such as blur filter, sharpening filter, etc.) and 

module library 

Initialization of particle dimension (types of functional 

resources), initial particles positions (Pi), velocities (Vi), 

z=1, and PSO parameters (such as inertia weight, social 

and cognitive factor, and random numbers) 

Initial fitness (design cost (Cf=f(AIP,L,Pi))) is computed for 

all particles (Pi) and determination of local (Plb) and global 

best (Pgb) particle 

Determination of new particle 

position (Pi
+) using velocity and 

previous position ((Pi
+) 

=f(Pi,Vi)) 

Determination of new cost (Cfi
+) corresponding to Pi

+ 

Execute velocity 

clamping and 

AETP 

Pi
+ updating 

Cf
lbi= Cfi

+ and 

Plb
i=Pi 

If 

Cfi
+<Cf

l

bi 

Perform mutation on local best particles (Plb
i) to diversify 

the obtained solutions and update global best (Pgb) 

accordingly 

Output: Secured filter IP core with Low-cost resource 

architecture (constraints) using PSO-driven DSE and 

multi-layered encryption 

z<N 

T? 

From constraints 

embedding block 

To secret design data 

generation block 

Fig. 3.5. Details of proposed PSO based DSE 
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𝑉𝑖
+ = 𝜔𝑉𝑖 + 𝑓1𝑘1[𝑃𝑙𝑏𝑖 − 𝑃𝑖] + 𝑓2𝑘2[𝑃𝑔𝑏 − 𝑃𝑖]                                          (3.11) 

Where ‘𝜔’ is inertia weight, ‘𝑓1 𝑎𝑛𝑑 𝑓2 ’ are social and cognitive factors and 

‘𝑘1 𝑎𝑛𝑑 𝑘2 ’ are random numbers. 

Again, the design cost corresponding to all new particle positions is 

calculated. If the newly computed design cost is less than previously 

computed, then the respective local and global bests are updated. Next, 

velocity clamping and adaptive end terminal perturbation (AETP) are 

performed to keep computed velocity and particle positions in the desirable 

range. At last, the mutation is performed amongst particle positions to 

diversify during design space searching. After mutation, the design cost is 

computed again, and respective local and global bests are updated in case of 

lower design cost. The process is repeated until the terminating criterion (T) is 

not achieved. The algorithm gets terminated if either the algorithm does not 

show any further improvement till ten consecutive runs, or the max run limit 

(assuming I=50) is exhausted [78]. Fig. 3.2 illustrates the integration of PSO-

based architecture exploration with multi-phase encryption to yield low-cost 

secured image processing filter IP core datapath. The pseudo-code of PSO  

based architecture exploration is as follows: 

Input: N = Swarm size, Max_ITR = the maximum number of iterations, dim 

(d) = the number of dimensions, Pi = i
th

 particle in swarm, Vi = velocity of i
th

 

particle, Pgb = global best particle, Plbi = local best i
th

 particle, 𝜔 = inertia 

weight, f1 and f2 = social and cognitive factors, k1 and k2 = random numbers, 

Pi
+
 = new particle position, Vi

+
 = new velocity, AETP = adaptive end terminal 

perturbation, minadder and minmulti = the minimum number of adder and 

multiplier available in respective libraries of IP cores, maxadder and maxmulti 

= the maximum number of adder and multiplier available in respective 

libraries of IP cores, PMax = particle position with the maximum number of 

adder and multipliers, PMin = particle position with the minimum number of 

adder and multipliers. 

Output: Pgb (global best particle).  

 FOR each particle Pi  in N 

  FOR each dimension d in dim 
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   P0 = PMax 

   P1 = PMin 

   P2 = Average (PMax, PMin) 

   FOR i in range (3, N) 

    ἀx = Rand (minadder, maxadder) 

    ἀy = Rand (minmulti, maxmulti) 

    IF (i%2 ==0): 

     Pi = ┌((minadder, maxadder)/2)┐ + ἀx ,       

┌((minmulti, maxmulti)/2)┐ - ἀy 

    ELSE: 

     Pi = ┌((minadder, maxadder)/2)┐ - ἀx , 

┌((minmulti, maxmulti)/2)┐ + ἀy 

    END IF 

   END FOR 

  END FOR 

  Vi = 0                                                                             // initially                                                               

 END FOR 

 Iteration I = 1 

 DO 

  FOR each particle Pi  

   Calculate design cost value according to equation 

𝐷𝑒𝑠𝑖𝑔𝑛 𝑐𝑜𝑠𝑡 = 𝑡1 ∗ (
(𝐴𝐼𝑃 − 𝐴𝐶)

𝐴𝑚𝑎𝑥
) + 𝑡2 ∗ (

(𝐿 − 𝐿𝐶)

𝐿𝑚𝑎𝑥
) 

   IF the current design cost value of Pi is lesser than Pgb 

    Set Pgb  current Pi 

   END IF 

  END FOR  
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  FOR each particle Pi  

   FOR each dimension d in dim 

    Calculate velocity (Vi) according to the equation  

    𝑉𝑖
+ = 𝜔𝑉𝑖 + 𝑓1𝑘1[𝑃𝑙𝑏𝑖 − 𝑃𝑖] + 𝑓2𝑘2[𝑃𝑔𝑏 − 𝑃𝑖] 

    Perform velocity clamping if required 

    Update Pi according to the equation below 

    𝑃𝑖
+ = 𝑃𝑖 + 𝑉𝑖

+         // Particle position updating 

    Perform AETP if required 

   END FOR 

  END FOR  

  Calculate design cost value for updated particles 

  FOR each particle Pi  

   IF the current design cost value of Pi is lesser than Pgb 

    Set Pgb  current Pi 

   END IF 

  END FOR  

  FOR each particle Pi  

   Perform mutation on Pi 

   Perform AETP if required 

  END FOR 

  Calculate design cost value for updated mutated particles  

  FOR each particle Pi  

   IF the current design cost value of Pi is lesser than Pgb 

    Set Pgb  current Pi 

   END IF 

  END FOR  
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 r = r+1 

WHILE Terminating condition is not achieved 

Next, the pseudo-code of mutation used in PSO based architecture exploration 

is as follows: 

Input: Plb = local best architecture (resource)configuration 

Output: New local best configuration after mutation, Plbi   

 FOR each particle Pi  in N 

  IF (i%2 ==0):                                                         //Left rotation 

   FOR t=1 to d 

    temp = Pt 

    Pt = Pt +1 

    Pt +1 = temp 

    t++ 

   END FOR 

  END IF 

  IF (i%2 ==1):       

   FOR t=1 to d 

    temp = Pt 

    Pt = Pt ± R // R is a random number between 

[1,3] 

    t++ 

   END FOR 

  END IF 

  i++ 

 END FOR 

Further, the pseudo-code of AETP operation used in PSO based architecture 

exploration is as follows: 
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Input: Architectural configuration violating design space boundary given in 

respective library files 

Output: New architectural configuration within the design space boundary   

// When Pi violates the design space boundary 

WHILE (Pi<LW) 

 Pi = Pi +J 

WHILE (Pi<UP) 

 Pi = Pi -J 

/* J is a value between the minimum and maximum architectural configuration 

given in respective library files. “LW” and “UP” is lower and upper boundary 

limit (architectural configuration value) given in the respective library file of 

the image processing filter application*/.    

The necessary and sufficient condition for the particle to eventually settle at 

the equilibrium, subsequently enabling the PSO algorithm to converge when 

the value of f1 and f2 (given in eq. 3.11)lies between the range of [1,4] and the 

value of inertia weight (𝜔) lies between [0.9,0.1]. This has been 

mathematically established by [78]. Further, the value of inertia weight must 

not be a constant value throughout the exploration process and must be 

linearly decreasing in every iteration throughout the exploration process. This 

has been empirically established in [78], [79]. In the context of the current 

problem, the population size of PSO for p=3,5,7 and terminating criterion ( T 

= the algorithm runs for ten iterations if there is no improvement in the results 

or it will run for fifty iterations before termination) are sufficient for achieving 

optimal solution in an acceptable convergence and exploration time. This has 

been established in the literature [78], [79].   

Advantage of population-based algorithm for solving multi-objective 

problem over single solution-based or hybrid algorithm: Since, the target 

problem in this chapter deals with generation of optimal secured image 

processing filter IP core datapath used in modern embedded systems, therefore 

it results in multitude of application mapping possibilities that exhibit high 

variance in performance metrics such as security, design area, and latency. 
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The architecture exploration process in the context of the problem requires 

optimized solutions for conflicting design objectives such as area vs latency vs 

security; where the optimized solution is in terms of resources needed for 

allocation, binding each task of the application to resources, and determining a 

feasible schedule for execution of tasks. This results into an intractable NP 

complete problem which is potentially suitable for resolution using population 

based algorithm like PSO. Population based heuristics like PSO are 

exploration oriented as they allow better diversification in whole search space 

compared to single solution based meta heuristics that only have the power to 

intensify the search in local regions. Single solution based heuristics such as 

simulated annealing algorithm requires extensive exploration time due to 

heavy number of iterations. Further, hybrid algorithms are also very 

computationally heavy as they often need to switch from one algorithm to 

another during the iterative process of architecture exploration.    

3.2.3. Low-cost secure architecture exploration using FFA-DSE 

The Firefly-driven design search exploration (FFA-DSE) equips the proposed 

methodology with the ability to prune undesirable designs (higher cost or 

lower fit) based on IP vendor-specified design objectives such as latency 

(delay) and area to explore the optimal secured design architecture of JPEG-

IP vendor selected encoding rules 

Fig. 3.6. Proposed IP vendor selected encoding rules 

En_1: The output bit is ‘0’ if the control step number and the 

operation number in SDFG are both even, otherwise output bit is 

‘1’ 
En_2: The output bit is ‘0’ if the control step number and operation 

number in SDFG are having same parity, otherwise output bit is ‘1’ 

En_3: The output bit is ‘0’ if the control step number and the 

operation number in SDFG are both odd, otherwise output bit is ‘1’ 

En_9: The output bit is ‘0’ if the control step number in SDFG is 

equal to 2nd odd sequence of operation no., otherwise output bit is 

‘1’ 

En_7: The output bit is ‘0’ if GCD of the control step number and 

the operation number in SDFG is ‘1’, otherwise output bit is ‘1’ 

En_8: The output bit is ‘0’ if the (operation number) mod 

(corresponding control step number) is ‘0’, otherwise output bit is 

‘1’ 

En_5: The output bit is ‘0’ if the control step number and the 

operation number in SDFG are both prime, otherwise output bit is 

‘1’ 
En_6: The output bit is ‘1’ if the control step number and the 

operation number in SDFG are both prime, otherwise output bit is 

‘0’ 

En_4: The output bit is ‘0’ if the control step number and operation 

number in SDFG are of different parity, otherwise output bit is ‘1’ 
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CODEC IP core. The IP vendor chosen encoding rules and the detailed flow of 

the proposed FFA-based architectural exploration is highlighted in Fig. 3.6 

and 3.7. The main inputs to the proposed methodology are as follows: (a) 

absorption coefficient ('γ'), (b) terminating criterion, (c) firefly initialization 

parameter, (d) design constraints, (e) module library corresponding to JPEG-

CODEC (containing necessary information such as DFG, area, and delay 

values), (f) step size control parameter ('α'), (g) design cost parameters, and (h) 

attractiveness parameter ('β').  

Assuming that initially, the firefly population (Y) and its corresponding 

dimensions (d) are set at Y=3. A higher magnitude population size may also be 

assumed. The value of ‘d’ indicates the number of hardware resource types. 

For example, d = 2 when the number of hardware resource types comprises of 

adder and multiplier. The value of ‘d’ will change depending on the number of 

hardware resource types used for a given application. In the proposed 

approach, firstly, the design constraints for the area (Acons) and latency (Lcons) 

are validated to be within the range of minimum and maximum value of area 

and time (latency) corresponding to JPEG-CODEC IP core (i.e., Amin < Acons < 

Amax and Lmin < Lcons < Lmax). The initial firefly potions are initialized on 

meeting the valid design constraints requirement, as depicted in Fig. 2. The 

first firefly position (Y1) is set with the maximum quantity of functional units. 

Likewise, the 2
nd

 firefly position is set with minimum functional units. The 3
rd

 

firefly position is indicated with the average of the 1
st
 and 2

nd
 firefly positions. 

Next, positions for the rest of the fireflies are initialized based on the formula 

discussed in the FFA-based architecture exploration pseudo code (discussed 

below in this sub-section). After the initialization of the firefly positions, an 

initial design cost (fitness value) is evaluated corresponding to each firefly 

position using the design cost function (with respect to area and latency). 

Note: We have considered area and latency specifications parameters for the 

evaluation of design cost in our proposed approach. After determining the 

initial design cost, the respective local and global best positions are updated. 

The local best (Ylbi) positions are the initial positions of fireflies, and the initial 

global best (Ygb) position is the firefly position with the minimum design cost 

value (fittest solution) among all. The equations for the determination of area, 
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latency, and design cost are same as that of PSO-DSE (described in (3.7), 

Start 

Input: Control data flow graph (CDFG) of JPEG-

CODEC IP core, its respective module library, and 

design constraints 

Initialization fireflies positions (Yt), t=1, and firefly 

algorithm parameters (such as absorption coefficient, 

step size control parameter, etc.) 

New fitness (design cost) computation (F+) 

corresponding to Yt
+ 

FYlbt=FYt 

and 

FYlbt=Yt 

Ygb = Min(FY1,Fy2….,Fyn) 

New firefly position (Y+) 

determination using firefly 

exploration algorithm, 

Yt+1=Funcn(Y+, α, γ) 

Determination of brighter firefly (having minimum 

fitness), Ygb= Min(Fy1,Fy2….,Fyn) 

 Absorption 

coefficient 

(γ) finetuning  

 Step size 

parameter (α) 

finetuning  

 Boundary 

outreach 

algorithm  

Initial fitness determination of fireflies 

Error! Invalid 

design 

constraints 

SDFG corresponding to optimal output resource 

configuration 

HLS driven Firefly based architecture  

Exploration (FFA-DSE block) 

If 

FYt<FYlbt 

t<n 

T? 

d<D 

Design 

constrain

ts 

validatio

n 

Fig. 3.7. Detailed flow diagram of the FFA-DSE 

algorithm 
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Y 

HLS 

Output SDFG and initial generated CDFG based 

on firefly positions to proposed security module 

for security constraints generation  
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(3.8), and (3.9)). 

Further, new firefly positions (Y
t+1

) are computed using the absorption 

coefficient (γ), control step size parameter (α), and attractiveness parameter 

(β). If the newly generated firefly position exceeds the boundary limit (i.e., 

minimum and maximum resource value corresponding to each resource type). 

In that case, the boundary outreach algorithm is executed to bring that 

particular firefly position within acceptable limits. The new firefly positions 

are evaluated using equations (3.12), (3.13), and (3.14), respectively [80], 

[82], [94]. 

                    (3.12) 

Here, new firefly positions are determined by adding a drift factor to the 

original firefly position.  

                                                                                            (3.13) 

                                                              (3.14) 

where 'Yi
t+1

 is the new firefly position, 'Yi
t
' is the previous firefly position, 'Yi' 

and 'Yj' are positions of 'i
th

' and 'j
th

' firefly, respectively. 'γ', 'α' and 'β' are 

above-defined hyperparameters (tuning parameters). 'β0' is attractiveness at 

zero distance and 'Yij' is the cartesian distance between 'Yi' and 'Yj' fireflies. 

After determining new firefly positions, the new design cost corresponding to 

each firefly position is computed. Here, the boundary outreach algorithm 

(BOA) is executed if the generated new firefly positions violate boundary 

limits. The Pseudo code of BOA is explained below. Post-design cost 

computation, if the new design cost is lesser than the previously computed 

design cost for any firefly position, the local best corresponding to all such 

fireflies is updated. And, again, the firefly with minimum design cost is 

declared the global best firefly. The complete process is executed till the 

terminating criterion is not satisfied. The terminating criterion (T) for our 

proposed work is that the algorithm will either run until there is no 

improvement in design cost till fifteen iterations or run for a maximum of fifty 

iterations [80]. Finally, an optimal architecture configuration corresponding to 
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JPEG-CODEC IP core is obtained as the output. The obtained optimal 

resource configuration is forwarded to security constraints embedding block 

for further embedding of generated security constraints to generate a secure 

JPEG-CODEC hardware IP design.   

Parameter Tuning for customizing FFA to solve DSE in HLS: The necessary 

and sufficient conditions (or values of different hyperparameters) for the 

fireflies to ultimately settle at the equipoise, consequently empowering the 

firefly algorithm to converge, are adopted from [80], [82], [94]. The value of 

'β0', 'γ', 'αx', 'αy', and rand are 1, 0.5, maximum value of the first dimension, 

maximum value of the second dimension, and 1.5, respectively [80], [82], 

[94]. Moreover, the value of the absorption coefficient ('γ') and control step 

size parameter ('α') must not be kept as a constant value. They should be 

linearly decreasing in nature, as discussed above in this sub-section and 

established in [80]. The pseudo-code of FFA based architecture exploration is 

as follows: 

Input: Y = firefly population size, dim (d) = total dimensions (i.e., 

#resources), Yk =k
th

 particle in firefly population, Ygb = global best firefly 

position, Ylbk = local best k
th

 firefly, Yk
t+1

 = new firefly position, BOA = 

boundary outreach algorithm, T = terminating criterion, least_add and 

least_mult = the minimum (least) quantity of resources (i.e., adder and 

multiplier) present in the library of JPEG-CODEC application, highest_add 

and highest_multi = the maximum (highest) quantity of resources present in 

the library of JPEG-CODEC application, YMax = firefly position with the 

highest quantity of resources, YMin = firefly position with the least number of 

resources, β = attractiveness parameter, γ = absorption coefficient, and α = 

control step size parameter.  

Output: Ygb (global best firefly position).  

 FOR each firefly position Yk  in Y 

  FOR every dimension d in dim 

   Y0 = YMax 

   Y1 = YMin 
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   Y2 = Average (YMax, YMin) 

   FOR k in range (3, N) 

    u = Rand (least_add, highest_add) 

    v = Rand (least_multi, highest_multi) 

    IF ( k % 2 ==0): 

     Yk = ┌(( least_add, highest_add)/2)┐ + 

u ,┌(( least_multi, highest_multi)/2)┐ - v 

    ELSE: 

     Yk = ┌(( least_add, highest_add)/2)┐ - u 

, ┌(( least_multi, highest_multi)/2)┐ + v 

    END  

   END  

  END  

 END  

 Iteration p = 1 

 DO 

  FOR each firefly Yk  

   Compute the design cost value as per the equation 

below: 

𝐷𝑒𝑠𝑖𝑔𝑛 𝑐𝑜𝑠𝑡 (𝐹𝑌𝑘) = 𝑡1 ∗ (
(𝐴𝐼𝑃 − 𝐴𝐶)

𝐴𝑚𝑎𝑥
) + 𝑡2 ∗ (

(𝐿 − 𝐿𝐶)

𝐿𝑚𝑎𝑥
) 

   IF the present design cost  (Yk < Ygb) 

    Set Ygb  current firefly Yk 

   END  

  END  

  FOR every firefly Yi  

   FOR every dimension d in dim 
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    Compute new firefly positions as per the 

equation below: 

      

    Update firefly positions accordingly 

    Execute BOA if essential 

   END 

  END   

  Design cost computation corresponding to newly obtained 

fireflies 

  FOR each firefly Yk  

   IF the present design cost  (Yk < Ygb) 

    Set Ygb  present Yk 

   END  

  END   

 p = p+1 

WHILE stopping criterion is not met 

Further, the boundary outreach algorithm (BOA)’s pseudo-code is as follows: 

Input: Resource configuration exceeding design space periphery as specified 

in the library file 

Output: Modified architecture (resource) configuration within the periphery 

of the design space  

// When Yi exceeds the design space periphery 

WHILE (Yi<Low_Lim) 

 Yi = Yi +H 

WHILE (Yi<Up_Lim) 

 Yi = Pi -H 
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/* H specifies a magnitude between the least and highest resource 

configuration in the library file. "Low_Lim" and "Up_Lim" is lower and upper 

boundary limit (resource configuration) specified in JPEG-CODEC’s library 

file */.  

3.2.4. Advantages of employing PSO-DSE and FFA-DSE for low-cost 

secure architecture exploration 

Heuristic based architecture exploration has been employed to perform design 

space pruning based on area-latency tradeoff. The heuristic employed in our 

work is particle swarm optimization (PSO) and firefly algorithm (FFA) for 

architecture exploration. It is performed to determine a low-cost resource 

architecture among numerous potential competitive designs.  

Particle swarm optimization shows  more benefits as compared to other 

metaheuristics algorithms such as genetic algorithm (GA) [95], [96], bacterial 

foraging algorithm (BFOA) [97], ant colony optimization algorithm (ACO) 

[98], etc. PSO depicts the ability to achieve a global optimal solution in an 

acceptable amount of time (fewer iterations) and provides a clinical balance 

between exploration and exploitation time compared to GA, BFOA, ACO, etc. 

[78]. The PSO algorithm's implementational complexity is lesser than GA, 

BFOA, ACO, etc. [78]. It is tough to achieve the best solution using a genetic 

algorithm because of its premature convergence problem [99]. GA takes a 

higher number of iterations in case of higher variables and constraints [100]. 

The time complexity of GA is higher as compared to the PSO algorithm [100]. 

Further, the bacterial foraging optimization algorithm also has the drawback of 

getting stuck into the local optimum because of weak connections among 

bacteria. BFO provides a poor balance between exploration and exploitation 

time because of its fixed step size [97]. Next, the ant colony optimization 

algorithm has the limitation of falling into the local optimum trap [101]. 

Additionally, the involvement of pheromone laying activity (which is further 

used by ants as a communication medium) increases the implementation 

complexity of the ACO algorithm [98]. The PSO algorithm comprises various 

hyperparameters (also known as tuning parameters), which provide a clinical 

balance between exploration and exploitation tradeoff, which is missing in the 

case of GA, BFOA, ACO, etc.[79]. Further, the reasons for employing PSO 
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over other heuristics in the context of the design space exploration problem 

addressed in the chpater are the following: (a) it incorporates a parameter 

named inertia weight, which considers the magnitude of the previously 

computed velocity and supports in escaping local minima, (b) it provides a 

clinical balance between exploration and exploitation process with the help of 

linearly decreasing value of inertia weight from 0.9 to 0.1 (bigger steps at the 

beginning and smaller later) [78], and (c) it includes various other 

hyperparameters such as social and cognitive factor, which reduces the 

convergence time of reaching the optimal/ near-optimal solutions. All of these 

features are not present in [96],  [97], and [101]. Therefore, due to its inherent 

capability of escaping local minima and achieving a fitter solution (design cost 

in terms of area and latency) at lower convergence time, PSO-based 

architecture exploration is used for design space searching of secured low-cost 

image processing filter IP core. 

Advantages of integrating PSO-driven DSE:  

a. The advantages of PSO-DSE over different other design space 

exploration algorithms (such as genetic, bacterial foraging algorithm, 

etc.) are as follows: PSO-DSE considers the magnitude of the 

previously computed velocity with the help of a parameter called 

inertia weight, while genetic algorithm-driven DSE (GA-DSE) [95], 

[96] and bacterial foraging-driven DSE (BFO-DSE) [97] do not 

consider the momentum of prior iterations, which increases the 

probability of getting stuck in the local minima during architecture 

exploration.        

b. PSO-DSE creates a balance between exploitation and exploration time 

with the help of linearly decreasing the value of inertia from 0.9 to 0.1. 

The algorithm takes more significant steps at the beginning and smaller 

steps on reaching higher fitness solutions, which is missing in GA-

driven DSE and BFO-driven DSE. This also enhances the chance of 

reaching global optimal solution. 

c. The inclusion of various other factors (hyperparameters), such as social 

and cognitive factors in PSO-DSE, helps achieve higher fitness 
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solution within a very low exploration time. On the contrary, there is 

no such provision in GS-DSE and BFO-DSE. 

Key benefits of employing FFA for performing DSE in HLS:  

a. FFA comprises of various hyperparameters such as step-size control 

parameter and absorption coefficient. These parameters control 

randomness throughout design search exploration, ultimately resulting 

in better convergence time to the optimal solution. The value for both 

parameters linearly decreases from larger to smaller as the DSE 

algorithm proceeds. This is because the distance between the current 

and global best firefly position is large in the initial exploration phase. 

Therefore, larger steps are required in the initial phases, and step size 

decreases upon nearing the global optimal solution. 

b. FFA works similar to the divide and conquers approach. FFA-DSE is 

based on the attraction parameter, where attractiveness is inversely 

proportional to the distance between fireflies. This enables FFA to 

divide its population into subgroups, where different subgroup swarms 

around different local optimums, and a final optimal solution are 

obtained among them.  

c. The linearly decreasing value of the step size control and absorption 

coefficient parameters enables FFA to maintain steady stability 

between diversification (exploration) and intensification (exploitation). 

Therefore, because of the ability to escape local optimum to attain a global 

optimal solution in lesser iterations (or at lower convergence time), FFA is 

employed for DSE of key-driven crypto-chain based secured JPEG-CODEC 

IP core. The methodology of FFA-based hardware resource exploration is 

explained subsequently.   

3.2.5. Multi-phase encryption-based security for image processing filter 

IP cores 

Goal: The multi-phase encryption algorithm is applied to the extracted secret 

information from the initial RAT to generate the final encrypted signature, 

which is further used to generate hardware security constraints. The steps 
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involved in the multi-phase encryption-based hardware security algorithm are 

described below. 

Details of the algorithm: First, all storage variable pairs (Rx, Ry) allocated on 

the same-colored register are listed using Table 3.1 (with black and indigo-

colored storage variables). Next, all the indices values (x, y) of the storage 

variable pairs (of the initial RAT) are converted into their hexadecimal 

equivalents. The final generated indices value in hexadecimal equivalents is 

the secret information used for encryption. Fig. 3.8 depicts the complete multi-

phase encryption algorithm in detail. The first step of multi-level encryption is 

to generate an initial state matrix with the help of secret information based on 

the IP vendor selected encryption key (K1). A particular row of the state 

matrix can contain a maximum of four elements. The initial state matrix 

formation depends on a two-bit key value, as highlighted in Fig. 3.8. In the 

next phase, the bit manipulated state matrix is generated using AES forward S-

box. All elements of the initial state matrix are substituted with their AES 

forward S-box equivalents. Next, row-diffusion is performed based on the IP 

vendor selected encryption key (K2) in the subsequent phase. Each row has a 

different key for row diffusion in the bit-manipulated state matrix. Therefore, 

 C0 C1 C2 C3 C4 C5 C6 

Red(R) R0 R22 R22 R32 R34 R35 R36 

Green (G) R1 R23 R23 R33 R39 R40 R41 

Indigo (I) R2 R24 R24 R37 - - - 

Blue (BL) R3 R25 R25/

R28 

R38 R34 - R36 

Yellow (Y) R4 R26 R26/

R27 

R26 R26 R26 - 

Black (B) R5 R26 R27/

R26 

R26 R26 R26 - 

Violet (V) R6 R25 R28/

R25 

- - - - 

Pink (P) R7 - R29 - - - - 

Lime (LI) R13 R13 R13 R13 R13 - - 

Olive (O) R8 R8 R30 - - - - 

Aqua (A) R9 R31 R31 R31 R31 R31 - 

Teal (T) R10 R10 - - - - - 

Gray (G) R11 R11 - - - - - 

Maroon (M) R12 R12 - - - - - 

Silver (S) R14 R14 - - - - - 

Khaki (K) R15 R15 - - - - - 

Lavender (L) R16 R16 - - - - - 

Crimson (C) R17 R17 - - - - - 

Wheat (W) R19 R19 - - - - - 

Beige (B) R18 R18 R18 R18 R18 - - 

Magenta (M) R20 - - - - - - 

Orange (O) R21 R24 R24 - - - - 

 

Table 3.1: Register allocation table before and after embedding 

hardware security constraints corresponding to sharpening filter 

A.  
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row-diffusion depends on the 2*N bits encryption key (K2) (where N is the # 

rows in the state matrix). Subsequently, in the next phase, digit equivalents 

corresponding to unique alphabets (A-F) are computed using TRIFID cipher 

(using IP vendor selected encryption keys) and alphabetic substitution (using 

IP vendor selected encryption key (K3)). The three properties of the TRIFID 

cipher are fractionation, substitution, and transposition, which help to impart 

confusion and diffusion in the multi-phase encryption algorithm. For 

computing the TRIFID cipher, first IP vendor selects a 27-bit unique key value 

for all unique alphabets in the state matrix. Then, the key value is arranged in 

a three-square matrix of size 3*3 each. The output of the TRIFID cipher is a 

state "tuv" (where 't' is row number, 'u' is column number, and 'v' is the matrix 

number corresponding to the respective alphabet). The determined state value 

("tuv") is fed as input to the alphabetic substitution phase to finally generate 

digit equivalence based on the IP vendor selected encryption key (K3). E.g., 

TRIFID cipher computation and its digit equivalent corresponding to the 

alphabet 'A' is explained below.  

Let the IP vendor selected key for the alphabet ‘A’ = EDRFTV$QA 

WSZMXNCBGYHUJIKOLP. 

Table 3.2 depicts a square matrix representation of the IP vendor selected key 

for TRIFID cipher computation corresponding to alphabet A. Here, row 

number (t) is 3, column number (u) is 3, and square matrix (v) number is 1. 

So, the state corresponding to "A" is 331. Now, let the assumed IP vendor 

selected key for alphabetic substitution corresponding to the alphabet 'A' is 

"100". From the alphabetic substitution rules in Fig. 3.8, the calculated digit 

equivalent corresponding to the alphabet 'A' is '6'. Similarly, alphabetic 

substitution is performed for all remaining alphabets using TRIFID cipher 

computation and IP vendor selected encryption key (K3). After determining 

digit equivalence, all alphabet values in the state matrix are substituted with 

their digit equivalents. Further, the obtained state matrix is transposed. Then, 

Square matrix 1 Square matrix 2 Square matrix 3 

E D R W S Z Y H U 

F T V M X N J I K 

$ Q A C B G O L B 

 

Table 3.2: Square matrix representation of the key for TRIFID 

cipher computation corresponding to alphabet A 
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all elements are concatenated to generate an encrypted byte sequence using the 

byte concatenation rule based on the IP vendor selected encryption key (K4). 

Finally, all elements are converted into binary equivalents to generate the final 

encrypted signature and truncated based on the IP vendor selected truncation 

length. The generated encrypted signature is further used to generate hardware 

security constraints based on the IP vendor selected encoding rule (if the 

 

Generation of scheduled data flow graph 
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unique alphabets of state matrix based on 

encryption key 3 (K3) and output of TRIFID cipher 
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selected truncation length and further generation of 
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Matrix transposition: The final obtained matrix 

after alphabetic substitution is transposed 

Byte concatenation: Each element of final 

generated transposed state matrix is concatenated 

column wise based on encryption key 4 (K4) and 

converted into its binary equivalents 

Embedding the generated multi-layered encryption 

and secret design data-based hardware security 

constraints into the register allocation table (RAT) 

of target image processing filter IP core 

Multi-phase Encryption 

Extraction of secret design 

data 

From PSO-DSE 

exploration block 

Secret design data generation block 

Embedded design (with modified RAT) is 

sent to PSO-DSE for new fitness 

computation and determination of low-

cost secure architecture 

Encryptio

n key-bits 

Chosen mode of initial 

state matrix formation 

00 Select 2 elements 

and skip subsequent 2. 

01 Select 4 elements 

and skip subsequent 4. 

10 Select 8 elements 

and skip subsequent 8. 

11 Select 16 elements and 

skip subsequent 16. 

 

Encrypt

ion 

key-bits 

Description of selected 

mode of row-diffusion 

00 Perform circular right shift 

operation by 1 element. 

01 Perform circular right shift 

operation by 2 elements. 

10 Perform circular right shift 

operation by 3 elements. 

11 Perform circular right shift 

operation by 4 elements. 

 
Encryption 

key-bits 

Description of rule 

to get digit 

equivalents 

000 t*u*v 

001 t+u+v 

010 |t-u-v| 

011 |t-u+v| 

100 (t+u)/v 

101 (t+u) *v 

 
Encrypti

on key-

bits 

Description of rule 

for byte 

concatenation 

000 (B0, B2, B1, B3) 

001 (B0, B1, B3, B2) 

010 (B0, B2, B1, B3) 

011 (B0, B2, B3, B1) 

100 (B0, B3, B1, B2) 

101 (B0, B3, B2, B1) 

 

Fig. 3.8. Details of multi-phase encryption-based hardware security methodology 



68 

signature bit is '0', then implant an artificial edge between (even, even) storage 

variable pair, otherwise embed an artificial edge between (odd, odd) storage 

variable pair). The artificial edges embedded between the storage variable 

pairs of the RAT (corresponding to the image processing filter application) 

indicate the covert hardware security constraints implanted into the design. An 

artificial edge implanted between the storage variables of the design signifies 

that the corresponding storage variables cannot be assigned to the same 

register (i.e., forced distinct register assignment is made).  

3.2.6. Key-driven crypto-chain-based hardware security methodology 

The primary goal of the proposed key-driven crypto-chain-based hardware 

security methodology is to produce secret hardware security constraints using 

the scheduling information of the JPEG-CODEC, IP vendor specified 

encoding rules, and IP vendor chosen crypto-keys. The primary inputs to this 

security block are (a) IP vendor specified encoding rules, (b) IP vendor 

specified keys to drive crypto-chain based security methodology, (c) IP vendor 

specified bit padding and embedding rules, (d) IP vendor specified truncation 

length, and (e) scheduling information obtained through transformed JPEG-

CODEC SDFG. Next, the obtained hardware security constraints are covertly 

inserted into the design of the JPEG-CODEC using the HLS framework. The 

presence of embedded security constraints in the design provides immunity 

against IP piracy and fraudulent claim of IP ownership problems. Fig. 3.9 

illustrates the proposed key-driven crypto-chain based security methodology 

and its integration with FFA. The various steps involved in the generation of 

secret security constraints are as follows: 

Generation of initial bitstreams based on IP vendor specific encoding 

mechanism: Initially, a bitstream is generated using scheduling information of 

the JPEG-CODEC (SDFG), and IP vendor specified encoding mechanisms. 

The scheduling information of JPEG-CODEC  is highlighted in Table 3.3. 

Further, the IP vendor specified encoding rules are shown in Fig. 3.6. The 

encoding rules used to generate the initial bitstreams are decided by the 

authentic IP vendor/designer, thus remaining completely unknown to an 

attacker. There are 136 (l) operations in the SDFG of the JPEG-CODEC, as 

depicted in Table 3.3. These are scheduled among different control steps using 
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resource constraints information (for example, scheduled using three adders 

and three multipliers). For the sake of demonstration, the scheduling 

information is taken from the SDFG of JPEG-CODEC that is scheduled using 

three adders and three multipliers. However, in each iteration of the proposed 

FFA-based security approach, the scheduling is performed using obtained 

Control 

step 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Operation 

allocated 

to Mul_1 

1 4 7 18 21 24 35 38 49 52 55 66 69 72 83 86 97 100 103 114 117 120 48 96 - - - - - - 

Operation 

allocated 

to Mul_2 

2 5 8 19 22 33 36 39 50 53 56 67 70 81 84 87 98 101 104 115 118 16 64 112 - - - - - - 

Operation 

allocated 

to Mul_3 

3 6 17 20 23 34 37 40 51 54 65 68 71 82 85 88 99 102 113 116 119 32 80 - - 128 - - - 136 

Operation 

allocated 

to Add_1 

- 9 10 12 25 27 28 42 43 57 58 60 73 75 76 90 91 105 106 108 121 123 124 126 127 - 132 - - - 

Operation 

allocated 

to Add_2 

- - 11 13 26 29 41 30 44 46 59 61 74 77 89 78 92 94 107 109 122 125 129 130 131 - - 134 - - 

Operation 

allocated 

to Add_3 

- - - - 14 15 - - 45 31 47 - 62 63 - - 93 79 95 - 110 111 - - 133 - - - 135 - 

 

Table 3.3: Scheduling information of JPEG-CODEC based on its SDFG scheduled using three adders and three multipliers 
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architectural configuration through FFA-driven DSE. That particular 

scheduling information is used to generate the initial bitstream. Therefore, 

these initial bitstream changes in each iteration for each architectural 

configuration. Moreover,  for the sake of brevity and simplicity during the 

explanation of the proposed approach, we have assumed nine IP vendor 

specified rules (e), as shown in Fig. 3.6. (Note: the value of 'e=9' is generally 

very large as the IP vendor can devise potentially innumerable encoding 

algorithms). Therefore, an initial l-bit bitstream is generated corresponding to 

the nine different encoding rules (blocks). For example, as shown in Fig. 3.6, 

encoding 1 (En_1): the output bit is 0 if the control step number and the 

operation number in SDFG are both even; otherwise, output bit is '1'. 

Therefore, if we compare the first operation number with its control step 

number (i.e., also one as shown in Table 3.3), the output bit is '1'. Similarly, 

the output for all remaining operations of the JPEG-CODEC application is 

computed. 

Conversion of the initially generated bitstream into 1024 bits and details of 

the proposed crypto-chain algorithm: The proposed key-driven crypto-chain 

based security methodology uses '2k' hash slices (each hash slice comprises  

SHA-512 based crypto-chain module for the generation of the encrypted 

bitstream). The SHA-512 accepts input in the form of 1024 bits. Therefore, the 

initial l-bit bitstream is converted into a 1024-bit bitstream using an IP vendor 

specified initial pre-processing technique. The initial pre-processing technique 

used in the proposed security methodology is as follows: first, l-bits are taken 

as input and converted to 896 bits by performing bit stuffing after l-bits. The 

896 bits are generated post appending the initial l-bits with '1', followed by the 

continuation of '0' till 896 bits. Further, the length of the initial bitstream (i.e., 

l) is converted into its 128-bit representation (for this, first convert 'l' into 

binary and append continuation of '0' till 128-bit before binary bitstream). 

Finally, these 128 bits are appended to the 896 bits to generate 1024 bits, 

which is fed as input bitstream to the first hash slice of crypto-chain based 

security methodology. The inclusion of nine different IP vendor-specific 

encoding rules in the proposed hardware security methodology increases the 

robustness of the proposed security methodology. Each encoding mechanism 
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generates a unique l-bit initial bitstream data, which is fed as input to the 

different hash slices of the proposed security methodology. This uniqueness in 

the generation of different initial bitstreams increases the robustness of the 

proposed security methodology. 

Crypto-chain: The proposed security methodology comprises several hash 

slices connected as a chain in a cascaded way. The output of one hash slice 

becomes the input of its subsequent hash slice. The cascading arrangement of 

hash slices is illustrated in Fig. 3.8. The first 'k' (in this chapter, k is nine) hash 

slices are the primary crypto components that accept the encoding blocks 

generated bitstreams as input after performing IP vendor-specific pre-

512 

Scheduled data flow graph (SDFG) generation using initialized 

firefly position (resource constraints), CDFG of JPEG-CODEC, 

and storage variables allocation in the generated SDFG 

Output: Optimal crypto-chain secured 

JPEG-CODEC datapath design 

 

Bitstream generation using SDFG and IP vendor selected 

encoding rules 

Register allocation table (RAT) Modified register allocation table (with 

embedded security constraints) 
Embedding of security constraints using 

register allocation phase of HLS FFA-DSE block 

Key-driven crypto-chain 

based security methodology 

Secret security 

constraints 

embedding block 

Fig. 3.9. Detailed flow diagram of the key-driven crypto-chain based security Methodology 
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processing. However, the remaining 'k' hash slices are controlled using 

multiplexers (IP vendor specified crypto keys are used to control the output of 

multiplexers).  

Bit stuffing: The method of generating 1024 bits from l-bits (i.e., 136 for 

JPEG-CODEC) for the first hash slice is already discussed above in this sub-

section. Next, the 136-bit output of the remaining encoding blocks (i.e., except 

the first encoding block) is converted into 380 bits. For this, (380-l) bits of 

continuous '0' is stuffed as a suffix of each l-bit output of the remaining output 

block. All these bit-appending and stuffing algorithms are only known to the 

IP vendor/designer, thus making it challenging for an adversary to regenerate 

the exact output as the proposed security methodology.  

Further, the method of generating 1024 bits (which acts as input to the second 

hash slice) from 512 bits of the previous hash slice and 380 bits of primary 

bitstream input (after pre-processing) is as follows: 512-bit output of the 

previous hash slice is appended with "1000" followed by 380 bits (generated 

using bit stuffing) to generate 896-bits. Finally, the length of the output of the 

previous hash slice, i.e., 512, is converted into its 128-bit representation. This 

conversion is done in a similar way as explained earlier in this sub-section, 

and the obtained 128 bits are appended after 896 bits to generate 1024 bits. 

Similarly, the output of each of the hash slices (512 bits) is converted into 

1024 bits using 380 bits (obtained after pre-processing of input l-bit bitstream)  

and 128 bits (generated using the length of the previous hash slice output, i.e., 

512). The output of (k-1)
th

 hash slice becomes the input of the k
th

 hash slice.  

Hash slice: There are total '2k' hash slices in the proposed hardware security 

methodology. Each hash slice is executed only once to generate the encrypted 

512 bits as output which becomes the input to its subsequent hash slice. 

Further, the round function within each hash slice (SHA-512) is executed as 

per IP vendor specified iterations. The input to the first k hash slices is the pre-

processed output of encoding blocks. However, the input for the remaining 'k' 

hash slices is controlled using multiplexers, as shown in Fig. 3.8. For 'k' 

encoding blocks, 'k' multiplexers are required. The input of additional 'k' hash 

slices is decided using IP vendor specific crypto keys. The maximum possible 
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hash slices for the k number of encoding blocks are 2k in our proposed 

approach.  

Further, the final generated 512-bit output is converted into its equivalent 

hardware security constraints using IP vendor specified mapping/embedding 

rules (discussed in the following sub-section). Finally, the generated hardware 

security constraints are embedded into the design of the JPEG-CODEC IP 

core during the register allocation phase of the HLS framework. Subsequently, 

FFA-DSE explores the optimal resource configuration against secured 

hardware IP design with the help of design cost function. 

3.3. Illustrative Example: Watermark (Signature) Embedding 

Process 

The proposed multi-phase encryption based methodology is demonstrated on 

the sharpening filter (SF) application. The SDFG of the SF application 

scheduled with four adders and two multipliers (obtained through heuristic-

based architecture exploration) is illustrated in Fig. 3.10. Further, Table 3.1 

depicts the initial RAT (with black and indigo colored storage variables) 

corresponding to the scheduled SF. The different steps involved in the 

demonstration with their corresponding outputs are shown in Fig. 3.11. The 

secret information extracted from Table 3.1 and its hexadecimal equivalents are 

shown in Figures 3.11. (a) and (b), respectively. An initial state matrix is 

generated using IP vendor selected key value 1 (K1) (assumed "K1=01" for 

demonstration). The generated initial state matrix is shown in Fig. 3.11. (c). 

Next, the bit manipulated state matrix generated using AES forward 

substitution box (S-box) is depicted in Fig. 3.11. (d). Then, the bit-manipulated 

state matrix is subjected to row-diffusion based on IP vendor selected key 2 

(K2) (assumed "K2=10 00 11 01 11"). Fig. 3.11. (e) depicts a row-diffused state 

matrix. Next, the alphabetic substitution of the state matrix is shown in Fig. 

3.11. (f). Further, the transposed state matrix is shown in Fig. 3.11. (g). Finally, 

all generated transposed state matrix elements are concatenated based on IP 

vendor byte concatenation key 4 (K4) (assumed "K4=010 101 000 100 011"). 

The obtained byte concatenated string is shown in Fig. 3.11. (h). Subsequently, 

the final generated signature and its respective hardware security constraints 
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are depicted in Figures 3.11. (i) and (j). Further, the generated hardware 

security constraints are embedded into the design. Two storage variable pairs 

cannot be allocated to the same register while embedding the security 

constraints in the RAT. Therefore, either the registers (colors) are swapped, or 

a new register is added to accommodate the storage variable artificial edges. 

Table 3.1 also depicts the final RAT (modified locations with red colored 

storage variables) with embedded security constraints (as obtained in Fig. 3.11. 

(j)) generated using low-cost multi-phase encryption.  

Next, Fig. 3.12 demonstrates the security constraints generation and embedding 

flow of the proposed key-driven crypto-chain based security methodology. As 
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shown in Figures 3.12. (a) and (b), the scheduled DFG of JPEG-CODEC is 

initially taken as input, and bitstreams are generated corresponding to different 

IP vendor selected encoding rules using scheduling information. Further, Fig. 

3.12. (c) highlights the generated bitstreams corresponding to different IP 

vendor selected encoding rules (or encoding blocks such as En_1 to En_9). 

Each encoding block generates 136 bits value as JPEG-CODEC comprises 136 

operations (shown in Table 3.3). Next, the generated 136 bits corresponding to 

the first encoding block (i.e., En_1) are passed through the pre-processing step 

to generate 1024 bits. The steps to generate 1024 bits from 136 bits are 

discussed in the previous subsection. The final generated 1024 bits are fed as 

input to the first hash slice to generate an encrypted output (hash digest) of 512 

bits. Figures 3.12. (d), (e), and (f) represent the initial 136 bits corresponding to 

En_1, generated pre-processed 1024 bits, and 512 bits output of the first hash 

slice, respectively. Further, as shown in Figures 3.12. (g) and (h), the 512-bit 

output of the previous hash slice (i.e., first hash slice) and 136 bits from the 

second encoding block (i.e., En_2) are taken as input. Again, processed 1024 

bits are generated and fed as input to the second hash slice. The complete steps 

regarding the generation of 1024 bits from 512 bits of the previous hash slice 

and 136 bits of the current encoding block for the remaining hash slices (i.e., 

from the second to ninth hash slices) are discussed in the previous subsection. 

The primary input to hash slices #2-#9 is the output bitstreams generated from 

encoding blocks #1-#8, respectively. Figures 3.12 (i) and (j) represent the 

processed 1024 bits and the output of the second hash slice. Similarly, 512-bit 

hash digest as output is generated corresponding to the remaining hash slices 

till the ninth hash slice.  

Further, the primary inputs of the remaining hash slice (i.e., from #10-#18 hash 

slices) are controlled using multiplexers and IP vendor selected crypto keys. 

Let IP vendor selected crypto keys for our proposed approach are as follows; 

"1001 0010 0100 0001 0111 1000 0011 0110 0101". Therefore, as shown in 

Figures 3.12. (k) and (l), the tenth hash slice accepts 512 bits output of the 

ninth hash slice and 136 bits output of encoding block nine (i.e., En_9 based on 

IP vendor selected crypto key "1001"), respectively. Figures 3.12. (m) and (n) 

denotes generated processed 1024 bits, fed as input to the tenth hash slice, and 
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obtained 512 bits of tenth hash slice output. Next, the hash digest 

corresponding to the remaining hash slices is computed in a similar fashion. 

Figures 3.12. (o), (p), (q), and (r) represent the 512-bit hash digest from the 

seventeenth hash slice, input bitstream based on IP vendor selected crypto key 

"0101" (i.e., En_5), processed 1024 bits, and finally generated 512 bits hash 

digest (signature), respectively. Figures 3.12. (s) and (t) depict the final 512-bit 

signature (digital template) and secret security constraints generation process. 
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cipher and encryption key value 3 

Alphabetic 

substitution 

88 42 14 46 80 

48 38 64 67 38 

74 62 12 85 38 

37 67 33 32 62 

 (g). Final obtained state matrix 

after transposing alphabetic 

substituted state matrix 

Matrix 

transposition 

 

(a). Secret data extracted from register allocation table of sharpening filter scheduled 

using PSO-based architectural exploration resource constraints (4 adders and 2 

multipliers): 

(0,36),(32,34),(33,39),(35,36),(1,40),(25,38),(7,29),(3,25),(22,32),(40,41),(22,35),(23,40)

,(8,30),(0,35),(0,32),(32,36),(1,33),(1,39),(33,41),(39,41),(4,26),(23,33),(22,34),(34,36),(

23,39),(5,27),(0,22),(9,31),(1,23),(32,35),(0,34),(33,40),(2,37),(24,37),(6,28),(1,41),(39,4

0),(34,35),(22,36),(23,41),(3,38),(2,24) 

 

(b). Conversion of secret data extracted into their corresponding hexadecimal format 

:(0,7), (0,9), (0,D), (0,E),(2,5),(2,7),(8,3),(8,A),(2,9),(0,6),(7,5),(2,4),(6,D), 

(1,8),(1,B),(3,B),(0,2),(8,0),(9,7),(1,9),(9,B),(4,5),(3,9),(4,B),(7,4),(5,6),(7,E),(0,5),(0,7),(

8,B),(5,C),(8,9),(2,6),(0,4), (1,3),(1,A),(3,A),(7,6), (9,A), (A,B),(4,6) 

 

 

(h). Byte concatenation based on IP vendor selected 

encryption key value 4 (“010 101 000 100 011”): 

8874483742676238141264334632678580386238  

 

(i). Final generated digital signature: 100010001111001001000111111001011011111 

01011100011001101101001111100110111011011110001011000011100011010111000  

 

(j). Final generated hardware security constraints based on IP vendor selected encoding 

rule: (R0,R2),(R0,R4),---,(R2,R38),(R2,R40),(R4,R6),(R4,R8),---,(R6,R12), 

(R6,R14),(R1,R3),(R1,R5),---,(R1,R39),(R1,R41),(R3,R5),(R3,R7),---,(5,23),(5,25) 

 

Fig. 3.11. Demonstration of the proposed multi-phase encryption methodology on sharpening 

filter IP core with its corresponding outputs 
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The generated signature is converted into its corresponding hardware security 

constraints using IP vendor chosen truncation magnitude and embedding or 

mapping rules. The IP vendor chosen mapping rule for the proposed hardware 

security methodology is as follows:  

 Embed an additional (i.e., artificial) edge between (even, even) storage 

Hash slice 18 

Input (o) (p) 
(q) (r) 

(g) (h) Input 
(i) (j) 

Hash slice 2 

(f) (e) (d)  

Hash slice 1 

(c) Generated bitstream  

Hash slice 10 

(k) (l) Input (n) (m) 

(a) Scheduled JPEG-CODEC DFG 

(b) Generation of bitstreams using scheduled JPEG-

CODEC DFG based on IP vendor selected encoding 

rules 

Encoding Generated bitstream  

En_1 1110101111101110101011101111101010111010101110----------------

1111101010111010 

En_2 01001001110011100010010001111010100100100001000--------------

--0111100000010000 

------ -------------------------------------------------------------------------------- 

En_9 11111111111111111111111111111111111111111---------------------

11111111111111111 

 

 
Initial 136-bit 

bitstream (En_1) 
Preprocessed 

bitstream (1024-bits) 

Output: 512-bits 

bitstream digest 

 

512-bits 

bitstream digest 

of previous slice 
 

Input bitstream 

from En_2 

Processed (bit 

stuffed) bitstream 

(1024-bits) 

Output: 512-bits 

bitstream digest 

512-bits 

bitstream digest 

of previous slice 

Input bitstream based 

on IP vendor selected 

crypto key (1001) 

Processed (bit 

stuffed)  bitstream 

(1024-bits) 

Output: 512-

bits bitstream 

digest 

  

512-bits 

bitstream digest 

of previous slice 

Input bitstream based 

on IP vendor selected 

crypto key (0101) 

Processed (bit 

stuffed)  bitstream 

(1024-bits) 

Output: 512-

bits bitstream 

digest 

  

(s) Final generated signature (512-bit) 

(t). Secret security constraints generation based on obtained signature and IP 

vendor selected mapping rules  

Fig. 3.12. Security constraints generation flow of the proposed low-cost key-based 

crypto-chain methodology 
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variables pair in the RAT framework in case of bit '0'; otherwise, 

embed an edge between (odd, odd) storage variables pair. 

Further, the generated key-driven crypto-chain based secret security constraints 

are implanted into the design of the JPEG-CODEC IP core using register 

allocation information i.e., RAT framework of the HLS process. Some of the 

generated security constraints are as follows: <Q0, Q2>, <Q0, Q4>---<Q0, 

Q262>---<Q244>, Q128>,<Q1, Q3>---<Q1, Q263>---<Q3, Q261>. Fig. 

3.12. also includes the security constraints embedding process flow. The key 

concept behind embedding secret security constraints (artificial edge) is that 

 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 

R_1 Q0 Q128/Q129 Q136/Q137 Q144/Q145 Q152/Q153 Q160/Q161 Q168/Q169 Q176/Q177 Q184/Q185 Q220/Q221 Q238/Q239 Q244/Q245 Q252/Q253 Q258/Q259 Q261 - Q263 

R_2 Q1 Q129/Q128 Q137/Q136 Q145/Q144 Q153/Q152 Q161/Q160 Q169/Q168 Q177/Q176 Q185/Q184 Q221/Q220 Q239/Q238 Q245/Q244 Q253/Q252 Q259/Q258 - Q262 - 

R_3 Q2 Q130/Q131 Q138/Q139 Q146/Q147 Q154/Q155 Q162/Q163 Q170/Q171 Q178/Q179 Q186/Q187 Q222/Q223 Q240/Q241 Q246 Q254 Q260 Q260 - - 

R_4 Q3 Q131/Q130 Q139/Q138 Q147/Q146 Q155/Q154 Q163/Q162 Q171/Q170 Q179/Q178 Q187/Q186 Q223/Q222 Q241/Q240 Q247/Q248 Q255 - - - - 

R_5 Q4 Q132 Q140 Q148 Q156 Q164 Q172 Q180 Q188 Q236 Q236 Q248/Q247 Q256 - - - - 

R_6 Q5 Q133 Q141 Q149 Q157 Q165 Q173 Q181 Q189 Q237 Q237 Q249 Q257 - - - - 

R_7 Q6 Q134 Q142 Q150 Q158 Q166 Q174 Q182 Q190 - Q242 Q250 - - - - - 

R_8 Q7 - Q143 Q151 Q159 Q167 Q175 Q183 Q191 - Q243 Q251 - - - - - 

R_9 Q8 Q8 Q192 Q196 Q200 Q204 Q208 Q212 Q216 - - - - - - - - 

R_10 Q9 Q9 Q193 Q197 Q201 Q205 Q209 Q213 Q217 - - - - - - - - 

R_11 Q10 Q10 Q194 Q198 Q202 Q206 Q210 Q214 Q218 - - - - - - - - 

R_12 Q11 Q11 Q195 Q199 Q203 Q207 Q211 Q215 Q219 - - - - - - - - 

R_13 Q12 Q12 - Q224 Q224 Q224 Q227 Q224 Q224 Q224 - - - - - - - 

R_14 Q13 Q13 - Q225 Q225 Q225 Q225 Q225 Q225 Q225 - - - - - - - 

R_15 Q14 Q14 - - Q226 Q226 Q226 Q226 Q226 Q226 - - - - - - - 

R_16 Q15 Q15 - - Q227 Q227 Q227 Q227 Q227 Q227 - - - - - - - 

R_17 Q16 Q16 Q16 - - Q228 Q228 Q228 Q228 Q228 - - - - - - - 

R_18 Q17 Q17 Q17 - - Q229 Q229 Q229 Q229 Q229 - - - - - - - 

R_19 Q18 Q18 Q18 - - - Q230 Q230 Q230 Q230 - - - - - - - 

R_20 Q19 Q19 Q19 - - - Q231 Q231 Q231 Q231 - - - - - - - 

R_21 Q20 Q20 Q20 - - - - Q232 Q232 Q232 Q232 - - - - - - 

R_22 Q21 Q21 Q21 - - - - Q233 Q233 Q233 Q233 - - - - - - 

R_23 Q22 Q22 Q22 - - - - - Q234 Q234 Q234 - - - - - - 

R_24 Q23 Q23 Q23 - - - - - Q235 Q235 Q235 - - - - - - 

R_25 Q24 Q24 Q24 Q24 - - - - - - - - - - - - - 

- - - - - - - - - - - - - - - - - - 

R_129 Q135 Q135 Q135 Q135 Q135 Q135 Q135 Q135 Q135 Q135 Q135 Q135 Q135 Q135 Q135 Q135 - 

 

Table 3.4: Register allocation table corresponding to JPEG-CODEC prior to and after implanting secret security constraints for 

proposed low-cost crypto-chain signature  
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the storage variables corresponding to the additional edge cannot be allocated 

on the same register. If the storage variables of the incoming artificial edge are 

allocated on the same register. Then, either a color swapping between registers 

is performed, or a new register is allocated to meet the hardware security 

requirement. In other words, a forced distinct register allocation is performed 

while embedding security constraints. Further, Table 3.4 reports the register 

allocation table before and after embedding the crypto-chain signature into the 

JPEG-CODEC. (Note: the black color (normal) registers in the Table are the 

initial position of the registers, while the black colored (bold) registers are the 

final position of the register after embedding the secret security constraints). 

The embedded security constraints are represented in terms of change in the 

positions of registers in the SDFG of the JPEG-CODEC. The alteration in the 

final position/color of the register reports the embedding of the crypto-chain 

signature. The presented low-overhead security algorithm offers robust security 

with zero design cost overhead (i.e., an additional register is not needed after 

embedding the secret security constraints). 

3.4. Watermark Detection Process 

3.4.1. Distinguishing between genuine and pirated/fake IP cores 

The  presence of the proposed hardware security/watermarking constraints 

(generated through the proposed security algorithms) clearly enables the 

detection of IP piracy. While performing piracy detection, the key-driven 

crypto-chain based signature is regenerated using the proposed algorithm and 

matched with the embedded signature (which is embedded as covert (security) 

constraints) of the IP core under test. At first, the total number of different bits 

(such as # '0s' and # '1s') present in the signature is matched during 

litigation/conflict resolution. Next, if the count of the 0's and 1's matches, then, 

in that case, bit position matching is performed during litigation/conflict 

resolution. Only an authentic IP vendor would be able to successfully perform 

the above matching process to validate authenticity. On the contrary, an 

attacker would fail to regenerate the original signature and match it with the 

embedded one, thereby failing to validate authenticity. The dependence of the 

proposed hardware security methodologies on various security factors 

(explained in previous sub-sections) makes the proposed security methodology 
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highly robust. The presence of various security factors makes it challenging 

for an adversary to regenerate the exact signature. They require complete 

information corresponding to the proposed security methodology, which is 

only known to the IP vendor/designer.  

3.4.2. Resolution of false IP ownership claim 

Further, Further, the presence of the proposed signature in the IP core also 

protects from fraudulent claims of IP ownership. An IP can be fraudulently 

claimed by an attacker in the SoC house or foundry. For awarding correct 

ownership initially, the proposed signature/watermark is regenerated. Further, 

the signature is converted into hardware security constraints. Next, the 

regenerated security constraint information is matched with the extracted 

register allocation information of the IP core under test. The ownership is 

granted to the authentic IP vendor in case of a comprehensive information 

match. Therefore, the proposed security algorithm also nullifies false claims of 

IP ownership besides IP piracy. 

3.5. Summary  

Two novels security methodologies: (a) PSO driven multi-phase encryption 

and (b) firefly algorithm driven low-cost crypto chain based security 

methodologies for designing optimal secured image processing filter and 

JPEG-CODEC IP cores are presented in this chapter. The proposed PSO-

driven multi-phase encryption mechanism employs strong security layers such 

as bit manipulation, row diffusion, TRIFID cipher computation, alphabetic 

substitution, and byte concatenation to generate a highly robust and tamper-

tolerant signature. The main focus of the chapter is to offer a detective 

countermeasure against potential IP piracy and false claims of IP ownership 

by attackers in the SoC design house or foundry. The threat model considers 

the IP vendor as the defender and the SoC integrator/foundry as the attacker. 

Next, the proposed low-cost key-driven crypto-chain based security 

methodology incorporates an IP vendor specified encoding mechanism, 

crypto-keys, #SHA-512 hash slices, and mapping rules to generate secret 

hardware security constraints. These elements together create a tamper-

tolerant signature, which is further converted into security constraints and 
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embedded into the optimal hardware IP core design  obtained using the firefly 

algorithm based exploration technique. This embedding of security constraints 

(i.e., digital evidence) safeguards the hardware IP cores from IP piracy and 

fraudulent claims of IP ownership. Both approaches involves multiple security 

layers to generate a tamper tolerant signature/watermark, which makes the 

regeneration harder for the adversary to evade the piracy detection process. 

The experimental results of the PSO driven multi-phase encryption and low-

cost key-driven crypto-chain based security methodologies have been 

discussed and analyzed in the chapter 9 of this thesis. 
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Chapter 4 

Enhanced Security for Hardware IPs Using IP Seller’s 

Protein Molecular Biometrics and Facial Biometric-

based Encryption Key  

Hardware IP cores, embedded in a variety of electronic devices such as 

smartphones, cameras, and health bands, play a critical role in enhancing the 

performance and efficiency of these devices. In the digital ecosystem, DSP co-

processors are essential for handling complex tasks like data compression and 

decompression, filtering, and image processing. These DSP algorithms are 

often implemented using dedicated IP cores, which can be designed at a higher 

level using HLS framework, later synthesized into a RTL data path. With the 

increasing globalization of the design supply chain, the development of 

electronic devices and multimedia systems often involves multiple offshore 

entities, including third-party IP (3PIP) vendors. This introduces the risk of 

hardware threats such as IP piracy and false claims of IP ownership. 

Pirated/Counterfeit IPs can compromise user safety and system reliability, 

potentially causing issues like sensitive data leaks, excessive heat generation, 

or malfunctioning of DSP hardware. Therefore, it is vital for SoC integrator to 

safeguard end user against these threats. Moreover, without adequate security 

mechanisms, adversaries may falsely claim IP ownership. To address such 

ownership and piracy threats, embedding a robust security marker within the 

IP can be instrumental in countering false ownership claim and identifying 

pirated IP cores. The SoC integrator can easily verify the embedded IP 

vendor's authentic watermark before integration into the final system.  

Security against IP piracy is crucial for consumer electronics (CE) systems for 

two key reasons: (i) pirated designs often bypass thorough reliability and 

safety testing, and (ii) they are more likely to contain malicious hardware 

Trojans. A SoC integrator can source IP cores directly from vendors or 

through intermediaries (IP brokers). However, rogue suppliers may introduce 

counterfeit IPs into the supply chain, driven by illegal motives. This poses 

significant risks to both CE system integrator and end consumer, making it 

crucial to ensure only genuine IPs are used in CE systems. These 

compromised IP cores pose significant risks when integrated into CE systems. 
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By embedding a unique encrypted protein biometric signature/watermark of 

the IP vendor, the proposed approach allows authentic IP cores to be 

distinguished from pirated ones, preventing counterfeit designs from being 

incorporated into SoCs. This ensures the safety and reliability of CE devices 

for consumer. The method is particularly effective in identifying fake IPs, 

especially when rogue suppliers attempt to introduce pirated components into 

the supply chain. The proposed solution helps ensure that only legitimate IPs 

are used in the design and manufacturing process, safeguarding both the 

system integrator and the end consumer.  

This chapter introduces a novel encrypted protein molecular biometric 

approach for securing hardware/DSP IP cores against piracy and fraudulent IP 

ownership claim. This method effectively counters false ownership claim and 

detects counterfeit IPs before they are integrated into electronic systems. The 

first section of the chapter outlines the problem formulation, threat model and 

overview. The second section discusses the details of encrypted protein 

molecular biometrics based security approach. Following this, the third section 

illustrates the embedding of the proposed watermarking constraints with 

relevant examples. The fourth section then covers the process of watermark 

detection. Lastly, the fifth section provides the chapter's conclusion.   

4.1. Overview 

4.1.1. Threat model and motivation 

The threat model is clearly described in the introduction section of this 

chapter. The proposed approach effectively counters false claims of IP 

ownership by utilizing the inherently unique molecular and physical biometric 

properties of the legitimate IP vendor, such as protein samples for molecular 

signature generation and facial biometrics for encryption key creation. Unlike 

traditional watermarking and digital signature methods, this robust encoding 

and encryption process ensures that even if an adversary were to somehow 

replicate the signature (which is highly unlikely), they would be unable to 

claim the vendor's identity. The detailed process of signature generation 

remains unknown to potential attackers, further preventing fraudulent 

ownership claim. Additionally, the approach ensures strong detection and 
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isolation of counterfeit IP cores through the embedded, encrypted protein 

molecular signature, safeguarding the authenticity of the IP design.  

4.1.2. Input and Outputs  

The primary inputs are (a) transfer and computation function/CDFG of 

hardware (DSP) application, (b) IP vendor’s amino acid sequence/protein 

biometric sample, (c) IP vendor’s facial biometric sample, (d) AES encryption 

key, (e) IP vendor’s concatenation and embedding rules, and (f) IP vendor’s 

specified resource constraints. The final output is an encrypted protein 

biometric embedded secure RTL datapath of input hardware application.   

4.1.3. Target Platform 

The proposed security methodologies can be seamlessly integrated with any 

electronic design automation (EDA) tools. The techniques can easily be 

combined with HDL, or any high-level language used for IP generation within 

design tools. 

4.1.4. Security framework using IP seller’s protein molecular and facial 

biometrics 

This chapter presents a novel approach for securing hardware IP cores by 

leveraging both "physical biometrics" (facial biometrics for encryption key) 

and "molecular biometrics" (protein molecular sequences as watermark 

signature) from the legitimate IP vendor. This method provides a unique 

cellular and molecular-level signature derived from the IP vendor's body 

sample, offering robust protection against piracy and false ownership claim. 

Fig. 4.1 depicts the overview of proposed encrypted protein molecular 

biometric based security methodology. The proposed system generates an 

encrypted protein molecular signature from the amino acid sequence, obtained 

through the protein sequenator process. Additionally, the encryption key for 

the signature is derived from the vendor’s facial biometrics. One key 

advantage of this approach is that it does not require resequencing or 

recapturing the vendor’s biometric data during the verification process. 

Instead, a pre-stored encrypted digital template (securely stored in a database), 

is used for authentication and counterfeit detection. This eliminates the need 

for continuous biometric input and ensures that the method is immune to 
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variations in facial recognition conditions, such as changes in camera angles, 

scales, or lighting. Thus,  the facial biometrics and molecular signature remain 

consistent during both the embedding and detection phases, corresponding to 

the genuine IP vendor. This has already been established in the literature [20], 

[24], [32], [36], [37]. 

The encrypted protein molecular signature is generated using a sequence of 20 

amino acid chemical components extracted from the IP vendor’s body sample. 

This sequence is then fed as input into the AES encryption process, along with 

the encryption key derived from the vendor’s facial biometric features. The 

result is a highly secure, robust encrypted molecular biometric 

signature/watermark. To further enhance security, covert hardware 

security/watermarking constraints are generated from the encrypted signature 

using an IP seller’s embedding/encoding/mapping algorithm/rule (as shown in 

phase 1 in Fig. 4.1). These constraints are then embedded into the 
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Fig. 4.1. Overview of proposed encrypted protein molecular biometric 

based security methodology 
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DSP/hardware design during the register allocation phase of the HLS process 

(as shown in phase 2 in Fig. 4.1). Ultimately, the method produces a secure 

RTL design for the DSP coprocessor. The detailed process is elaborated 

below. 

4.2. Encrypted Protein Molecular Biometrics based Security 

Approach  

4.2.1. Introduction to protein molecular amino acid sequences 

Human body protein is composed of linear sequence of amino acids. These 

amino acids are linked to one another through a bond by linking the carboxylic 

acid group of one amino acid with the amine group of another amino acid 

called peptide bond. The connected amino acids through peptide bonds in 

series, forms polypeptide chain or protein sequence. Each protein has a unique 

amino acid sequence. In a protein sequence chain, there are twenty different 

amino acids which by linking together forms the chain of amino acids. The 

largest polypeptide chain may contain 5000 amino acids [102]. A specific 

digit/letter is used to represent each of the twenty different amino acids present 

in the protein sequence chain. The process of determining the amino acid 

sequence from the collected body sample is termed as protein sequencing. It is 

the practical process for determining the sequence of amino acids in protein 

sample. However, partial sequencing is also capable to infer sufficient 

information for identification. The protein samples can be collected from 

human body samples such as hair, bone, fingernail, saliva, muscle and 

fingermark etc. Further, the human samples such as hair, bone and muscle 

samples are more effective for individual identification [103]-[105]. Upon 

collecting the sample(s), they are brought for protein sequencing, where the 

samples are applied on swabs and digested with trypsin in order to obtain 

peptides. Trypsin is an enzyme that starts the digestion of protein molecules 

by cutting long chains of amino acids into smaller pieces. In this process, the 

samples such as blood and saliva are characterized by the presence of 

hemoglobin and alpha-amylase1 biomarkers. Similarly, other samples are 

identified using corresponding biomarkers. There are two widely used 

methodologies for protein sequencing viz. mass spectrometry and Edman 

degradation [106]. Both these methodologies are used for performing protein 
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sequencing using sequenator (sequencer). The ongoing and recent 

developments in the field of proteomics, renders it impactful and important for 

forensics and unique identification. With the development in the field of 

proteomics in terms of increased availability of high-resolution mass 

spectrometers, maturity of sequencing and different methodology for protein 

sequencing have been effective and useful for enabling the usage of protein 

molecular for unique identification.  

Typically, the sequencing process of protein comprises of the following steps: 

a. Break the disulfide bridges in the protein using reducing agent. 

b. Form the separate chain(s) of protein complex. 

c. In each chain, determine the terminal and composition of amino acids. 

d. Divide each chain into small size fragments (up to 50 amino acids in 

each). 

e. Separate each of the resultant fragment and purify them. 

f. Exploit the fragments to determine amino acid sequence. 

g. Repeat steps 1-6, to construct overall protein sequence. 

4.2.2.  Advantages of protein molecular biometric signatures compared to 

DNA molecular biometrics 

The protein sequencing is more advantageous than DNA sequencing from the 

perspective of molecular biometrics for generating unique and robust digital 

signature [102], [103]:  

a. Compared to genomic analysis, proteomics (proteomics is large scale 

study of all proteins of an organism or system by using mass 

spectrometry) can provide an accurate distinctive detail of the human 

body sample. Protein analysis is a confirmatory and orthogonal 

technique that helps in forensic identification. 

b. The proteins in sample are more persistent and chemically more robust 

than DNA and can persist for longer durations, whereas DNA can 

become degraded in the environment. 

c. DNA sample contains the genome information whereas proteins are 

much of what determines a cell's characteristics and function. 
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d. Protein sequencing is more accurate than DNA sequencing because the 

proteins are composed of twenty amino acids while the DNA contains 

only four chemical compositions. Therefore, the signal to noise ratio in 

protein sequence chain is much better as compared to DNA. 

e. The generated protein molecular signature is highly distinctive than 

DNA signature which results in unique identification of sample. 

f. The generated protein molecular signature results in higher tamper 

tolerance ability (robustness of digital evidence) and lower probability 

of coincidently detecting the authentic secret security constraints 

within an unsecured design (higher security strength). 

Therefore, protein molecular signature, generated from the amino acid 

sequence contains more accurate distinction of human body sample at the cell 

level. Due to advancement in the field of biosciences, it is easy to analyze the 

protein sample and report the sequence of amino acids present in a human 

body sample. Moreover, the process of protein sequencing is cost effective 

which makes it feasible for unique sample identification using the concept of 

molecular biometrics. 

4.2.3. Generation of the Proposed IP seller’s protein molecular signature 

As discussed in earlier section that protein sample can be analyzed using 

protein sequenator for generating the protein sequence. For explaining the 

process of proposed molecular signature generation, we have considered the 

protein sequence of the human body of the IP vendor as input, as shown in 

Fig. 4.2. In this protein molecular sequence of amino acids as shown in Fig. 

4.2, the formation of amino acid chain comprises of 20 different amino acids, 

resulting into a long polypeptide chain. Therefore, in this protein sequence, the 

polypeptide chain consists of 380 amino acids. Each amino acid is represented 

by a unique alphabet. Further it is to be noted that the polypeptide chain length 

is scalable depending upon the smaller or larger amino acid sequence 

generated from the human body protein sample. The polypeptide chain length 

can be selected based on the IP vendor choice. Subsequently, for the selected 

amino acid sequence length of the polypeptide chain, encoding is performed. 

Each amino acid has a unique encoding based on their alphabetical positions. 

For example, for amino acid methionine (M), the alphabet position is 13 and 
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corresponding encoded binary bits are 1101, for proline (P) the alphabet 

position is 16 and corresponding encoded binary bits are 10000, while for 

tryptophan (W) it is 10111 etc. Subsequently, all amino acids are encoded with 

Generating the protein molecular signature corresponding to protein molecules 

structure of IP vendor (Generated molecular signature) 

“11011000011011111101010010001110101111010111100111011001101110000101

101101110011000010011001001110111000111011101000110111011101…………

….011010111100110110110101110110110111011110010110111111000110011100

11001001101100110000110001” 

Encoding amino acids of protein using encoding algorithm 
Naming 

conventions of 

amino acids 

Alphabet 

position & 

Binarize 
value 

Naming 

conventions 

of amino 
acids 

Alphabet 

position & 

Binarize 
value 

Naming 

conventions 

of amino 
acids 

Alphabet 

position & 

Binarize 
value 

M (13) -1101 K (11)-1011 V (22)-10110 

P (16) -10000 L (12)-1100 I (9)-1001 

F (6)-110 Y (25)-11001 Q (17)-10001 

G (7) - 111 E (5)-101 C (3)-11 

N (14) - 1110 D (4)-100 R (18)-10010 

T (20)- 10100 S (19)-10011 W (23)-10111 

H (8)-1000 A (1)-1 - - 
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Amino acids of protein or peptide 
Ala: Alanine (A) 
Arg: Arginine (R) 

Asn: Asparagine (N) 

Asp: Aspartic acid (D) 
Cys: Cysteine (C) 

Glu: Glutamic acid (E) 

Trp: Tryptophan (W) 
Tyr: Tyrosine (Y) 

Val: Valine (V) 

Thr: Threonine (T) 

Gln: Glutamine (Q) 
Gly: Glycine (G) 

His: Histidine (H) 

Ile: Isoleucine (I) 
Leu: Leucine (L) 

Lys: Lysine (K) 

Met: Methionine (M) 
Phe: Phenylalanine (F) 

Pro: Proline (P) 

Ser: Serine (S) 

 

Input sample of protein 

 

Protein structure 
 
 

 

 
 

 

 
 

 

 

Formation of 

amino acid 

sequence of a 

protein or 

peptide 

Fig. 4.2. Generating the protein molecular signature corresponding to amino acid 

sequence of sample protein 
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a unique encoding bit. Finally, by concatenating the binarized bits 

corresponding to amino acids of polypeptide chain, protein molecular 

signature is obtained. The binarized protein molecular signature of 1500 bit 

from amino acid sequence chain corresponding to protein sample of IP vendor 

is generated.  

4.2.4. Using IP seller’s facial biometrics to generate encryption keys 

In order to generate encrypted protein molecular signature for securing DSP 

hardware IP cores, facial biometric based encryption key has been used. The 

process of facial biometric key generation from the facial features of IP vendor 

has been discussed below: 

a. Capture the facial image of IP vendor using high resolution camera. 

b. This captured facial image is then subjected to a specific grid size and 

spacing (specified by the IP vendor for generating the nodal points on 

the facial image precisely). This also mitigates the impact of face 

movement, thereby resulting in accurate facial feature generation. 

c. Based on the selected feature set (among eleven features as shown in 

Fig. 4.3), nodal points are generated on the facial image. 

d. Assign the naming conventions on nodal points of facial image. 

e. Generate the facial image with IP vendor chosen feature set. 

f. Compute the feature dimensions between the nodal points 

corresponding to each facial feature chosen by IP vendor for 

encryption key generation. To do this, first the coordinates of each 

nodal points are computed and subsequently, feature dimensions are 

computed using Manhattan distance (|x2-x1|+|y2-y1|), where (x1, y1) 

and (x2, y2) are the coordinates of the facial feature nodal point.  

g. Each feature dimension of selected facial features is transformed into 

their corresponding binarized value. 

Finally, based on the concatenation order of facial features (decided by IP 

vendor), the facial biometric based encryption key is generated. For example: 

for the following concatenation order of facial features such as: (HFH) & 

(IPD) &(BOB) &(IOB) &(OB) &(WNR) &(WF) &(HF) &(WNB) &(NB) 
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&(OCW), the encryption key has been generated as shown in Fig.3. Further, 

the IP vendor generated facial key is to be used in AES encryption. 

Note: Facial biometric renders robustness even if an adversary is look alike or 

twin to the true vendor. Furthermore, exact regeneration of encryption key is 

impossible for an adversary as it depends on several intricate parameters such 

as (a) grid size/spacing used in determining the precise coordinates of nodal 

points (b) type of chosen feature set by true IP vendor (among the exhaustive 

features for generating digital template) c) their concatenation order, all are 

only known to an authentic IP vendor. 

4.2.5. Generation of encrypted protein molecular biometric signature 

using AES encryption 

Generating the facial biometric encryption key based on the IP vendor decided feature 

order 

 (Generated facial encryption key) 

1000001010001100110101111000110100101111011101000011101100100001011011

0111111111000 

Subjecting the captured facial image with grid size and spacing 

Designer selected feature set 
HFH: Height of Forehead (P1-P2) 

IPD: Inter Pupillary Distance (P3-P4) 
BOB: Bio- Ocular Breadth (P5-P8) 

IOB:  Inter – Ocular Breadth (P6-P7) 

OB: Ocular Breadth (P5-P6) or (p7-p8) 
WF: Width of face (P9-P10) 

HF: Height of Face (P1-P18) 

WNB: Width of Nasal Base (P13-P14) 
NB: Nasal Breadth (P12-P15) 

OCW: Oral Commissure Width (P16-P17) 

WNR: Width of Nasal Ridge (P2-P11) 
 

 

Assign naming 

conventions on 

nodal points 

Generate the facial image with chosen features 

 

Input image captured using high resolution camera 

Nodal points 

generation process 

Fig. 4.3. Demonstration of facial biometric key generation used for encrypting the 

protein molecular signature  

Coordinates Dimension Binary value 

(240, 120)- (240, 250) 130 10000010   

(170, 280)- (310, 280) 140 10001100    

(130, 285) -(345, 285) 215 11010111  

(205, 285) - (275, 285) 70 1000110  

(130, 285) - (205, 285) 75 1001011  

(240, 250) - (240, 360) 110 1101110  

(105, 325)- (375, 325) 270 100001110   

(240, 120)- (240,520) 400 110010000   

(220, 375) - (265, 375) 45 101101  

(195, 375)- (290, 375) 95 1011111     

(185, 440)- (305, 440) 120 1111000    
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The inputs to the AES encryption phase of proposed approach are: 1) unique 

protein molecular biometric signature (generated using chain of twenty 

different amino acids) of body sample of IP vendor and 2) encryption key 

which is derived from the facial biometric features of IP vendor. The 

encrypted protein molecular digital signature of protein molecule using facial 

biometric is obtained as an output. After the completion of 10 iterations of 

AES encryption corresponding to initial protein molecular signature strength, 

the encrypted protein molecular digital signature is obtained (corresponding to 

protein molecular signature shown earlier in Fig. 4.2). Finally, the encrypted 

protein molecular signature is generated at the end of AES encryption process. 

For example, the encrypted protein molecular signature using facial encryption 

key corresponding to input protein molecular signature is as follows: 

“11101011111000101110111011010000010111110111011111010101100110

10111101011110………..111010001010110101001111011110110001000000

11001000001001101110110101000110001001”. This generated encrypted 

digital template is embedded into the design for securing the DSP hardware IP 

cores against piracy and false ownership claim. 

4.2.6. Security properties of the proposed encrypted protein molecular 

biometric watermark signature 

The proposed encrypted protein molecular biometrics-based hardware security 

approach renders several security properties as discussed below:  

i. Exact regeneration of protein molecular signature is not possible for an 

adversary because of the following: a) length of the polypeptide chain 

in the protein molecule sequence for signature generation and b) 

encoding rule corresponding to 20 different amino acids c) secret facial 

encryption key, all are unknown to an adversary. 

ii. The exact regeneration of facial key is not possible for an adversary as 

the following crucial details chosen by an IP vendor is not known to an 

adversary such as: a) specific grid size/ spacing, b) number of chosen 

facial features and c) concatenation order of facial features for final 

facial key generation. 

iii. However, in the rare likelihood, even if an adversary manages to 

access the stored encrypted authentic digital template, the proposed 
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approach still provides robust security against fraudulent claim of IP 

ownership and pirated designs. This is because, it is not possible for an 

adversary to exactly regenerate the secret hardware security constraints 

corresponding to facial biometric encrypted protein molecular 

sequence of original IP vendor (used for embedding into the genuine 

IP core design for enabling robust security) due to obscured non-

decodable crucial security parameters of the proposed approach. The 

details of obscured non-decodable crucial security parameters of the 

proposed approach are discussed earlier in this section, which 

demonstrates that replication or regeneration of secret hardware 

security constraints is not possible for an adversary. 

iv. The AES encryption algorithm itself offers highly robust encryption. 

v. The encoding rule used for generating the secret security constraints 

corresponding to encrypted protein molecular signature is also not 

known to an adversary. 

vi. The proposed approach results into the generation of highly robust 

encrypted protein molecular signature which yields higher tamper 

tolerance ability of the secured design. 

vii. It is not possible for an adversary to evade the counterfeit detection 

process as the complete matching of secret security constraints of 

regenerated signature is mandatory with the extracted register 

allocation information of the target design under test. 

viii. Protein molecular signature is immune to aging effects, injury and 

other external environmental factors. 

ix. It offers more distinctive and unique identification as compared to 

other non-biometrics and biometrics-based hardware security 

approaches. 

4.3. Demonstration: Watermark Embedding and Secure 

RTL Design Generation Process 

The process of obtaining the secured (embedded with encrypted protein 

molecular signature through facial biometric based AES encryption) RTL 

datapath of DSP co-processor using HLS, is discussed in two phases (as 

shown in Fig. 4.1). 
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Phase-1 is responsible for generating the covert hardware security constraints 

corresponding to encrypted protein molecular biometric signature generated 

using the proposed approach. The security constraints generation process 

accepts the following inputs: a) DSP application in the form of data flow 

graph (DFG) /transfer function b) vendor specified encoding rule (discussed 

subsequently). The DFG is the scheduled using ‘LIST’ scheduling algorithm 

based on designer specified resource constraints and the available dependency 

information of storage variables as highlighted in the scheduled data flow 

graph shown in Fig. 4.4.  Where X0- X22 are the storage variables and 

required registers are designated using different colors corresponding to DCT-

8 point IP cored design. As evident, nine control steps (C0 -C8) were required 

to schedule and obtain the final output value. Subsequently the register 

allocation table corresponding to scheduled data flow graph is constructed. 

Next, using the following encoding rule, the obtained encrypted protein 

molecular signature bits are converted into its respective hardware security 

constraints. 

Encoding rule:  

 Bit ‘1’ signifies the embedding of security constraints between odd-

odd storage variable pair X (i, j) of the scheduled DFG, where i and j 

represents the specific storage variable used for pairing. 

 Bit ‘0’ signifies the embedding of security constraints between even-

even storage variable pair of the scheduled DFG. 
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For example, the secret hardware security constraints corresponding to 

encrypted protein molecular signature (108 bit) for 8-point DCT IP core are 

generated as follows:  [X(0, 2), X(0, 4), X(0, 6), X(0, 8), X(0, 10), X(0, 12), 

X(0, 14), X(0, 16), X(0, 18), X(0, 20), X(0, 22), X(2, 4), X(2, 6), X(2, 8), X(2, 

10), X(2, 12), X(2, 14), X(2, 16), X(2, 18), X(2, 20), X(2, 22),…..., X(12, 16), 

X(1, 3), X(1, 5), X(1, 7), X(1, 9), X(1, 11), X(1, 13), X(1, 15), X(1, 17), X(1, 

19), X(1, 21), X(3, 5), X(3, 7), X(3, 9), X(3, 11), X(3, 13), X(3, 15), X(3, 17), 

X(3, 19), X(3, 21),..……, X(19, 21)]. Finally, the security constraints are 

generated which is subsequently embedded into the design (in the register 

allocation of the scheduled data flow graph) as discussed in phase-2. 

Phase-2 is responsible for implanting the generated secret security constraints 

corresponding to protein molecular signature into the design. The security 

constraints are embedded into the design during register allocation phase of 

HLS process. The register allocation table constructed earlier in phase-1, 

contains the details of required control steps for generating the output 

functionality, storage variables of the DSP coprocessor and details of registers 

required for accommodating the intermediate and final operational value of 

storage variables. The register allocation table is used for embedding the 

hardware security constraints by locally altering (modifying) the register 

assignments using the following rule such that two storage variables in a pair 

cannot be assigned to the same register. Finally, the encrypted molecular 

signature implanted modified register allocation table corresponding to 8-point 

DCT is obtained, as shown in Table 4.1. The storage variables marked in red 

color are indicating the local alterations, post embedding the secret security 

constraints into the design (covertly). Note: sometimes it may require 

allocation of new register(s) for accommodating the storage variable. 

Subsequently, the secured RTL datapath corresponding to 8-point DCT, 

embedded with encrypted protein molecular signature is obtained.  

4.4. Detection of Fake/Pirated IP Versions and Resolution  of 

False Claim of IP Ownership  

Verification of false IP ownership claim: In case if an adversary (located at 

either at offshore third-party design houses or foundry) fraudulently claims IP 

ownership, then the pre-stored encrypted protein molecular sequence and 
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facial biometric encryption key is used for robust and seamless verification of 

authentic IP ownership. Encrypted protein molecular sequence and encryption 

key using facial biometric traits are safely stored (in a safe database) with 

genuine IP vendor. This, therefore, makes the proposed approach independent 

of protein resequencing and recapturing face image. Thus, the proposed facial 

biometric is independent of variations caused by different angles, scales, or 

illuminations.  

In the proposed approach seamless and robust verification of ownership can be 

performed without recapturing or reproducing biometric information of 

original IP vendor. This is because regeneration of exact secret hardware 

security constraints by decrypting the pre-stored digital template is possible by 

the authentic IP vendor only. Reproduction of the IP vendor biometric 

information during verification of IP ownership and detection of counterfeited 

IPs is not required, as its equivalent digital template is pre-stored in a safe 

database in encrypted form. Therefore, in order to nullify the false claim, the 

positions of authentic protein molecular signature bits are matched bit by bit 

with the embedded protein molecular digital template corresponding to DSP 

design under test. Consequently, based on the complete matching, ownership 

is awarded to the genuine IP vendor.  As the protein molecular signature 

provides cellular/ molecular level distinction, therefore it is not possible for an 

adversary to possess similar molecular characteristics as that of genuine IP 

vendor to satisfy the claim of IP ownership. 

Detection of counterfeited IP versions: The embedded protein molecular 

signature also enables the detection of genuine/authentic DSP IP cores by 

isolating them from counterfeited IP designs. During the counterfeit detection 

process, secret security constraints corresponding to protein molecular 

signature are regenerated and matched with the information of register 

Table 4.1: Register allocation in 8-point DCT (after embedding 

encrypted protein molecular signature) 
CS R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 

CS0 X0 X1 X2 X3 X4 X5 X6 X7 -- -- -- 

CS1 X9 X8 X11 X10 X4 X5 X6 X7 -- -- -- 

CS2 -- -- X11 X10 X13 X12 X15 X14 X16 -- -- 

CS3 -- -- X11 -- X13 X12 X15 X14 X17 -- -- 

CS4 -- -- -- -- X13 X12 X15 X14 X18 -- -- 

CS5 -- -- -- -- X13 -- X15 X14 -- X19 -- 

CS6 -- -- -- -- -- X20 X15 X14 -- -- -- 

CS7 -- -- -- -- -- -- X15 -- -- -- X21 

CS8 -- -- -- -- -- X22 -- -- -- -- -- 
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allocation extracted from RTL design under test. If the presence of protein 

molecular signature is not found in the design, then it is probably counterfeit. 

Moreover, the involvement of several complex information during encrypted 

protein molecular signature generation and implantation, makes it almost 

impossible for an adversary to evade the counterfeit detection process.  

4.5. Summary  

This chapter presented a novel hardware security method that combines a 

protein molecular biometric signature from a human body sample with a facial 

biometric-based encryption key specific to the IP vendor. To secure the IPs, 

the design embeds an encrypted version of the protein molecular signature—

derived from a unique sequence of 20 amino acids—during the HLS process. 

This approach helps in identifying counterfeit IP designs and prevents false 

claims of IP ownership by integrating both the molecular signature and the 

vendor's facial biometric data. The method demonstrates superior security, 

offering a lower probability of coincidence and greater resistance to tampering 

compared to recent alternatives, discussed in result section in Chapter 9.  
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Chapter 5 

Securing Hardware IPs by Exploiting Statistical 

Watermarking Using Encrypted Dispersion Matrix 

and Eigen Decomposition Framework  

As described in the introduction chapter, the demand for application-specific 

computing has become increasingly vital due to the need for enhanced 

performance, power efficiency, real-time capabilities, scalability, and cost 

reduction. Application-specific hardware IP cores are designed (using HLS 

framework) to handle tasks that require significant computational power, such 

as data filtering, compression, and complex mathematical operations. HLS, a 

crucial technology in electronic design automation (EDA), simplifies the 

design of complex integrated circuits by bridging the gap between high-level 

descriptions, often written in programming languages like C/C++, and the 

lower-level hardware implementations. However, with the global design 

supply chain, security of hardware IP cores has emerged as a significant 

concern. Malicious actors within SoC integrator design houses may attempt to 

pirate or fraudulently claim ownership of imported hardware IPs. To combat 

this, this chapter introduces a security methodology that incorporates/embeds 

an encrypted dispersion matrix and eigen decomposition framework based 

watermarking constraints to safeguard against IP piracy. The proposed 

approach enables the generation of a unique secret mathematical (using 

statistical modelling) signature/watermark to secure the hardware IP against 

piracy and false IP ownership claim. 

This chapter introduces a novel encrypted mathematical (statistical) 

watermarking approach for securing hardware/DSP IP cores against piracy 

and fraudulent IP ownership claim for the first time in literature. This method 

effectively counters false ownership claim and provide detective 

countermeasure against IP piracy. The first section of the chapter outlines the 

threat model and motivation of the proposed approach. The second section 

discusses the details of proposed statistical watermarking using encrypted 

dispersion matrix and eigen decomposition framework. Following this, the 

third section illustrates the embedding of the proposed watermarking 

constraints with relevant examples. The fourth section then covers the IP 
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piracy detection and resolution of false IP ownership claim process. Lastly, the 

fifth section provides the chapter's conclusion.  

5.1. Threat Model, Motivation, and Target Platform 

5.1.1. Threat model 

A SoC integrator design house may be compromised by internal adversary 

who may pirate the original hardware IP design imported from authentic IP 

vendor. The motivations behind this IP piracy could include generating illegal 

profits, damaging the reputation of the legitimate vendor, or embedding 

malicious logic in the pirated design. Additionally, an adversary within the 

SoC integrator might attempt to fraudulently claim ownership of the IP. To 

counter these threats, the authentic IP vendor must secure the hardware IP 

before sharing it with the integrator. The proposed approach treats the IP 

vendor as the defender and the SoC integrator as the attacker, embedding 

secret digital evidence via an encrypted dispersion matrix and eigen 

decomposition watermarking framework, offering detective control against IP 

piracy and false ownership claim. 

5.1.2. Motivation: using statistical watermarking framework for 

securing hardware IPs 

The proposed watermarking methodology introduces a novel security 

mechanism for hardware IP cores by using a 2D design parameter-driven 

encrypted dispersion matrix combined with eigen decomposition framework to 

create a secure watermark. This approach leverages statistical techniques like 

variance and covariance of design space parameters to embed unique, 

irreproducible watermarks within the IP design. By using covariance, the 

method captures the relationship between key design metrics such as area and 

delay, while variance and eigenvalues help measure the spread and 

characteristics of the design parameters. The mathematical watermark is 

derived from the inherent properties of the IP design, such as resource 

configurations, without relying on external identifiers like signature or 

biometrics. This makes the watermark not only unique but highly resistant to 

tampering. Unlike other statistical models, this approach effectively captures 

the core characteristics of the IP design space, providing robust digital 
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evidence to secure hardware IP cores against piracy and unauthorized 

ownership claim. 

5.1.3. Target platform, Inputs and output 

The proposed security methodologies can be seamlessly integrated with any 

electronic design automation (EDA) tools. The techniques can easily be 

combined with HDL, or any high-level language used for IP generation within 

design tools. The primary inputs are (a) algorithmic description or control data 

flow graph (CDFG) of target hardware, (b) module libraries (containing 

necessary information such as area, delay, etc. corresponding to functional 

units used in hardware design), (c) IP vendor chosen p-bit key for initial 

resource configuration generation, (d) LIST scheduling algorithm, and (e) IP 

vendor selected key for AES encryption. The final output is a secure hardware 

IP core using proposed 2-D design parameter driven encrypted dispersion 

matrix and eigen decomposition based security framework. 

5.2. Statistical Watermarking Using Encrypted Dispersion 

Matrix and Eigen Decomposition Framework 

5.2.1. Overview 

Fig. 5.1 highlights the overview of the proposed mathematical/statistical 

watermarking approach. The proposed security framework incorporates a 

multi-phase process to generate a tamper resistant mathematical watermark. In 

the first phase, the IP vendor's selected p-bit key is used to generate resource 

configurations for the specific hardware design. The IP design's 

characteristics, such as area (Ad) and latency (Ld), along with their variances 

and covariance, are extracted. These values form a dispersion matrix, which 

serves as the basis for the security constraints derived from the vendor's 

chosen design space parameters. The second phase focuses on further 

characterizing the hardware design by calculating eigenvalues (λn) from the 

selected resource configurations. These eigenvalues, or characteristic roots, 

leads to the generation of additional security constraints. In the third phase, 

both the elements of the dispersion matrix (variance and covariance of Ad and 

Ld, (var (Ad), var (Ld), (cov (Ad, Ld))) and the eigenvalues (corresponding to 

two 2*2 square matrices for minimum of four different resource 
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configurations) are encrypted using the vendor's AES key. This results in 

seven unique variables that contribute to the generation of mathematical 

watermarking/security constraints. As more resource configurations are 

selected, more eigenvalues can be extracted, increasing the number of security 

variables and enhancing watermark strength. The encrypted data is then 

converted into binary form and concatenated according to the vendor's specific 

rule, resulting in a secure watermark signature. The fourth phase involves 

generating covert security constraints using the watermark signature, 

embedding them into the hardware design during the register allocation phase 

of HLS process. In the final phase, the covert security constraints are 

embedded into the RAT to generate the final, secure hardware IP core design. 

The inclusion of multiple convoluted security variables, such as dispersion 

matrix, eigen decomposition, encryption, etc. leads to the creation of a highly 

tamper-resistant watermark signature.  

5.2.2. Extracting secret security data from encrypted dispersion matrix 

based on hardware design space parameters 

Input: Algorithmic description or CDFG of the target hardware 

application, module libraries, IP vendor selected p-bit key and AES 

encryption key, IP vendor selected concatenation rule, and IP 

vendor selected mapping/embedding rules  

 

Phase 1: Initial area and delay matrix generation 

corresponding to IP vendor’s selected resource 

configuration based on input p-bit key 

Phase 3: 

Dispersion matrix 

generation block 

Phase 2: Eigen 

decomposition  

block 

AES encryption block using encryption key  

Conversion of encrypted data corresponding to 

different parameters into binary equivalents and 

concatenation to generate digital template 

Phase 4: Conversion of obtained digital template 

into covert hardware security constraints  

Phase 5: Embedding of covert security constraints into register 

allocation table (RAT) of target hardware application  

Output: Watermarked hardware IP core   

CDFG of 

target 

hardware 

application 

Scheduling 

of hardware 

application 

Initial RAT 

of target 

hardware 

application 

Fig. 5.1. Overview of the proposed mathematical watermarking methodology 
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The proposed security methodology accepts algorithmic description or CDFG 

of target hardware application (for example, 8-point DCT is used for 

demonstration) along with its module library and IP vendor selected p-bit key 

for generating resource configurations from the design space (as discussed in 

the overview section). Figure 5.2 illustrates the CDFG of an 8-point DCT 

application. The CDFG is used to generate the RAT, which is used for 

performing the embedding of security constraints, i.e., digital evidence. In the 

first phase, initially, the IP vendor selected p-bit secret key is used to generate 

the resource configurations (Note: The secret key size (p-bit) depends upon the 

design space size corresponding to the target application. For example, in the 

case of 8-point DCT, the maximum number of adders (AM) and multipliers 

(MM) required for parallel implementation is eight. The resources can be 

generalized to other design types depending on the application. Therefore, the 

exhaustive design space size is (1*8 = 8), i.e., 2
3
. Hence, a 3-bit IP vendor 

selected key can represent 8 resource configurations (RC) in the design space 

of an 8-point DCT. Here, for the sake of brevity, only four resource 

configurations, along with their area and latency, are shown for 
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Fig. 5.2. Control Data flow graph of 8-point DCT 
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p-bit 

key 

RC (IP vendor chosen - key 

controlled) 

Ad (IP 

vendor 

computed) 

Ld (IP 

vendor 

computed) 

011 [1, 4] 327 um2 927 ps 

000 [1, 1] 101 um2 2186 ps 

111 [1, 8] 629 um2 729 ps 

100 [1, 5] 403 um2 927 ps 

 

Table 5.1: Generation of resource configurations and its respective 

area (Ad) and latency (Ld) matrix corresponding to 8-point DCT 

based on IP vendor selected four different p-bit keys 
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demonstration purposes in Table 5.1 based on the p-bit key selected by the IP 

vendor. However, it can be expanded as per the IP vendor's key selection). 

The area (Ad) and latency (Ld) corresponding to key-selected resource 

configurations are computed using the specified module library. Table 5.1 

reports the area and latency corresponding to different key values. 

Fig. 5.3. shows the details of the proposed dispersion matrix generation block. 

In the first step, the generated area (Ad) and latency (Ld) matrix (given in Table 

5.1) is fed as input to the dispersion matrix generation block to extract the 

characteristics of the IP vendor selected design space parameters in terms of 

variance of Ad (var (Ad)), the variance of Ld (var (Ld)), and covariance (cov 

(Ad, Ld)). Next, the mean of the area (𝐴𝑑
̅̅̅̅ ) and latency (𝐿𝑑

̅̅ ̅) is computed in step 

2. (a) and (b). Subsequently, in steps 3. (a) and (b), the mean value of the area 

(𝐴𝑑
̅̅̅̅ ) and latency (𝐿𝑑

̅̅ ̅) 
is subtracted from the area and latency parameter values 

of the resource configurations. Further, the sum of the square of the difference 

corresponding to the design area (∑ (𝐴𝑑𝑖 − 𝐴𝑑
̅̅̅̅ )2𝑛

𝑖=1 ) and latency (∑ (𝐿𝑑𝑖 −𝑛
𝑖=1

𝐿𝑑
̅̅ ̅)2) are computed in step 4. (a) and (b). Post computing the sum of the 

square of the difference, the characteristics of the IP vendor selected design 

space parameters (area (Ad) and latency/delay (Ld)), i.e., var (Ad), var (Ld), and 

cov (Ad, Ld) are computed. Finally, a dispersion matrix is generated 

corresponding to the target application.  

Further, the generated characteristic features (elements of dispersion matrix), 

i.e., var (Ad), var (Ld), and cov (Ad, Ld), are encrypted individually using the 

AES-128 encryption mechanism based on IP vendor chosen 128-bit private 

key for each (128-bit*3 = 384 bits in total). The corresponding encrypted 

values are generated as output. Subsequently, each encrypted output is 

converted into its binary equivalent to generate 128-bit encrypted data 

corresponding to each element of the dispersion matrix.  

Demonstration of generating secret security data from the encrypted 

dispersion matrix corresponding to the 8-point DCT application: 

Step 1. Computation of area (Ad) and latency (Ld) corresponding to IP vendor 

chosen resource configuration: The area and latency corresponding to selected 

resource configurations are shown in Table 5.1. 
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Step 2. (a). Mean computation of design parameter 'Ad': 

𝐴𝑑
̅̅̅̅ = ∑ 𝐴𝑑𝑖

𝑛
𝑖=1                                                                                                                                               (5.1) 

 

Generation of resource configurations based on IP vendor selected p-bit key 

1. Generation initial area (Ad) and delay (Ld) matrix corresponding to 

selected resource configuration using module library 

 

2. (a) Perform mean computation 

of the area (𝐴𝑑
̅̅̅̅ ) 

2. (b) Perform mean computation 

of the latency (𝐿𝑑
̅̅ ̅) 

3. (a) Subtract the area mean (𝐴𝑑
̅̅̅̅ ) 

from all area parameter values 

3. (b) Subtract the latency mean 

(𝐿𝑑
̅̅ ̅) from all latency parameter 

values 

4. (a) Compute sum of the square 

of the differences ∑ (𝐴𝑑𝑖 −𝑛
𝑖=1

𝐴𝑑
̅̅̅̅ )2 

4. (b) Compute sum of the square 

of the differences ∑ (𝐿𝑑𝑖 −𝑛
𝑖=1

𝐿𝑑
̅̅ ̅)2 

5. Estimate variances (𝑉𝑎𝑟(𝐴𝑑)𝑎𝑛𝑑 𝑉𝑎𝑟(𝐿𝑑))  and covariance 

(𝐶𝑜𝑣 (𝐴𝑑, 𝐿𝑑)) and generate dispersion matrix 

Dispersion matrix generation 

IP vendor selected p-bit key 

Fig. 5.3. Details of the proposed dispersion matrix generation block 

To AES encryption block 

 

Generation of resource configurations based on IP vendor selected p-bit key 

1. Generate a square matrices using selected resource configuration 

(preferably 2*2 square matrix is used for generating resource 

configuration square matrix) 

 

2. Compute characteristic scalar values (i.e., eigen values)  

corresponding to the generated resource configuration square matrix  

 

Eigen decomposition block 

IP vendor selected p-bit key 

Fig. 5.4. Details of the proposed eigen decomposition block 

To AES encryption block 

 

Input: (a). 𝑉𝑎𝑟(𝐴𝑑), (𝑏). 𝑉𝑎𝑟(𝐿𝑑)), (c). (𝐶𝑜𝑣 (𝐴𝑑 , 𝐿𝑑)), 

and (d) eigen values corresponding to resource matrices   

Perform encryption of obtained 

characteristics parameters corresponding to 

the target hardware application using AES-

128 and IP vendor chosen encryption key 

Output: Encrypted values of all estimated characteristics 

parameters 

From dispersion matrix 

generation block 

AES Encryption 

block 

IP vendor 

selected key 

encryption key 

Fig. 5.5. Details of the AES encryption block 

From eigen 

decomposition block 

To embedding block 
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𝐴𝑑
̅̅̅̅ =

(327 + 101 + 629 + 403)

4
= 365 

Step 2. (b). Mean computation of design parameter 'Ld': 

𝐿𝑑
̅̅ ̅ = ∑ 𝐿𝑑𝑖

𝑛
𝑖=1                                                                                                 (5.2) 

𝐿𝑑
̅̅ ̅ =

(927 + 2186 + 729 + 927)

4
= 1192.25 = ~1192 

Step 3. (a). Subtract the mean (𝐴𝑑) from all area parameter values: 

 (𝐴𝑑1 −  𝐴𝑑
̅̅̅̅ ), (𝐴𝑑2 −  𝐴𝑑

̅̅̅̅ ), (𝐴𝑑3 −  𝐴𝑑
̅̅̅̅ ), … … … (𝐴𝑑𝑛 −  𝐴𝑑

̅̅̅̅ )            (5.3) 

 (327-365), (101-365), (629-365), (403-365) 

 (-38), (-264), (264), (38) 

Step 3. (b). Subtract the mean (𝐿𝑑) from all latency parameter values: 

 (𝐿𝑑1 −  𝐿𝑑
̅̅ ̅), (𝐿𝑑2 −  𝐿𝑑

̅̅ ̅), (𝐿𝑑3 − 𝐿𝑑
̅̅ ̅), … … … (𝐿𝑑𝑛 −  𝐿𝑑

̅̅ ̅)               (5.4) 

 (927-1192), (2186-1192), (729-1192), (927-1192) 

 (-265), (994), (-463), (-265) 

Step 4. (a). Compute the sum of the square of the differences corresponding to 

the design area: 

𝑆𝐴 = ∑ (𝐴𝑑𝑖 − 𝐴𝑑
̅̅̅̅ )2𝑛

𝑖=1                                                                                   (5.5) 

 SA = (-38)
2
 + (-264)

2 
+ (264)

2
 + (38)

2
 

 (1444 + 69696 + 69696 + 1444) = 142280 

Step 4. (b). Compute the sum of the square of the differences corresponding to 

design latency: 

𝑆𝐿 = ∑ (𝐿𝑑𝑖 − 𝐿𝑑
̅̅ ̅)2𝑛

𝑖=1                                                                                    (5.6) 

 SL = (-265)
2
 + (994)

2 
+ (-463)

2
 + (-265)

2
 

 (70225 + 988036 + 214369 + 70225)= 1342855 

Step 5. Estimate var (Ad), var (Ad), and cov (Ad, Ld): 

𝑉𝑎𝑟(𝐴𝑑) =
∑ (𝐴𝑑𝑖−𝐴𝑑̅̅ ̅̅ )2𝑛

𝑖=1

𝑛−1
                                                                               (5.7) 

 
  

 𝑉𝑎𝑟(𝐴𝑑) =  (
142280

3
) = 47426.66 = ~48000  



106 

𝑉𝑎𝑟(𝐿𝑑) =
∑ (𝐿𝑑𝑖−𝐿𝑑̅̅̅̅ )2𝑛

𝑖=1

𝑛−1
                                                                                (5.8) 

 
  

 𝑉𝑎𝑟(𝐿𝑑) =  (
1342855

3
) = 447618.33 = ~448000  

𝐶𝑜𝑣 (𝐴𝑑 , 𝐿𝑑) = ∑
(𝐴𝑑𝑖− 𝐴𝑑̅̅ ̅̅ )×(𝐿𝑑𝑖− 𝐿𝑑̅̅̅̅ )

𝑛−1

𝑛
𝑖=1                                                         (5.9) 

Now, perform the multiplication of the corresponding pair's values obtained in 

steps 3. (a) and 3. (b). 

 {(-38)×(-265)}, {(-264)×(994)}, {(264)×(-463)}, {(38)×(-265)} 

 {10070}, {-262416}, {-122232}, {-10070} 

Next, perform a summation of the above-obtained values to estimate 

𝐶𝑜𝑣 (𝐴𝑑 , 𝐿𝑑). 

 (10070-262416-122232-10070) 

 (-384648) 

  𝐶𝑜𝑣 (𝐴𝑑 , 𝐿𝑑) = (
−384648

4−1
) =  −128216  

Finally, the generated dispersion matrix is:   

𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 (𝐷𝑀) =

[

∑ (𝐴𝑑𝑖−𝐴𝑑̅̅ ̅̅ )2𝑛
𝑖=1

𝑛−1
∑

(𝐴𝑑𝑖− 𝐴𝑑̅̅ ̅̅ )×(𝐿𝑑𝑖− 𝐿𝑑̅̅̅̅ )

𝑛−1

𝑛
𝑖=1

∑
(𝐴𝑑𝑖− 𝐴𝑑̅̅ ̅̅ )×(𝐿𝑑𝑖− 𝐿𝑑̅̅̅̅ )

𝑛−1

𝑛
𝑖=1

∑ (𝐿𝑑𝑖−𝐿𝑑̅̅̅̅ )2𝑛
𝑖=1

𝑛−1

]  

𝐷𝑀 = [
𝑉𝑎𝑟(𝐴𝑑) 𝐶𝑜𝑣 (𝐴𝑑, 𝐿𝑑)

𝐶𝑜𝑣 (𝐴𝑑 , 𝐿𝑑) 𝑉𝑎𝑟(𝐿𝑑)
]  

𝐷𝑀 = [
48000 −128216

−128216 448000
]  

Next, the elements of DM are encrypted using the IP vendor chosen 

encryption key. For example, the first 128-bit IP vendor chosen encryption 

key used to encrypt 𝑉𝑎𝑟(𝐴𝑑) is "aaaaabbbbbcccccd". Similarly, the 

remaining 256 bits out of 384 bits are used to encrypt 𝑉𝑎𝑟(𝐿𝑑) and 

𝐶𝑜𝑣 (𝐴𝑑 , 𝐿𝑑). 

Var(Ad) 
NE

 = 48000, (here NE: non-encrypted).  

Var(Ad) 
E
 = 3b3cbe38153eaa9e73c4721249a570e1, (here E: encrypted). 
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Var(Ld) 
NE

 = 448000 

Var(Ld) 
E
 = 42d86f986c536e33fe35f6963f5094d1. 

Cov(Ad, Ld) 
NE

 = -128216 

Cov(Ad, Ld) 
E
 = fff7b1da0a087f666f1dbcdb3f84be32. 

5.2.3. Extracting secret security data from encrypted eigenvalues 

representing hardware design space characteristics 

In the second phase, the IP vendor selected resource configurations are fed as 

input to the eigen decomposition block to extract the characteristics of the 

design space w.r.t. the target hardware application in terms of eigen values (λn) 

or characteristic roots. Fig. 5.4. shows the details of the proposed eigen 

decomposition block. Initially, square matrices are generated using the IP 

vendor selected resource configurations. The generated square matrices are 

used to compute the characteristic roots (i.e., eigen roots) corresponding to 

selected resource configurations of the design space. The aim of this phase is 

to derive secret security constraints from the above-extracted characteristics 

eigen values. The generic representation of resource configuration square 

matrices for extracting eigen roots are as follows: 

 𝐴 = [
𝑃𝑥

1 𝑃𝑦
1

𝑃𝑥
2 𝑃𝑦

2], 𝐵 = [
𝑃𝑥

3 𝑃𝑦
3

𝑃𝑥
4 𝑃𝑦

4]     

 Further, eigen roots are computed as follows: 

 𝑑𝑒𝑡 (𝜆 [
1 0
0 1

] − [
𝑃𝑥

𝑔
𝑃𝑦

𝑔

𝑃𝑥
ℎ 𝑃𝑦

ℎ
]) = 0 

 𝑑𝑒𝑡 ([
𝜆 − 𝑃𝑥

𝑔
−𝑃𝑦

𝑔

−𝑃𝑥
ℎ 𝜆 − 𝑃𝑦

ℎ
]) = 0 

 (((𝜆 − 𝑃𝑥
𝑔

) ∗ (𝜆 − 𝑃𝑦
ℎ)) − (𝑃𝑦

𝑔
∗ 𝑃𝑥

ℎ)) = 0                                   (5.10) 

For example, the generated square matrices corresponding to the 8-point DCT 

application are: 

𝐴 = [
1 4
1 1

], 𝐵 = [
1 8
1 5

]         
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Subsequently, the eigen values or characteristic roots corresponding to 

generated matrices (i.e., A and B) are computed. The obtained eigen values 

corresponding to square matrices 'A' and 'B' are as follows: 

 det (λI – A) = 0 

 𝑑𝑒𝑡 (𝜆 [
1 0
0 1

] − [
1 4
1 1

]) = 0 

 𝑑𝑒𝑡 ([
𝜆 − 1 −4

−1 𝜆 − 1
]) = 0 

 𝜆2 − 2𝜆 − 3 = 0 

 𝜆1 = 3 𝑎𝑛𝑑 𝜆2 = −1  

Similarly, 

 det (λI – B) = 0 

 𝑑𝑒𝑡 (𝜆 [
1 0
0 1

] − [
1 8
1 5

]) = 0 

 𝑑𝑒𝑡 ([
𝜆 − 1 −8

−1 𝜆 − 5
]) = 0 

 𝜆2 − 6𝜆 − 3 = 0 

𝜆3 = 6.46 𝑎𝑛𝑑 𝜆4 = −0.46  

Further, as discussed in the overview subsection, the obtained characteristic 

roots corresponding to the IP vendor selected design space are encrypted using 

the AES-128 encryption mechanism. Fig. 5.5. Details of the AES encryption 

block. Next, all encrypted values are converted into binary equivalents to 

generate secret data corresponding to all design space characteristic roots. The 

final secret data corresponding to all four characteristic roots are: 

λ1
NE

 = 3  

λ1
E =

 917ebc40242d1c2c362b04130ae4a4a7.  

λ1
E
 = 10010001011111101011110001000000001001000010 

110100011100001011000011011000101011000001000001001100001010111

001001010010010100111. 

λ2
NE

 = -1  

λ2
E =

 c8a3f97a72afd4dfafdfa7ea3d2ebdff.  
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λ2
E
 = 11001000101000111111100101111010011100101010 

111111010100110111111010111111011111101001111110101000111101001

011101011110111111111. 

λ3
NE

 = 6.46  

λ3
E =

 f88ded1ad977335078eca9d1a69b069c.  

λ3
E
 = 11111000100011011110110100011010110110010111 

011100110011010100000111100011101100101010011101000110100110100

110110000011010011100. 

λ4
NE

 = -0.46  

λ4
E =

 0eae40a1008f6b1f735c04ddb48438e9.  

λ4
E
 = 00001110101011100100000010100001000000001000 

111101101011000111110111001101011100000001001101110110110100100

001000011100011101001. 

5.2.4. Generation and embedding of final mathematical watermark 

After generating the encrypted secret data corresponding to all seven 

characteristic parameters, the secret data is concatenated according to the IP 

vendor selected concatenation rule to generate a final encrypted signature. The 

IP vendor selected concatenation rule for the proposed approach is Var(Ad) 
E
 || 

Var(Ld) 
E
 || Cov(Ad, Ld) 

E
 || λ1

E
 || λ2

E
 || λ3

E
 || λ4

E
, where || is the concatenation 

operator. Note: The concatenation order can vary as per the IP vendor's choice. 

The final obtained encrypted signature is: 

"00111011001111001011111000…………………00011100011101001 (896-

bit). Subsequently, the generated encrypted signature is transformed into 

covert hardware security constraints using the IP vendor chosen 

encoding/mapping mechanism for embedding into the design. The IP vendor 

chosen encoding mechanism used in the proposed approach is as follows, 

where C0 and C1 represent the covert hardware security constraints, <Lx, Ly> 

denotes the storage variable pairs in the RAT of the design: 

C0 = {(L2a,L2b), a, b ε W and (0≤a≤m), (0≤b≤n)}                                       (5.11)                                                                                                     

C1 = {(L2a+1,L2b+1), a, b ε W and (0≤a≤s), (0≤b≤t)}                                   (5.12)                                                                                                  
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For incoming bit '0', covert security constraints are generated using C0, 

otherwise using C1. The upper limits of 'a' are 'm' and 's', respectively, while 

the upper limits for 'b' are 'n' and 't'. The upper limit depends on the maximum 

number of storage variables in the target application's SDFG.  

For example, using the above representation, the determined secret hardware 

security constraints for 8-point DCT can be obtained as follows: <L0, L2>, 

<L0, L4>--<L0, L30>, <L2, L4>--<L2, L30>, <L4, L6>--<L4, L30>, <L6, 

L8>--<L6, L30>, <L8, L10>--<L20, L28>, <L1, L3>, <L1, L5>--<L1, 

L29>,<L3, L5>--<L3, L29>,<L5, L7>--<L27, L29>. These generated 

security constraints are embedded into the design of the 8-point DCT 

application. Note: The generated encrypted signature is stored in a secure 

database, which is used to validate/verify the authenticity of the IP and 

original IP owner.  

5.3. Demonstration 

Fig. 5.6. shows the details of the proposed watermark embedding process. At 

first, the CDFG is scheduled using IP vendor selected resource configuration 

for scheduling and LIST scheduling algorithm to generate a SDFG. As 

discussed in earlier sections, an initial register allocation table is generated 

using the SDFG of the target hardware application, which is further used to 

 

Conversion of each encrypted parameter values into its binary equivalents  

Generation of covert hardware 

security constraints using IP 

vendor specified 

mapping/embedding rules  

CDFG of hardware 

application 

SDFG of hardware 

application 

Register allocation table (RAT) 

generation  

Embedding of security constraints 

in the initial register allocation 

table of target hardware design  

Security constraints embedded 

secured target hardware IP core  

Concatenation of the binary values of encrypted parameters as per IP 

vendor’s concatenation rule  

Final output: Secured hardware IP core using proposed 2-D design 

parameter driven encrypted dispersion matrix and eigen decomposition 

based security framework 

Embedding block 

LIST Scheduling 

algorithm, and IP 

vendor chosen 

resource constraint 

Fig. 5.6. Details of the proposed watermark embedding process 

Datapath and controller synthesis  

Input from AES encryption block 
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perform embedding of generated secret security constraints. The security 

constraints are added as additional edges in the initial RAT of the target 

hardware application. Embedding security constraints into the initial RAT 

must satisfy the security constraints obtained earlier. No two storage variables 

associated with the incoming security constraint can be allocated to the same 

register. In case of storage variable allocation conflict while embedding 

security constraints, either a local alteration of registers is performed, or 

allocation of the new register is made. Post embedding the generated hardware 

security constraints, the final secured RAT corresponding to the target 

application now contains the IP vendor's secret digital evidence. This secured 

RAT is further used to generate the respective secure RTL datapath. The 

embedding of the digital evidence acts as a detective countermeasure against 

IP piracy and false IP ownership by an attacker in the SoC design house. The 

RAT corresponding to the 8-point DCT is shown in Table 5.2 (initial and final 

positions of registers before and after embedding security constraints are 

depicted with black and red colors, respectively).  

5.4. Validation and Detection 

5.4.1. Validation of secured design 

The proposed methodology utilizes the secret watermarking constraints of 

original IP vendor during the validation and detection of authentic (secured). 

The goal of this chapter is to provide robust validation of secured IP designs. 

For accomplishing this, the watermark constraints are extracted from the 

design-under-test (DUT) chip and matched with the originally embedded 

watermark security constraints of the IP design. From the extracted layout 

design file of the DUT chip, through reverse engineering, the IP core register 

transfer level (RTL) files are obtained. Finally, the watermarking constraints 

are extracted from the IP core RTL file (hardware description language code) 

for matching. In case of a complete match, validation of authentic/secured 

designs is complete. 

5.4.2. Resolving IP ownership conflicts and detecting IP piracy 

In case of IP ownership conflict, it is assumed that the attacker (in SoC house) 

and defender (original IP vendor) have access to the contested IP design. The 
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proposed security approach facilitates a seamless IP ownership conflict 

resolution using the digital evidence implanted as watermarking constraints. 

For accomplishing this, the watermark proof is established by extracting the 

secret watermarking constraints from the RTL file (hardware description 

language code) of the IP design-under-test and matched with the original 

watermark constraints embedded. Only a genuine IP vendor would be able to 

successfully match his/her watermark security constraints with the extracted 

watermark constraints of the IP design to prove ownership in IP court. On the 

CS Red(R) Green 

(G) 

Indigo 

(I) 

Blue 

(BL) 

Yellow 

(Y) 

Black 

(B) 

Violet 

(V) 

Pink 

(P) 

Lime 

(LI) 

Olive 

(O) 

Aqua 

(A) 

Teal 

(T) 

Grey

(Gr) 

Magenta

(M) 

Silver 

(S) 

Khaki 

(K) 

0 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 

1 L16/L17 L17 
/L16 

L2 L3 L4 L5 L6 L7 - - - - - - - - 

2 L24 - L18 

/L19 

L19 

/L18 

L4 L5 L6 L7 - L24 - - - - - - 

3 L25 - L19 L19 L20 
/L21 

L21 
/L20 

L6 L7 L25 - - - - - - - 

4 L26 - - - L20 

/L21 

L21 

/L20 

L22 

/L23 

L23 

/L22 

- L26 - - - - - - 

5 L27 - - - L21 L21 L22 
/L23 

L23 
/L22 

- - L27 - - - - - 

6 L28 - - - - - L22 

/L23 

L23 

/L22 

- L28 - - - - - - 

7 L29 - - - - - L23 L23 - - - L29 - - - - 

8 L30 - - - - L30 - - - - - - - - - - 

 

Table 5.2: Register allocation table pre and post embedding generated signature 
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contrary, an attacker would fail to successfully regenerate the watermark 

security constraints and match them with the extracted constraints to prove IP 

ownership in IP court. This is due to the multiple security layers, such as IP 

vendor selected parameters and convoluted mathematical computations in the 

security constraints generation process, which increases the complexity for an 

attacker during the watermark regeneration process. Further, to detect IP 

piracy, a genuine IP vendor can match the original watermark security 

constraints with the extracted watermark (security constraints) of the 

suspected chip under test. In case of a match, IP piracy is detected. 

5.5. Summary 

This chapter presented a 2D design parameter-based encrypted dispersion 

matrix, coupled with eigen decomposition security framework to secure 

hardware IPs against IP piracy and false IP ownership claim. The threat model 

assumes the IP vendor as the defender and the SoC integrator as the attacker. 

The methodology employs IP vendor-specific resource configurations, a 

dispersion matrix, eigen decomposition, and AES encryption to generate a 

tamper-resistant mathematical watermark signature. This watermark, 

embedded in hardware IP designs, provides detective control against piracy 

and fraudulent claim. Experimental results (discussed in Chapter 9) show the 

approach significantly improves security in terms of probability of 

coincidence, tamper tolerance, and entropy, with minimal impact on design 

cost overhead. 
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Chapter 6 

Securing GLRT Cascade Hardware IP using IP 

Seller’s Fingerprint and CIG Framework for ECG 

Detector 

The accurate detection of cardiovascular diseases (CVDs) is critical due to the 

increasing incidence of heart-related issues such as arrhythmias, heart failure, 

etc. Timely and precise diagnosis is essential to ensure effective treatment and 

prevent potential complications in the future. One commonly used device for 

this purpose is the electrocardiogram (ECG) detector, which monitors heart 

activity by recording electrical signals through electrodes placed on the body. 

These signals, displayed as ECG waveforms, are analyzed by healthcare 

professionals to assess the heart's condition. The ECG detector is also a key 

component of cardiac pacemakers, which regulate the heart's rhythm in 

patients with certain cardiac conditions. For example, Table 6.1 reports the 

acquired ECG data of patient X from the department of non-invasive 

cardiology of cardiology research laboratory. Note: the data has been 

recovered ethically with the consent of the respective patient. It depicts the 

normal ECG parameter range [108], [109] and the acquired values. An ECG 

detector contains several important components that facilitate its operation, 

including the GLRT (generalized likelihood ratio test) unit, filtering unit, and 

analog-to-digital converter. Among these, the generalized likelihood ratio test 

(GLRT/QRS detector) unit is responsible for analyzing the QRS wave 

complex to estimate heart rate [110]-[113]. Due to its critical role in 

processing intensive computations, it is essential to design the GLRT unit as a 

reusable hardware IP core. HLS aids in developing the GLRT unit as a secure 

and efficient IP core, making it suitable for integration into SoC within ECG 

detector. 

However, ensuring the safety and security of the GLRT hardware IP core is 

paramount. Pirated/unauthorized or counterfeit versions of this hardware can 

introduce serious risks, such as inaccurate heart data measurements or 

malfunctioning of the ECG device, which can have life-threatening 

consequences for patients. Given that the GLRT unit is also integral to the 

functioning of cardiac pacemakers, which remain in the body for extended 
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periods, the importance of using secure and authenticated versions of this 

hardware cannot be overstated. Furthermore, counterfeit hardware can also 

lead to fraudulent ownership claim, further complicating the medical device 

industry. Therefore, securing the GLRT hardware design is critical for the safe 

operation of these life-saving devices. 

This chapter presents a novel secure hardware IP of GLRT cascade using color 

interval graph (CIG) based embedded fingerprint, for ECG detector. The 

proposed approach discusses designing GLRT micro and GLRT cascade 

hardware IP core for ECG detectors for the first time in literature. The first 

section of the chapter outlines the overview, threat model and motivation of 

the proposed approach. The second section discusses the details of proposed 

CIG-based secure HLS flow using IP seller’s fingerprint for generating secure 

GLRT cascade hardware IP. Following this, the third section illustrates the IP 

piracy detection and resolution of false IP ownership claim process. Lastly, the 

fourth section provides the chapter's conclusion.. 

6.1. Overview, Threat Model, and Motivation 

Fig. 6.1. ECG wave recorded through electrode for reference; PR interval - 

duration    between onset of atrial depolarization and ventricular depolarization; 

QT interval - duration between onset of ventricular depolarization and end of 

ventricular repolarization 

  

  

ECG parameters Normal ECG parameter 

range 

Acquired ECG data 

Parameter 

name 

Value  Parameter 

name 

Value  

Heart Rate (HR) HR 60-100 

bpm 

HR 75 bpm 

PR Interval 

(PRI) 

PRI 0.1 sec - 

0.2 sec 

PRI 0.138 sec 

QRS Interval 

(QRSI) 

QRSI 0.07 sec - 

0.10 sec 

QRSI 0.072 sec 

QT Interval 

(QTI) 

QTI 0.36 sec - 

0.44 sec 

QTI 0.34 sec 

QTC Interval 

(QTCI) 

QTCI 0.36 sec - 

0.44 sec 

QTCI 0.382 sec 

 

Table 6.1: Acquired ECG data of patient X, is age: 69Y 6M 3D, gender: male, 

report date: 05/may/2023 04:27 pm from department of non-invasive cardiology 

of cardiology research laboratory 

Note: Significance of abnormal range (>upper limit): Cardiovascular disorder 

such as arrhythmias, atrial enlargement, Wolff-Parkinson-white syndrome), 

myocardial ischemia, ventricular hypertrophy, heart failure, hypertrophic 

cardiomyopathy long QT syndrome, etc.  
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6.1.1. Overview of ECG detector (GLRT cascade) 

An ECG detector consists of several key components, including a filtering 

unit, noise detector, GLRT cascade unit, summer, and threshold processing 

unit. It is primarily used to detect ECG parametric data (shown in Table 6.1), 

which helps evaluate heart activity by analyzing signals captured through 

electrode leads. The filtering unit generates both monophasic (single-

direction) and biphasic (two-direction) pulse outputs, which are then sent to 

the GLRT unit to identify the presence of the R wave, a key part of the heart's 

electrical cycle. The GLRT cascade outputs are summed and compared using a 

threshold processing function, allowing the device to distinguish between 

cardiac signals and various noise interferences, such as muscle artifact, power 

line interference, and baseline wander. An ECG waveform, as shown in Fig. 

6.1, consists of several segments: the P-wave, QRS complex (comprising Q, 

R, and S waves), and the T-wave. These waves, along with intervals like the 

PR interval (from atrial to ventricular depolarization) and the QT interval 

(from ventricular depolarization to repolarization), provide critical insights 

into heart function. Accurate detection of the QRS complex, particularly the R 

wave, is a challenge due to the heart’s dynamic behavior and physiological 

variations, making the GLRT unit vital for reliable heart signal interpretation 

in both diagnostics and cardiac pacemaker devices. 

GLRT overview: The GLRT cascade unit processes filtered signals to evaluate 

heart rate by analyzing outputs from a wavelet filter bank (WFB) and 

Filtering process 

GLRT 

Cascade 

stage 2 

GLRT 

Cascade 

stage 1 

Summer and threshold function 

processing for ECG detector 

Noise  
detector 

  

WF1--WF3 WF4--WF6 

----------- 

Output 

-- 

------- 

Input 

Fig. 6.2. Proposed secure hardware IP of GLRT cascade for 
ECG detector  

Secure 

hardware IP 
 

Electrodes  

Secure 

hardware IP 
 

-- 
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detecting the presence of the QRS complex. This is achieved through 

maximum likelihood estimation, using hardware components like delays, 

multipliers, and adders. As illustrated in Fig. 6.2, each GLRT cascade unit in 

an ECG detector consists of two stages, each containing three GLRT micro 

units. The CDFG ([110]-[112]) outlines the operational flow of these units, as 

shown in Fig. 6.3 and Fig. 6.4. In stage 1 of the GLRT cascade, primary inputs 

from the filter unit (WF1, WF2, WF3) are processed by the three GLRT micro 

units. Each unit uses specific coefficients (C12, C22, C32 for micro unit 1; 

C11, C21, C31 for micro unit 2; and C13, C23, C33 for micro unit 3) to 

perform computations. The output of each micro unit is passed sequentially to 

the next unit. Similarly, stage 2 of the GLRT cascade processes inputs WF4, 

WF5, and WF6 in the same manner. Finally, the outputs from the GLRT 

cascade stages are summed and compared using a threshold processing unit, 

Fig. 6.3. GLRT DFG of proposed micro IP 

Fig. 6.4. GLRT cascade DFG of proposed macro IP 
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which helps differentiate between cardiac and noise signals. 

6.1.2. Threat model 

The proposed approach offers a security measure to detect and prevent the 

integration of pirated GLRT IP cores into SoC designs for ECG detectors. The 

presence of pirated/counterfeited GLRT hardware IP in an ECG detector can 

pose serious risks to patient safety, as these versions are often untested and 

may contain malicious logic. The attacker responsible for creating pirated IPs 

are typically competitors aiming to harm the reputation of the original vendor. 

This not only undermines the credibility of the legitimate IP vendor but also 

endangers patients who rely on accurate and reliable heart monitoring devices. 

6.1.3. Motivation 

Designing the GLRT unit of an ECG detector as a reusable hardware IP core is 

essential due to its role in detecting the QRS complex through computationally 

intensive tasks on filtered data. Further, ensuring the safe and reliable 

performance of the GLRT hardware IP core is crucial for accurate detection of 

cardiac signals and ECG parameters. Pirated GLRT hardware IPs pose 

significant risks, as they may contain malicious logic and are not subjected to 

rigorous testing, leading to potentially fatal consequences for patients. This 

issue arises due to the involvement of untrustworthy third-party vendors and 

manufacturers, increasing the risk of security breaches. Additionally, the ECG 

detector is a critical component in cardiac pacemakers, making the use of 

secure GLRT hardware IP cores essential for their proper functioning. The 

proposed approach provides a detective security measure, allowing only 

authentic IP versions to be integrated into the system. 

6.2. CIG-based Secure HLS Flow Using IP Seller’s 

Fingerprint for Generating Secure GLRT Cascade 

Hardware IP 

6.2.1. Deriving the GLRT dataflow graph from its transfer function 

The GLRT dataflow graph is initially extracted from its corresponding transfer 

function. The transfer function of GLRT using Mallat's algorithm is adopted 

from [110]-[112]: 
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𝑍(𝑎) = 𝑠𝑇(𝑛)𝐻(𝐻𝑇𝐻)−1𝐻𝑇𝑠(𝑛)                                                                (6.1) 

where, s(n) is the input to the filtering unit and H is the linear combination 

matrix of the representative function. Here, 𝐻 is a 1×6 matrix, s(n) is a 1×6 

matrix, s
T
(n) is a 6×1 matrix and (𝐻𝑇𝐻) is a 6×6 matrix [118]. The extracted 

CDFG of GLRT and its cascaded representation are illustrated in Figures 6.3 

and 6.4 respectively. WF1, WF2, and WF3 are the outputs of the filtering unit, 

and C11-C33 is the coefficients of the linear combination matrix H. The 

extracted CDFG is fed as input to the scheduling allocation and binding block 

of HLS to generate its corresponding SDFG. The details of the proposed CIG 

generation from SDFG and fingerprint biometric based hardware security are 

discussed in the next subsection.   

6.2.2. Creation of covert fingerprint biometric watermark signature 

A fingerprint biometric-based covert signature/watermark is generated using 

the IP vendor's fingerprint to ensure security of GLRT IP core design. Fig. 6.5 

shows the fingerprint watermark generation process. The process begins with 

capturing the IP vendor's fingerprint through a high-quality optical scanner in 

a secure, dust-free environment. The fingerprint must be clean, free from 

injuries, and properly scanned to capture all critical features like ridge angles 

and bifurcations. After the capture, the fingerprint undergoes preprocessing 

steps such as binarization, thinning, and Fast Fourier Transform (FFT) 

enhancement. These steps are crucial for improving the fingerprint image, 

enabling the identification of unique minutiae points—key elements that 

distinguish fingerprint features like ridges and valleys. Binarization converts 

the fingerprint image into a binary form, where pixels are assigned values of 0 

or 255 based on a threshold, while thinning reduces the ridge line thickness to 

enhance clarity. FFT enhancement helps in reconnecting broken ridges and 

improving overall fingerprint structure. Once preprocessing is complete, 

minutiae points are generated and classified based on their features, such as 

bifurcation or ridge ending. The fingerprint is then placed under an IP vendor-

specified grid to extract vital parameters: x and y coordinates, minutiae type, 

and ridge angle. The proposed approach employs a crossing number (Cr) 

algorithm to extract the respective minutiae points [119]. Fig. 6.6 shows the 
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neighboring image pixels of image pixel I. The crossing number 

corresponding to a fingerprint image pixel I is formulated as [119]: 

𝐶𝑟 = 0.5 ∑ |𝐼𝑘 − 𝐼𝑘+1|8
𝑘=1                                                                              (6.2)                                             

where Ik is the neighborhood pixel value of pixel I (depicted in the above 3x3 

pixel matrix). A minutiae point is classified into (a) bifurcation and (b) ridge 

ending. The minutiae point with crossing number 3 is a bifurcation, and 

crossing number 1 is a ridge ending. The four crucial parameters (x and y 

coordinates, minutiae type, and ridge angle) corresponding to each generated 

minutiae point is extracted. Each of these values is then converted into binary 

format and concatenated using a specific rule defined by the IP vendor (x-

coordinate |+| y-coordinate |+| minutiae type number |+| ridge angle, where |+| 

is a concatenation operator). This concatenation of binary strings, arranged by 

minutiae point number, generates the final fingerprint-based digital template 

Fig. 6.5. Proposed fingerprint digital template generation process extracted from captured IP  

vendor’s fingerprint, (a) input IP sellers fingerprint image, (b) binarized fingerprint image, (c) 

thinned fingerprint image, (d) minutiae points generation on fingerprint image, (e) details of 

generated minutiae points parameters, (f) generated fingerprint biometric based digital template.  

Fig. 6.6. Image matrix representing neighboring pixels of image pixel I 
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or covert signature (shown in Fig. 6.5). The final watermark/signature serves 

as a unique identifier for the IP vendor, ensuring that only the authentic 

hardware IP core passes validation checks. 

Note: The fingerprint biometric is securely stored in an encrypted format, 

removing the need for re-capturing during the detection and validation 

process. During the IP piracy detection process, evasion by an attacker is not 

possible as he/she is unable to regenerate the fingerprint biometric digital 

template for embedding into his/her fake versions, thus failing in the hardware 

IP core authentication process. Thus, the proposed approach effectively 

safeguards the GLRT hardware IP core by embedding the fingerprint 

biometric, ensuring that only legitimate versions are integrated, and preventing 

hardware IP piracy.  

6.2.3. Generation and embedding of watermarking constraints 

The proposed secure HLS flow uses a colored interval graph of the HLS 

framework and fingerprint biometric based hardware security methodology to 

Fig. 6.7.  (a) SDFG of GLRT micro IP using one adder (+) and two multipliers (*) 

post embedding   fingerprint signature , (b) SDFG of GLRT cascade macro IP 

scheduled using three multipliers and two adders post embedding fingerprint 
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generate a secure GLRT hardware IP core for ECG detector. As discussed 

above in the overview subsection, the transfer functions of GLRT micro and 

GLRT cascade generates its corresponding CDFG. The generated CDFG is 

fed as the primary input to the scheduling, allocation, and binding (SAB) 

block of HLS with IP vendor specific resource constraints and scheduling 

algorithm (such as LIST scheduling) as additional inputs. The final output of 

the SAB block is an SDFG with registers allocated in different control steps. 

An SDFG corresponding to micro GLRT and GLRT cascade with register 

allocations is depicted in Figures 6.7 (a) and (b), respectively. Registers are 

storage units that store input, intermediate, and output variable values during 

the computation of the GLRT unit. Post SDFG creation, an initial CIG is 

generated using register allocation information of the created GLRT SDFG. 

CIG is a graphic representation of register allocation information of the GLRT 

SDFG. The initial CIG (i.e., pre-embedding fingerprint signature based secret 

security constraints) corresponding to micro GLRT and GLRT cascade are 

shown in Figures 6.8 (a) and (b). The obtained initial CIG is used for 

performing the embedding of fingerprint based secret hardware security 

constraints. The presence of the IP vendor's fingerprint based covert signature 

into the design of GLRT hardware IP core guards it against piracy and false 

claim of IP ownership problems. The obtained digital fingerprint template 

(comprising of 227 number of zeros and 311 number of ones) is initially 

converted into secret hardware security constraints using IP vendor specific 

mapping or embedding rule. The IP vendor specific embedding rule is as 

follows: 

𝑆0 = (𝐺(2𝑠), 𝐺(2𝑟))                                                                                    (6.3) 

where, 2s, 2r are whole numbers and (0 ≤s ≤9), (1≤ r ≤20) 

𝑆1 = (𝐺(2𝑠 + 1), 𝐺(2𝑟 + 1))                                                                       (6.4) 

where (0≤ s ≤18), (1≤ r ≤19) 

The symbols G(2s) and G(2r) represent the storage variables in the scheduled 

data flow graph. The limits of s and r depend on the maximum storage 

variables used in GLRT SDFG. For bit 0, covert security constraints are 

generated using S0, otherwise using S1. 
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The storage variables in the SDFG are sorted in ascending order and stored in 

a list. Post sorting, the mapping/embedding rule is applied to generate the 

encoded security constraints using equations (6.3) and (6.4), respectively. 

Therefore, the obtained secret security constraints are as follows: (G0, G2), 

(G0, G4)--(G0, G40), (G2, G4)--(G2, G40), (G4, G6)--(G4, G40), (G6, G8)--

(G6, G40), (G6, G8)--(G6, G40), (G8, G10)--(G18, G40), (G1, G3), (G1, G5)-

-(G1, 39),(G3, G5)--(G3, G39),(G5, G7)--(G37, G39).  

Hence, corresponding to 227 number of zeros, 227 security constraints of 

storage variables are obtained (ranging from (G0, G2)---(G18, G40)). 

Similarly, corresponding to 311 number of ones, 311 security constraints of 

storage variables are obtained (ranging from (G1, G3)---(G37, G39)). Note: As 

evident, these secret security constraints are extracted using the 

mapping/embedding rule of the IP vendor and is a function of the fingerprint 

signature obtained. The obtained secret hardware security constraints are 

embedded into the initial CIG of the micro GLRT and GLRT cascade. No 

Fig. 6.8. (a) CIG (pre and post embedding fingerprint) corresponding to secure GLRT 

micro IP core, (b) CIG (pre and post embedding fingerprint) corresponding to secure 

GLRT macro IP core 
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additional changes are made if an edge is already present in the CIG 

corresponding to incoming secret security constraints. However, in the 

absence of the edge between storage variables of incoming hardware security 

constraints, an additional edge in the corresponding CIG is added (depicted in 

red color in Fig. 6.8 (a) and (b)). Post embedding of an additional artificial 

edge, a color swapping (i.e., local alteration) between registers is performed if 

the additional embedded edge's storage variables are allocated on the same 

colored register. The storage variables of embedded security constraints 

cannot be allocated on the same colored register. Moreover, a new color 

register is also allocated to resolve the raised conflict if no local alteration is 

possible. Figures 6 (a) and (b) depict the final CIG post embedding all 

determined security constraints corresponding to micro GLRT and GLRT 

cascade, respectively. As shown in Fig. 6.8 (a), storage variables G0 and G12 

are allocated on the red color register. However, due to additional artificial 

edge (G0, G12) (i.e., security constraints), the color of G12 is changed to 

orange. Similarly, all required alterations are performed post-embedding all 

security constraints in the CIG of micro GLRT and GLRT cascade. Note: 

Artificial edges (imposed security constraints) do not alter the functionality of 

an IP core because these artificial edges are only responsible for local 

Fig. 6.9. Secure RTL design of GLRT cascade macro IP core with CIG 

based embedded fingerprint 
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alteration of registers corresponding to storage variable assignment. These 

imposed security constraints do not affect the dataflow connectivity of the 

SDFG corresponding to the IP core functionality. Therefore, due to embedding 

of the security constraints, the functional units and its interconnectivity remain 

unaffected (only the register sharing is locally altered). Further, Figures 6.7 (a) 

and (b) illustrate the SDFG of micro GLRT and GLRT cascade post-

embedding hardware security constraints. Moreover, Fig. 6.9 and 6.10 depict 

the secure RTL datapath corresponding to the micro GLRT hardware IP core 

and GLRT cascade macro hardware IP core for the ECG detector. The final 

generated RTL of GLRT hardware IP core contains security constraints in the 

form of altered register colors.  

6.3. Identifying Pirated GLRT Hardware IP Cores for ECG 

Detectors 

The presence of fingerprint biometric based digital evidence helps in making a 

clear distinction between authentic and fake (i.e., pirated) versions of GLRT 

hardware IP cores. While conducting piracy detection, the security constraints 

corresponding to the IP vendor's fingerprint template are initially regenerated. 

The regenerated information is matched with the register allocation 

Fig. 6.10. Secure RTL design of GLRT cascade macro IP core with CIG based 

embedded fingerprint 
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information of GLRT hardware IP's RTL datapath under test. The authentic 

version will exhibit a complete matching of security constraints; otherwise, the 

version is considered pirated.  

It is crucial to protect the designed GLRT hardware IP core for the ECG 

detector from an adversary's false claim of IP ownership problem. An 

adversary located at an untrustworthy offshore design or fabrication house can 

falsely claim hardware IP ownership right. The IP vendor's digital fingerprint 

template embedded in the design (i.e., CIG) of GLRT hardware IP core 

safeguards it from the adversary's false claim of IP ownership. Authentic IP 

vendor can easily nullify the false claim of IP ownership by matching the 

embedded digital fingerprint constraints (in the GLRT RTL IP under test) with 

the original one (minutiae points pre-stored in a secure database in an 

encrypted format or can be regenerated as explained above in the previous 

subsection). In case of complete matching, ownership is awarded to the 

original IP vendor. Note: In the proposed approach, the embedded fingerprint 

biometric is stored in a secure database in an encrypted format for detection 

and validation process later. Therefore, recapturing of the fingerprint 

biometric data is not required for the detection and validation process.  

6.4. Summary 

This chapter presented a secure design methodology for GLRT cascade 

hardware IP core, integrated with CIG-based fingerprint biometric. 

Embedding the IP seller’s fingerprint based watermark ensures clear 

distinction from pirated versions, allowing only authenticated cores to be 

integrated into ECG detectors. This is critical for patient safety, as the use of 

counterfeit versions could lead to hazardous outcomes. The proposed approach 

ensures reliable and secure ECG detector functionality, which is essential for 

accurately analyzing a patient's heart condition and preventing risks associated 

with counterfeit components. The experimental evaluation of the proposed 

approach is discussed in Chapter 9. 
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Chapter 7 

Exploiting Voice Biometric-Based Watermarking 

Framework for Securing Hardware IP Cores 

IP cores play a crucial role in numerous industries, including consumer 

electronics, healthcare, information technology, military, and aerospace. The 

current electronic design cycle often involves offshore entities to reduce 

design complexity, costs, and time-to-market. However, this outsourcing 

increases the risk of hardware security threats, including IP piracy, 

counterfeiting, and fraudulent ownership claim. These threats not only pose a 

risk to an IP owner's revenue but also tarnish their reputation. Furthermore, 

counterfeit IP integrated into the supply chain can negatively impact the 

performance and reliability of systems, ultimately affecting end users. Hence, 

protecting IP cores from these hardware threats is essential. 

To mitigate risks of piracy and counterfeiting, hardware watermarking [31]-

[36], [42] encryption based security approaches [38], [39], [43], and 

steganography [37] techniques have been discussed in the literature. These 

techniques typically embed a vendor's signature into the IP design. However, 

using random binary sequences or physical parameters, like integrated circuit 

images, for generating signature may not accurately represent the vendor's 

identity, leading to potential ownership conflict. To address this, this chapter 

proposes a novel IP protection method utilizing the IP vendor’s voice 

biometric watermark signature. This approach leverages unique voice 

characteristics such as jitter, shimmer, pitch, and intensity to generate a 

distinctive signature. The voice-based signature is embedded as a hardware 

security constraint within the IP design, ensuring robust security (detective 

control) against piracy and fraudulent claim of ownership. The secure design 

allows for straightforward detection and verification of unauthorized IP use, 

with the original voice sample securely stored for future authentication. 

Moreover, the proposed voice biometric based security approach provide more 

robust security than traditional biometric based security approaches [40], [41], 

[44] in terms of stronger tamper tolerance and reduced probability of 

coincidence, discussed in Chapter 9 of the thesis. 
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The first section of the chapter discusses the motivation and benefits of voice 

biometric based watermarking framework. The second section outlines the 

threat model involved and overview of the proposed approach. Subsequently, 

the third section discusses the details of proposed voice biometric based 

hardware watermarking framework. Following this, the fourth section 

illustrates the demonstration of the proposed approach. Next, IP piracy 

detection and resolution of false IP ownership claim process is explained in 

fifth section. Finally, the sixth section provides the chapter's conclusion.  

7.1. Motivation and Benefits of Voice Biometric-Based 

Watermarking Framework 

The rise in fraud attacks, which surged by 269% over four years, and the lack 

of adequate security features have led to an increased focus on voice 

biometrics over traditional methods like fingerprints, facial recognition, and 

palmprints. The voice biometrics market is expanding rapidly, projected to 

grow from $1.1 billion in 2020 to $3.9 billion by 2026. This growth has drawn 

the attention of security researchers, especially in the field of IP protection 

[102], [121]. Voice biometrics offers several key advantages over other 

biometric techniques. 

First, it enables the extraction of numerous features from voice signals at 

various timestamps, producing a vast number of hardware security constraints, 

which is one of the primary limitation of traditional biometric based 

watermarking approaches [40], [41], [44]. This makes it highly robust 

compared to other biometric systems like fingerprint-based approach [40], 

which involve complex processes such as minutiae generation and filtering. 

Second, voice biometrics has a lower implementation complexity. Unlike 

fingerprint recognition [40], which requires several preprocessing steps like 

binarization and image enhancement, voice biometrics involves a simpler 

process of feature extraction. Increasing the number of timestamps for voice 

feature analysis allows for a larger, more secure signature without added 

complexity. Third, detecting and verifying a voice signature is seamless, as it 

relies on a pre-stored voice sample, eliminating the need for recapturing data. 
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Additionally, voice biometrics meet ISO/IEC standards by supporting unique, 

revocable, and irreversible digital templates, ensuring secure and reliable 

authentication ((i) Unlikability- Voice biometric supports the generation of 

diverse (exclusive) voice signature digital templates from the same voice 

sample. (ii) Revocability- the previously generated voice biometric template 

can easily be replaced with a new one for the same voice sample. It is possible 

because of the dependence of the generated voice signature template on 

variation in the number of features, selected feature set, concatenation order, 

and mapping rule. (iii) Irreversibility- it is extremely challenging to recover 

the original voice sample data from the generated digital template as this 

requires complete knowledge of the concatenation rule, selected feature set, 

and the number of timestamps chosen to extract the features.). Lastly, voice 

biometrics is a contactless technology, immune to environmental factors like 

dirt or physical injuries that can affect other methods, such as fingerprint [40] 

and facial biometric [41]. While facial recognition and palmprints are also 

contactless, they have limitations, such as aging effects on facial features [41] 

and grid size requirements for palmprint [44], making voice biometrics a 

superior choice for secure IP protection. 

7.2. Threat Model and Overview 

7.2.1. Threat model: attacker’s and defender’s capabilities 

Reusable IP cores from third-party vendors face significant hardware security 

risks such as counterfeiting, piracy, and fraudulent IP ownership claim, driven 

by the globalized nature of the design supply chain. In counterfeiting, 

counterfeit or substandard IPs are introduced into the supply chain under the 

original vendor's brand, damaging both revenue and reputation. Piracy or 

cloning occurs when a dishonest user, such as a SoC integrator or foundry, 

steals the vendor's IP and sells unauthorized copies under a different brand. 

Additionally, adversaries may falsely claim ownership of the IP, leading to 

legal and financial disputes. To combat these threats, a robust solution 

involving voice biometric-based watermarking is proposed to detect IP misuse 

and resolve ownership conflicts. Attackers, including foundries or IP brokers, 

may have access to the IP and could attempt piracy or fraudulent ownership 

claims. They might also be aware of the biometric watermarking and attempt 
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to spoof the voice sample or forge the signature to bypass detection. In 

response, the IP owner embeds an encrypted voice signature to counteract 

these threats. The owner is also equipped to defend against spoofing attempts 

or efforts to compromise the stored voice sample, ensuring robust IP 

protection. 

7.2.2. Overview  

The proposed method leverages unique features of a voice sample to generate 

a distinctive signature for IP core authentication and verification. The process 

begins by recording a voice sample and converting it into a spectrogram, from 

which features such as jitter, shimmer, pitch, and intensity at various 

timestamps are extracted. These feature values are then transformed into 

binary form and concatenated to create a unique voice signature template. This 

template is further encoded into hardware security constraints, which are 

integrated into the IP core design during the HLS process. The robustness of 

the signature can be enhanced by extracting additional pitch and intensity 

features from the spectrogram. For verification, a pre-stored voice template is 

used, ensuring that the defining characteristics—pitch, intensity, jitter, and 

shimmer—remain consistent with the original vendor's voice sample. The 

process starts by converting the target DSP application’s algorithmic 

description, such as a transfer function, into a CDFG, which is then scheduled 

using LIST scheduling to produce a SDFG. Subsequently, a voice biometric 

signature is generated using the proposed algorithm and encoded as hardware 

security constraints. These constraints are embedded into the DSP design 

through the HLS framework, providing robust protection against threats.  

7.3. Voice Biometric-Based Watermarking Framework 

Fig. 7.1 highlights the detailed flow-chart of the proposed voice biometric 

based hardware security approach. 

7.3.1. Introduction to voice biometric 

Voice biometrics can be categorized into two types: text-independent, where 

no audio template is stored, and text-dependent, where a voice sample is 

stored for authentication purposes. The proposed method utilizes text-

dependent voice biometrics. Each voice sample contains unique traits 
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influenced by both behavioral speech patterns, such as speaking speed, and 

physiological factors, like the shape of the throat and mouth. Key acoustic 

features for voice biometrics include jitter and shimmer, which are primarily 

used for speaker verification. Jitter refers to the variation in pitch frequency 

from cycle to cycle, while shimmer relates to the variation in amplitude. These 

features, along with pitch, which distinguishes high and low sounds, and 

intensity, which measures sound energy, play a crucial role in voice-based 

identification [122], [123]. The proposed approach leverages these voice 

features—jitter, shimmer, pitch, and intensity at different timestamps—to 

create a unique watermark signature template for securing IP cores. 

7.3.2. Inputs and Outputs 

The primary inputs are: (a) transfer function of the hardware application 

/CDFG/C/C++ code, (b) module libraries, (c) IP vendor’s voice sample. The 

intermediate outputs are as follows: (a) covert hardware watermarking/security 

constraints, and (b) a CIG (based on the RAT) of the target application. The 

final output is a voice biometric secure hardware IP design. 

Input: Algorithmic 

description of DSP 

application, module 

library, resource 

constraints, voice 

sample captured with 

microphone, AES 

key 

 

 

Estimation of jitter and shimmer 

Estimation of pitch corresponding to all chosen 

timestamps 

Intensity estimation corresponding to chosen 

timestamps 

Conversion of the decimal values of different voice features into their binary 

equivalents and performing AES-256 encryption 

Concatenation of all generated features to form a voice signature template 

Determination of feature order for concatenation 

Conversion of signature into respective hardware security constraints using 

encoding rules 

Implant voice biometric based generated hardware security constraints into the 

design of DSP application during register allocation phase 

Generate 

scheduled 

data flow 

graph 

based on 

resource 

constraints  

Perform 

voice 

biometric 

based 

hardware 

security   

during HLS 

Register 

transfer 

level 

(RTL) 

datapath 

synthesis 

Output: 

Voice 

biometric 

signature 

based 

secured RTL 

datapath  

Lower-

level 

synthesis 

Selecting number of timestamps for feature 

extraction 

 

Extracting voice 

features for signature 

generation 

Capturing/recording 

of voice sample 

Converting into a 

spectrogram using 

voice analyzer (Praat) 

Fig. 7.1. Detailed flow-chart of the proposed voice biometric based hardware security approach 
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7.3.3. Capturing and pre-processing IP seller’s voice biometric sample 

The proposed approach begins by capturing the IP vendor's voice sample 

using a microphone. Once recorded, the voice sample is transformed into a 

spectrogram and analyzed through speech analysis software. In the proposed 

approach, the 'Praat application' is used to extract biometric security features. 

For example, a voice sample labeled 'voice-001', corresponding to the 

utterance “Gopal”, is demonstrated. Fig. 7.2 (a) shows a spectrogram of a 

voice sample 'voice-001' (corresponding to the utterance 'Gopal') used in the 

proposed approach for demonstration. Different timestamps are selected based 

on the required signature strength, with fewer timestamps for lower strength 

and more for higher strength, showing the approach's scalability for various 

applications. In this demonstration, 15 timestamps are used to capture pitch 

and intensity values from the voice sample. The goal is to extract pitch and 

Fig. 7.2. Spectrogram of voice sample (voice-001) using a speech 

analyser tool showing the range of pitch and intensity with 

indicating (a) starting point of pitch (b) end point of pitch 

 (a) 

 (b) 

 Time 

 Time 

Frequency 

Amplitude 

Frequency 

Amplitude 

 Pitch (in Hz)  Intensity (in DB)  Start of pitch  

 Pitch (in Hz)  Intensity (in DB)  End of pitch  
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intensity at each timestamp to create a unique signature. Spectrograms are 

preferred over Mel-frequency cepstral coefficients (MFCC) in this approach, 

as they more effectively represent voice data, including key features like pitch, 

intensity, jitter, and shimmer, making them more suitable for generating robust 

watermark signature. 

7.3.4. Identifying distinct voice features for watermark signature 

creation  

7.3.4.1. Timestamp analysis for pitch value determination 

The proposed approach considers different features of a voice sample, viz. 

jitter and shimmer, along with pitch and intensity values at different 

timestamps, for corresponding voice signature template generation. The pitch 

and intensity values are extracted for the IP vendor selected timestamps 

(assumed as N1, N2 = 15 using the voice analyzer software (Praat) application. 

The blue and yellow lines in Fig. 7.2. (a) and (b) represent the pitch and 

intensity variation curve of the voice signal at different time instants. The 

initial and final position of both the pitch and intensity variation curve on the 

spectrogram is noted to determine different unique timestamps for the feature 

extraction. The pitch and intensity values at different timestamps represent the 

first and second subsets of features used to generate our voice signature 

template. Different timestamps for extracting various pitch and intensity 

values are determined below. In the proposed approach, pitch values are 

extracted at the N1 number of timestamps (selected by the IP vendor). In order 

to determine the different timestamps, the following steps are performed.  

(a) The total duration of voice pitch (PT) is calculated using the following 

equation: 

PT = pe -ps                                                                                                      (7.1) 

       Where pe and ps indicate the end time and start time, respectively, on the 

voice pitch variation curve.  

(b) We define a step size of different timestamps for pitch features extraction 

to be Δp which is calculated as follows. 

Δp = PT/N1.                                                                                                   (7.2) 
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(c) The different values of timestamps are determined using the following 

equation. 

ti = Vs + i*Δp; (0< i ≤N1-1)                                                                          (7.3) 

Where Vs is the starting position of the pitch in the spectrogram shown in Fig. 

7.2. (a) and (b). 

Here, the IP vendor selected the number of timestamps, N1 is N1=15. The 

initial (ps) and final timestamps (pe) on which the pitch values recorded are 

0.11 and 0.71 (corresponding to the voice-001 obtained from Fig. 7.2. (a) and 

(b), respectively). Hence, the time duration of voice pitch (PT) is calculated to 

be (0.71-0.11) = 0.6, and the step size is computed to be 0.04 using (7.2). 

7.3.4.2. Timestamp analysis for intensity value determination 

The intensity values are extracted at the N2 number of timestamps. In order to 

determine the different timestamps, the following steps are performed. 

(d) The total duration of voice intensity (IT) is calculated using the following 

equation: 

IT = Ie -Is                                                                                                        (7.4) 

      Where Ie and Is indicate the end time and start time of voice intensity, 

respectively.  

(e) We define a step size of different timestamps for intensity features 

extraction to be Δi which is calculated as follows. 

Δi = IT/N2.                                                                                                     (7.5) 

(f) The different values of timestamps are determined using the following 

equation. 

tj = Is + j*Δi; (0< j ≤N2-1)                                                                            (7.6) 

      Where Is is the starting position of intensity in the spectrograph shown in 

Fig. 7.2. (a) and (b). 

Here, the IP vendor selected the number of timestamps, N2 is 15. The initial 

(Is) and final timestamps (Ie) on which the intensity values recorded are 0.09 

and 0.73 (corresponding to the voice-001). The initial and final values of 
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intensity are determined in a similar fashion as previously determined for pitch 

(from Fig. 7.2 (a) and (b)). Hence, the time duration of voice intensity (IT) is 

calculated to be (0.73-0.09) = 0.64, and the step size is computed to be = 

0.0427 using (7.5).  

In the proposed approach, values at 15 timestamps have been determined 

corresponding to two features, pitch and intensity. All these values will be 

unique as the proposed approach uses a stored voice template. For computing 

jitter and shimmer, the proposed approach considers a complete voice sample. 

We have only considered jitter local and shimmer local values. Both jitter and 

shimmer can be easily computed with the help of a voice report generated by a 

voice analyzer (Praat) application. 

7.3.5. Feature extraction from voice template: pitch and intensity 

extraction  

Extracting pitch and intensity features: In the previous subsection, we 

discussed how the different timestamps for extracting pitch and intensity 

values are determined. Further, in order to extract pitch and intensity features 

at the specified timestamps, the following steps are performed: 

(a) The values of pitch and intensity are extracted by moving to a particular 

timestamp in voice spectrograph using voice analyzer (Praat) application.  

(b) The pitch values read from the spectrograph at ti time instant are denoted 

by P(ti). Table 7.1 shows the extracted pitch values corresponding to 15 

different timestamps (selected by IP vendor). 

(c) The intensity values read from the spectrograph at tj time are denoted by 

I(tj). Table 7.2 shows the extracted intensity values corresponding to 15 

different timestamps (selected by IP vendor). 

Post obtaining the pitch and intensity feature values in decimal, they are 

converted to equivalent binary values. The timestamps where pitch and 

intensity are not defined are termed undefined (U) and the ASCII value of 

character 'U' is used as feature dimension (value). Tables 7.1 and 7.2 show the 

different values of pitch and intensity at different computed timestamps. 



136 

Extracting jitter and shimmer features: The jitter (local) and shimmer (local) 

values are recorded from the voice report generated with the Praat voice 

analyzer application, corresponding to the input voice sample. Before 

computing jitter and shimmer (generating the voice report), we must first 

select the voice portion we want to consider in the spectrograph. In our 

experiment, we have considered the complete length of voice samples (as 

shown in Fig. 7.3). So, the obtained jitter (local) and shimmer (local) values 

(in %) and their corresponding binary equivalents for the voice-001 are: 

Jitter (Jt)= 2.782 = 10.1100100000110001001 

Shimmer (Sh) = 10.586 = 1010.1001011000000100001. 

Sr. 

No. 

Timestam

p (ti) 

Pitch 

P(ti) 

Magnit

ude 

Corresponding 

binary equivalents 

1. 0.15 P(t1) 152 10011000 

2. 0.19 P(t2) 146 10010010 

3. 0.23 P(t3) 135 10000111 

4. 0.27 P(t4) 126 1111110 

5. 0.31 P(t5) U 01010101 

6. 0.35 P(t6) U 01010101 

7. 0.39 P(t7) 146 10010010 

8. 0.43 P(t8) 137 10001001 

9. 0.47 P(t9) 133 10000101 

10. 0.51 P(t10) 134 10000110 

11. 0.55 P(t11) 135 10000111 

12. 0.59 P(t12) 133 10000101 

13. 0.63 P(t13) 142 10001110 

14. 0.67 P(t14) 162 10100010 

15. 0.71 P(t15) 175 10101111 

 

Table 7.1: Pitch values in hertz (Hz) Corresponding to Different 

Timestamps 

Table 7.2: Intensity values in HZ corresponding to Different 

Timestamps 

 
Sr. 

No 

Timestam

p (ti) 

Intensity 

I(ti) 

Magnitu

de 

Corresponding 

binary equivalents 

1. 0.1327 I(t1) 66 1000010 

2. 0.1754 I(t2) 81 1010001 

3. 0.2181 I(t3) 81 1010001 

4. 0.2608 I(t4) 75 1001011 

5. 0.3035 I(t5) 54 110110 

6. 0.3462 I(t6) 45 101101 

7. 0.3889 I(t7) 64 1000000 

8. 0.4316 I(t8) 70 1000110 

9. 0.4743 I(t9) 70 1000110 

10. 0.517 I(t10) 70 1000110 

11. 0.5597 I(t11) 70 1000110 

12. 0.6024 I(t12) 69 1000101 

13. 0.6451 I(t13) 67 1000011 

14. 0.6878 I(t14) 65 1000001 

15. 0.73 I(t15) 46 101110 

 



137 

7.3.6. Creating of watermark signature from extracted voice biometrics 

features and generation of its corresponding watermarking 

constraints 

Once all the feature values and their equivalent binary are computed, they are 

encrypted using AES-256 and subsequently concatenated into a single 

encrypted template known as voice biometric- signature template based on the 

defined concatenation rule. This encrypted template is stored in a safe server 

for validation later. The concatenation rule is IP vendor specified. A designer's 

specified concatenation rule used in the proposed approach is given below. 

𝑆 = {&𝑖=1
𝑁1 𝑃(𝑡𝑖)} & {&𝑗=1

𝑁2 𝐼(𝑡𝑗)} &{𝐽𝑡} &{𝑆ℎ}                                                (7.7) 

Where '&' is the concatenation operator. Based on the concatenation rule 

shown in (7.7), the generated voice biometric signature template is as follows. 

S = [1001100010010010100001111111110010101010101 

010110010010100010011000010110000110100001111000010110001110101

000101010111110000101010001101000110010111101101011011000000100

011010001101000110100011010001011000011100000110111010110010000

011000100110101001011000000100001] = 265 digits. 

7.4. Demonstration: Embedding of Watermarking 

Constraints 

Post obtaining the digital template of voice biometric signature, it is converted 

into equivalent hardware security constraints based on designer-selected 

encoding rules shown in Table 7.3. To perform the encoding, we traverse the 

 
Fig. 7.3. Spectrogram of voice sample (voice-001) showing jitter 

(local), and shimmer (local) based on selected voice sample 
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digital template to collect all different possible bit-variations, viz. 00, 01, 

10 and 11. Further, each bit-variations has a specific encoding into a 

corresponding hardware security constraint, as shown in Table 7.3. For the 

signature template generated from voice-001, the total possible numbers of 

different bit-variations are as follows: (i) number of 00 bit-variations = 77, 

number of 01 bit-variations = 71, number of 10 bit-variations = 71, 

number of 11 bit-variations = 45. Hence the total number of voice signature 

constraints is 264. 

After generating the voice biometric signature-based hardware security 

constraints, they are embedded in the respective IP core design using an HLS 

framework. A colored interval graph (CIG) of the respective DSP IP core is 

harnessed for embedding generated hardware security constraints. Nodes in 

the CIG represent storage variables corresponding to the target DSP IP core, 

and an edge between two nodes represents existing design constraints. The 

security constraints are implanted into the design in the form of extra edges in 

the CIG. The process of embedding addition edges (security constraints) 

between the same colored nodes in the CIG is achieved in two ways: (a) local 

alteration: the storage variable is allocated to some different colored register 

Encodings  Constraints 

E0


0 Embed an edge between (even, even) node pair 

E0


1 Embed an edge between (even, odd) node pair 

E1


0 Embed an edge between (odd, odd) node pair 

E1


1 Embed an edge between (prime, prime) node pair 

 

Table 7.3: Mapping Rules (Encoding Mechanism) to Generate 

Hardware Security Constrains from Voice Biometric Signature  
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that is not in use in that particular control step, (b) new color register 

allocation: if no any local alteration is possible while embedding of security 

constraints (extra edges) between same colored storage variables, then a new 

color (indicating a new register) is allocated. Similarly, all the voice 

biometric-based hardware security constraints are embedded in the design of 

the target DSP IP core.   

Demonstration on IIR Filter Application: A DFG of IIR filter scheduled with 

one adder, one subtractor, two multipliers, and 27 storage variables (J0 to J26) 

is shown in Fig. 7.4. The 27 storage variables are executed using 14 registers 

highlighted using different colors. A corresponding register allocation table 

and CIG are shown in Table 7.4 and Fig. 7.5. (a), respectively. The hardware 

security constraints, corresponding to the voice signature template generated 

using (7.7), are embedded into the IIR filter design during the register 

allocation phase of the HLS process by exploiting the CIG framework. These 

security constraints are represented as four different sets of constraint edges 

(C0-0, C0-1, C1-0, and C1-1) corresponding to the four variations 00, 01, 

10, and 11 in the voice signature template. The following are the sets of 

voice signature constraints generated for the IIR filter application.   

 

𝐶0−0 = {(𝐽2𝑖, 𝐽2𝑗), 𝑖, 𝑗 ∈  𝑊 𝑎𝑛𝑑 (0 ⩽ 𝑖 ⩽ 16), (1 ⩽  𝑗 ⩽ 18)}              (7.8)                     

𝐶0−1 = {(𝐽2𝑖, 𝐽2𝑗+1), 𝑖, 𝑗 ∈  𝑊 𝑎𝑛𝑑 (0 ⩽ 𝑖 ⩽ 16) , (0 ⩽  𝑗 ⩽ 21)}           (7.9)                                                        

𝐶1−0 =  {(𝐽2𝑖+1, 𝐽2𝑗+1), 𝑖, 𝑗 ∈  𝑊 𝑎𝑛𝑑 (0 ⩽ 𝑖 ⩽ 23), (1 ⩽ 𝑗 ⩽ 25)}       (7.10)                                                                

𝐶1−1 =  {(𝐽𝑖, 𝐽𝑗), ( 𝑖 ∈  𝑝𝑟𝑖𝑚𝑒 𝑎𝑛𝑑 2 ⩽ 𝑖 ⩽ 19), (𝑗 ∈  𝑝𝑟𝑖𝑚𝑒 𝑎𝑛𝑑 3 ⩽ 𝑗 ⩽

23)}                                                                                                             (7.11)    

In the above equations (7.8) – (7.11), the limits for 'i' and 'j' depend on two 

factors: (i) the total number of bit-variations of a particular type and (ii) the 

limit of storage variables of the target application, which is J26 in case of IIR 

filter. For example, the total number of possible constraints corresponding to 

bit-variations (00) is 77. Therefore, generated security constraints 

corresponding to the IIR filter start from (J0, J2) and end with (J16, J18). 

Similarly, constraints for all remaining bit-variations are obtained. 
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The voice signature constraints implantation process is performed by adding 

the aforementioned constraints edge sets to the CIG. Post implantation of 

constraints into the IIR filter design, the modified CIG and register allocation 

table are shown in Fig. 7.5 (b) and Table 7.5, respectively. The extra colors 

(registers) required to accommodate all the security constraints are highlighted 

in Table 7.5 in Black (Bold) text. Post embedding the voice signature 

constraints, a synthesized RTL datapath of IIR filter design is shown in Fig. 

7.6. The portion of the datapath carrying the voice signature constraints is 

enclosed in a Red dotted rectangle. 

7.5. Detection of Voice Biometric Signature 

Figure 7.7 illustrates the detection process of voice biometric-based signature 

embedded into the hardware IP core. The detection process requires a pre-

stored voice sample of the authentic IP vendor. First, the digital signature 

template is regenerated from the pre-stored voice sample using the proposed 

algorithm of signature generation. Then, the digital template is converted into 

corresponding hardware security constraints (representing the register 

allocation of different storage variables) using the predefined encoding rules. 

 

(a) 

(b) 
 

Fig. 7.5. (a). CIG of IIR filter before embedding voice biometric 

signature, and  (b). CIG after embedding voice biometric signature, where 

the added voice signature constraints are highlighted using red edges 
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Further, these security constraints are matched against the register allocation 

information extracted from the RTL datapath of the IP core (under test). If 

matching does not happen, then the design may be a counterfeit (i.e., absence 

of genuine IP vendor's voice signature). However, the complete matching 

implies that the design is authentic.  

An adversary cannot evade the counterfeit detection process by embedding the 

authentic voice biometric information of the IP vendor into his/her fake 

design. This is because of the several security factors involved in the process 

of regeneration of the exact voice biometric based signature. Along with the 

Table 7.4: Register allocation of IIR filter before embedding voice biometric based hardware security constraints 

T Red (R) Indigo 

(I) 

Yellow 

(Y) 

Violet 

(V) 

Lime 

(LI) 

Aqua 

(A) 

Gray 

(Gr) 

Green 

(G) 

Blue 

(Bl) 

Black 

(B) 

Pink (P) Olive 

(O) 

Teal (T) Maroon 

(M) 

0 J0 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 

1 J14 J15 J2 J3 J4 J5 J6 -- -- J9 J10 J11 J12 J13 

2 J21 -- J16 J17 J4 J5 J6 -- -- -- -- J11 J12 J13 

3 J22 -- -- J17 J18 J19 J6 -- -- -- -- -- -- J13 

4 J23 -- -- -- J18 J19 J20 -- -- -- -- -- -- -- 

5 J24 -- -- -- -- J19 J20 -- -- -- -- -- -- -- 

6 J25 -- -- -- -- -- J20 -- -- -- -- -- -- -- 

7 J26              

 

Table 7.5: Register allocation of IIR filter after embedding voice biometric based hardware security constraints 

T Red 

(R) 

Indigo 

(I) 

Yellow 

(Y) 

Violet 

(V) 

Lime 

(LI) 

Aqua 

(A) 

Gray 

(Gr) 

Green 

(G) 

Blue 

(Bl) 

Black 

(B) 

Pink 

(P) 

Olive 

(O) 

Teal 

(T) 

Maroon 

(M) 

Lavender 

(L) 

Khaki 

(K) 

Cyan 

(C) 

Wheat 

(W) 

Silver 

(S) 

Beige 

(B) 

0 J0 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 -- -- -- -- -- -- 

1 -- J14 J2 J3 J4 J5 J6 -- -- J9 J10 J11 J12 J13 J15 -- -- -- -- -- 

2 -- -- -- J16 J4 J5 J6 -- -- -- -- J11 J12 J13 -- J17 -- J21 -- -- 

3 -- -- -- J22 -- J18 J6 -- -- -- -- -- -- J13 -- J17 J19 -- -- -- 

4 -- -- -- J20 -- J18 -- -- -- -- -- -- -- -- -- -- J19 -- J23 -- 

5 -- -- -- J20 -- J24 -- -- -- -- -- -- -- -- -- -- J19 -- -- -- 

6 -- -- -- J20 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- J25 

7 -- -- -- J26 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
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voice biometric of the IP vendor, an adversary also needs to decode the 

following security factors to forge the signature: (a) the IP vendor selected the 

number of timestamps for pitch determination, (b) the IP vendor selected the 

number of timestamps for intensity determination, (c) IP vendor selected range 

of voice sample for jitter and shimmer calculation  (d) and concatenation 

sequence of the determined features (such as pitch, intensity, jitter and 

shimmer) to generate final voice biometric signature. Further, the voice 

sample used for generating hardware security constraints is stored in a tamper-

proof secure database along with the IP designer's secret information, such as 

the number of timestamps used for features generation and the portion of voice 

sample used for jitter and shimmer feature estimation.  

In case of IP ownership conflict, an adversary would fail to successfully claim 

the IP ownership as he/she is unable to match the embedded security 

constraints of the authentic voice biometric of the IP vendor (extracted from 

the final RTL datapath) with his/her signature. However, an authentic IP 

vendor would be successfully able to match his/her voice biometric signature 

with the embedded security constraints of the authentic voice biometric of IP 

vendor (extracted from the final RTL datapath). Therefore, IP ownership can 

be seamlessly awarded to the authentic IP vendor in case of ownership 

conflict. 

7.6. Challenges and Limitations of Voice Biometrics 

Fig. 7.6. RTL datapath of IIR filter IP core with embedded voice 

biometric based signature  
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Apart from the multiple advantages, voice-based biometrics pose some 

limitations too, such as it is not ideal to record voice sample at noisy 

environments. Recording of voice sample at noisy places and using poor-

quality recording equipment are not favorable, as background noise present in 

voice sample will directly affect the feature extraction and signature 

generation process. How ever, standard low-pass IIR/FIR filter (LPF) can be 

used to eliminate the unnecessary background noise and maintain a proper 

signal to noise ratio. In addition, the speaker's voice is also affected by illness 

and aging during authentication/verification. However, in the proposed 

approach, recapturing of the IP vendor’s voice sample is not required as the 

voice sample of the original IP owner is safely pre-stored and used during 

verification. Further, the proposed approach requires secure storage of the 

voice template in encrypted format to safeguard against potential misuse.  

7.7. Summary 

This chapter presented a novel security methodology for securing hardware IP 

cores using voice biometric watermark signature. The discussed approach 

harnessed distinct voice biometric features, including jitter, shimmer, pitch, 

and intensity at various timestamps, to create a unique signature from the 

voice sample. This signature was then embedded into the target IP core design 

using the HLS framework. The proposed approach depicts robust security in 

terms of higher tamper tolerance and lower probability of coincidence 

(discussed in Chapter 9).  
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Chapter 8 

HLS-Based Exploration of Low-Cost (Optimal) 

Functional Trojan-Resistant Hardware IP Designs 

Various detective control mechanisms have been implemented to identify 

pirated/counterfeited IP cores in computing devices in the past. Techniques 

like hardware watermarking [31]-[36] and biometric-based methods [40], [41], 

[44] are commonly seen as effective in mitigating IP piracy risks. However, 

these methods do not address how to ensure that hardware IP core in 

computing application remain resistant to Trojan attack, particularly when 

backdoor functional Trojan are covertly inserted. An attacker could introduce 

a Trojan at any stage of the design process, whether at the vendor level by a 

malicious third-party IP provider/broker or during SoC integration, or at 

foundry level [125]-[129]. While some detection methods exist for identifying 

Trojans at the vendor or foundry stage, such as RTL simulation and side-

channel analysis, none provide a comprehensive approach for designing 

Trojan-resistant hardware that can be applied to various computing 

applications [130], [131]. This chapter for the first time in literature 

demonstrates a complete HLS-base low-cost functional Trojan resistant design 

framework using distinct multi-vendor allocation policy. The proposed 

methodology leverages triple modular redundancy (TMR) to secure hardware 

SoC designs (IP cores), providing a more robust and reliable defense against 

functional hardware Trojan. Additionally, the approach incorporates a design 

space exploration framework to identify the optimal Trojan-resistant hardware 

architecture from a range of design possibilities. 

The first section of the chapter discusses the motivation, threat model, 

problem formulation and advantages of designing optimal Trojan-resistant 

hardware IPs. The second section discuss the low-cost functional Trojan-

resistant framework in detail. Following this, the third section illustrates the 

demonstration of the proposed approach. Next, advantages and limitations of 

low-cost Trojan resistant TMR framework in fifth section. Finally, the fifth 

section provides the chapter's conclusion.  

8.1. Problem Formulation 
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8.1.1. Threat model, Motivation and advantages of designing optimal 

Trojan-resistant hardware IPs 

Hardware Trojans pose a significant threat to the integrity of application-

specific computing systems that rely on a variety of hardware IP cores for 

their functionality. These IP cores perform crucial tasks like image 

compression, audio equalization, and digital broadcasting in devices used 

across industries. For example, IP cores such as the discrete cosine transform 

(DCT) and haar wavelet transform (HWT) are vital for compressing audio, 

video, and image files, while finite and infinite impulse response (FIR/IIR) 

filters are essential for sound processing in audio systems. Similarly, JPEG 

codecs manage image and video compression in digital cameras, and fast 

fourier transform (FFT) is used in digital video broadcasting. Given the critical 

role these components, any vulnerability introduced through a hardware 

Trojan could have severe implications for end-users. Hardware Trojans are 

malicious modifications to a circuit that are covertly inserted at any stage of 

the design process, potentially by a rogue 3PIP vendor. These Trojans remain 

dormant until triggered, making them difficult to detect during standard testing 

procedures. Once activated, they can cause erroneous output or complete 

failure of the system, posing significant risks to safety, reliability, and 

performance. In critical infrastructure or mission-sensitive applications, such 

failures could be catastrophic. For instance, in image classification systems or 

biometric authentication processes, a Trojan could alter the output of 

convolution filters used in convolutional neural networks (CNNs), leading to 

incorrect identification or authentication results. Similarly, in medical imaging 

applications, a Trojan could affect the accuracy of image compression, 

resulting in incorrect diagnoses and potentially fatal consequences for patients. 

Further, the insertion of hardware Trojans in machine learning systems also 

raises serious concerns. In scenarios where machine learning coprocessors are 

used for decision-making, a Trojan could manipulate the prediction outcomes. 

For example, an attacker could inject a Trojan that alters the results of a 

medical diagnosis model, leading to misdiagnosis and improper treatment. 

This not only compromises the reliability of the system but also opens avenues 

for adversaries to gain financial or competitive advantages. Additionally, the 
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Trojan could tamper with digital filter cores like the Sobel edge detector and 

Gaussian filters, which are widely used in image processing for both consumer 

and industrial applications. 

To address this challenge, ensuring that IP cores are resistant to functional 

Trojan attack is essential. The proposed methodology aims to provide a robust 

defense against these threats by implementing TMR along with a distinct 

vendor allocation policy. This approach isolates any infected unit, preventing 

the Trojan from affecting the overall system. Furthermore, by distributing the 

design workload across multiple vendors, the probability of multiple IP cores 

being compromised by the same Trojan payload is significantly reduced. This 

isolation not only improves the security of the design but also ensures reliable 

functionality across various applications, from consumer electronics to critical 

medical and industrial systems. By safeguarding against hardware Trojans, the 

proposed system enhances the reliability of custom computing devices, 

protecting both the integrity of the design and the safety of end consumers. It 

also helps ensure that even if one vendor’s IP core is compromised, the overall 

system remains functional, minimizing the risk of widespread failure or data 

corruption.  

8.1.2. Problem formulation 

The problem solved in this chapter can be formulated as follows: Designing 

Trojan resistant hardware IP core design while minimizing {hybrid cost (ATMR, 

TTMR)} based on explored optimal resource configuration {Si} using design 

space exploration. The associated variables of the methodology are explained 

in nomenclature table. This chapter addresses the Trojan resistance of DSP 

hardware IP cores against Trojan that are capable of inducing functional error 

in the computed output. Trojans that are responsible for the denial of service 

and leakage of secret information are not targeted in the proposed approach. 

However, the proposed approach enables the defense against functional 

Trojans that may be inserted at the IP vendor/designer's level (not easily 

detectable during test vector analysis and normal run) and induces erroneous 

functional behavior. Further, the micro-IPs or modules present in the library of 

an HLS tool used for hardware IP core design are also susceptible to Trojan 

infection, including third-party IP vendors or untrustworthy entities. 
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Consequently, integrating such malicious hardware IPs into custom computing 

systems may induce abnormal functioning of the devices, causing safety 

hazards to the end consumer. 

The proposed approach for the Trojan resistant design of the DSP hardware IP 

core is evaluated based on the following crucial parameters: design area, 

delay, design cost, and security (in terms of the number of vulnerabilities 

tackled): 

(1) Proposed Area Metric: Total area covered (𝐴𝑇𝑀𝑅) by the Trojan-resistant 

TMR design is given by (8.1).                                             

   𝐴𝑇𝑀𝑅 = ∑ ∑ (𝐴(𝐶𝑖
𝑉𝑗

3

𝑖=1

3

𝑗=1
) ∗ (𝐶𝑖

𝑉𝑗))                                                   (8.1) 

Where, 𝐴(𝐶𝑖
𝑉𝑗) indicates the area of a resource type 𝐶𝑖 corresponding to the 

vendor 𝑉𝑗 and 𝐶𝑖
𝑉𝑗  indicates the number of instances utilized for a resource 

type 𝐶𝑖 from the vendor 𝑉𝑗. Further, the details of the area and delay of 

functional resources (adder, multiplier) corresponding to vendors are adopted 

from the related approach [45].  

(2) Proposed Delay Metric: Design latency (𝑇𝑇𝑀𝑅) metric involves the delay 

due to the number of control steps required while scheduling the design using 

functional resources and  

delay due to respective functional components corresponding to each vendor. 

The delay metric can be represented as follows:                  

    𝑇𝑇𝑀𝑅 = ∑ ((𝑛𝑚 ∗ 𝑑𝑚) + (𝑛𝑎 ∗ 𝑑𝑎)
3

𝑣=1
                                                   (8.2)                           

(3) Design Cost Function (fitness function): The fitness function includes 

normalized area and execution time corresponding to the architectural design 

of Trojan-resistant TMR schedule and can be formulated as follows:   

𝐷𝑒𝑠𝑖𝑔𝑛 𝐶𝑜𝑠𝑡 (𝐹𝑖𝑡𝑛𝑒𝑠𝑠) = 𝑒1 ∗ (
(𝐴𝑇𝑀𝑅−𝐴𝐶𝑜𝑛)

𝐴𝑚𝑎𝑥
) + 𝑒2 ∗ (

(𝑇𝑡𝑚𝑟−𝑇𝐶𝑜𝑛)

𝑇𝑚𝑎𝑥
)         (8.3)                                                                     

Where e1 and e2 are designer-defined weighing factors. Further, 𝐴𝑀𝐴𝑋 and 

𝑇𝑀𝐴𝑋 represents maximum design area (computed using allocating maximum 

functional resources available) and delay (computed using allocating 

minimum functional resources) while 𝐴𝑇𝑀𝑅  and 𝑇𝑇𝑀𝑅 represents the computed 
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area and delay of the proposed Trojan resistant TMR hardware design. 

Further, ACon and TCon are IP vendor-specified area and latency constraints. 

8.2. Low-Cost Functional Trojan-Resistant Framework 

8.2.1. Underlying assumptions 

1. The voter in the proposed approach is fault tolerant (adopted from 

[124]), which means it produces functionally correct output always.  

2. We have considered an error detection block (EDB), which is a multi-

stage setup (adopted from [124], [132]) designed to protect the Trojan-

resistant design from faulty comparators. 

3. The fault-tolerant voter and error detection block used in the proposed 

approach is considered to be Trojan-free (trustworthy). This is because 

these hardware modules are considered to be designed in-house (by a 

system integrator). In the proposed approach, the system integrator is 

considered to be trustworthy. 

4. The information corresponding to multiple vendors is confidential and 

only known to the system integrator. The vendors are completely 

unaware of the information about their counterparts. As vendors in the 

proposed approach are unaware of their counterparts. Therefore, the 

chances of collusion between distinct unknown 3PIP vendors to 

achieve the same Trojan payload are very low. Henceforth, the 

proposed approach always, at minimum always, ensures Trojan 

detection [45].  

8.2.2. Low-cost Trojan-resistant TMR design framework  

The proposed solution for DSP hardware design with Trojan defense ability 

exploits an optimal design architecture. The PSO-DSE process is employed to 

explore an optimal resource configuration for Trojan resistant design. The 

overview/thematic representation of the proposed approach is shown in Fig. 

8.1. The primary inputs consist of CDFG of the selected hardware application, 

PSO initial parameters, module library, designer’s specified design constraints 

(Acon, Tcon), and resources (such as adder, multiplier, etc.) from three distinct 

IP vendors. At first, the particle/swarm positions are initialized, and the 
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corresponding TMR schedule is generated. Next, the design cost, latency and 

its corresponding cost are computed for each particle. Subsequently, the local 

best and global best particle position are updated. At last, mutation is 

performed on particle position to make the optimal solution search more 

diversified. For each resource configuration explored (using PSO-DSE) 

corresponding to Trojan-resistant scheduled and allocated design during HLS, 

the respective datapath is generated. Finally, the optimal Trojan resistant 

datapath is obtained at the end of DSE process. The details are discussed in the 

next subsections.  

Fig. 8.1. Overview of proposed optimal Trojan defense IP 

core/SoC design generation process for DSP applications  
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This chapter explicitly presents a case study on FIR IP core used in several 

computing applications such as convolution process in image/video 

processing, signal attenuation, signal filtering in audio/image applications, etc. 

Further, it can be converted into an optimal design with Trojan defense 

capability. Even if a malicious backdoor logic exists in the design, it can still 

produce the correct output functionally using the concept of TMR, distinct 

vendor allocation policy, and voter. In order to explore optimal Trojan 

resistant architecture corresponding to DSP hardware designs used in custom 

computing systems, the proposed approach accepts the following inputs: DFG 

of the DSP application, multivendor library, PSO-DSE parameters such as 

inertia weight (ω), acceleration coefficient (b1 and b2), terminating criteria 

(T), population size (n) with initial particle position/ functional resource 

configuration. The output of the proposed approach yields an optimal 

architectural solution (global best solution) for Trojan resistant DSP register 

transfer level (RTL) datapath soft IP.  

Original unit Duplicate unit 

Comparator 

1 
Comparator 

3 

Comparator 
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Fault tolerant 
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Fig. 8.3. Error detection block adopted from [124] 
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The proposed approach presents the TMR design framework to provide Trojan 

resistance against functional Trojans. The proposed approach shows greater 

defense in terms of providing Trojan detection and isolation, both based on the 

proposed setup (shown in Fig. 8.2). Fig. 8.2 illustrates the Trojan resistance 

capability of the proposed approach. The proposed solution provides complete 

Trojan resistance with the help of a TMR-based design and a fault-tolerant 

voter (V), adopted from [132]. The fault-tolerant voter will generate the 

correct output based on the majority. The output of the 4:1 multiplexer (MUX) 

ensures Trojan detection when select lines (S1 S0) chosen are 01,10,11 and 

provides Trojan resistance when select lines chosen are 00. In order to ensure 

that the proposed approach always at least provides Trojan detection, the 

concept of a multi-stage setup using error detection blocks (EDB) has been 

integrated into the proposed setup. Fig. 8.3 depicts an architecture of EDB 

used in the proposed approach using multiple comparators and fault tolerant 

voter (adopted from [124] and [132]). This multi-stage setup (or EDB) is used 

to handle cases of faulty comparators. Assuming fault in the comparator: in 

such a case, the faulty comparator out of the used three comparators inside a 

multi-stage setup of EDB will produce a complementary output of the 

remaining two. Therefore, the fault-tolerant voter [132] will produce the 

correct majority output generated by the remaining two correct comparators. 

The area overhead of used EDB (adopted from [124]) is negligible [124]. 

In the TMR design logic, besides the original unit, two other units 

corresponding to the TMR design are employed by duplicating the operations 

of the DFG (DSP application). The combined DFG logic with original, 

duplicate, and triplicate units, called TMR logic, is then scheduled using the 

LIST scheduling algorithm based on the hardware resources explored using 

PSO-DSE (discussed in the next section). LIST scheduling is a scheduler that 

works by aiming to schedule the maximum number of operations in a single 

control step, subject to resource constraints and data dependency. Therefore, it 

minimizes the number of control steps required to schedule the DSP 

application compared to traditional ones. Next, in the proposed scheduled 

TMR design, each of the three distinct vendors is then allocated to a dedicated 

unit. In the proposed approach, a distinct multivendor allocation policy has 
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been presented, where the resources from a particular vendor are allocated to a 

single unit of the TMR design. This is effective for providing Trojan 

resistance compared to assigning multivendor resources simultaneously within 

a single unit (either original, duplicate or triplicate unit) of TMR logic. It 

enhances the likelihood of the design being infected, thereby carrying 

malicious logic in each TMR unit. Therefore, multivendor resource allocation 

within the single unit of TMR logic fails to provide Trojan resistance against 

hidden functional Trojans. On the contrary, a distinct multivendor resource 

allocation process enables easy isolation of any Trojan-infected design. In 

other words, if either of the three vendors carries malicious backdoor logic in 

their resources (micro-IPs), then due to distinct vendor allocation to each unit 

of TMR logic, it would enable the remaining two units to remain Trojan-free. 

Thereby allowing the non-erroneous output to pass through the voter. For 

example, if vendor VD1 carries a backdoor Trojan and is allocated to only the 

original TMR unit, the remaining two vendors, VD2 and VD3, are allocated to 

duplicate and triplicate units, respectively. Therefore, due to this distinct 

multivendor allocation, the voter would pass the correct majority output from 

duplicate and triplicate units, thus providing Trojan resistance against 

functional Trojans. However, it is possible that vendor assignment can be 

changed internally between original, duplicate, and triplicate units as long as 

distinctness is maintained across units. If vendor VD1 is allocated to any one of 

the three units, then vendor VD2 and VD3 are assigned distinctly with the other 

two units. Further, in case if any unit is Trojan-infected, then due to a distinct 

vendor allocation policy, it would enable the remaining two units to be Trojan-

free.  

The mathematical representation of the proposed vendor allocation policy for 

enabling Trojan-resistance through TMR is discussed below. 

Oi ϵ UOG, Oi’ ϵ UDP, Oi’’ ϵ UTR 

Where ‘i’ = 1 t, ‘Oi’ denotes i
th

 operations in single instance of CDFG, ‘t’ 

denotes total number of operation present in single instance of CDFG and 

{UOG, UDP, UTR} are explained in nomenclature table.   

{ UOG, UDP, UTR} ϵ SDFG
TMR
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VDi  UOG, VDj  UDP, VDk  UTR, where ‘VDi’ is the ‘i
th

’ IP vendor and 

VDi ≠ VDj ≠ VDk 

Then, based on the majority solution (at least two of the three units producing 

the same output value), the fault-tolerant voter [132] will pass the functionally 

correct output, thereby providing Trojan resistance against functional Trojan 

that a rogue element could have implanted during the in-house designing 

process. Finally, based on the obtained scheduled and allocated Trojan-

resistant TMR design, the design area using (8.1) and execution time using 

(8.2) are computed. Subsequently, the fitness cost for the corresponding 

Trojan resistant hardware design is evaluated by substituting the area and 

delay in (8.3) to iterate the PSO-DSE process till the stopping criterion is 

achieved. The overview of the PSO-DSE is discussed in the upcoming sub-

section. 

8.2.3. Exploration for low-cost Trojan-resistant TMR scheduling using 

PSO-DSE 

As shown in Fig. 8.4, the PSO-driven design space exploration is responsible 

for generating an optimal Trojan resistant design architecture. At first, the 

initial position of each particle (representing initial functional resource 

configuration) and velocity (Aix) are initialized, where the first particle's 

position S1 is initialized with minimal resources such as S1= (min (Z1), min 

(Z2) …. min (Zn)) and second particle S2 is initialized with maximum resources 

such as S2= (max (Z1), max (Z2) ….max (Zn)); while the third particle S3 is 

initialized by the average of minimum and maximum resource value, where 'Z' 

represents the resource type (adder or multiplier). However, the rest of the 

particle positions (S4 …Sn) are initialized using the following equation: 

𝑆𝑖𝑥 = (𝑓 + 𝑔)/2 ± ℎ                                                                                    (8.4) 

Where 'f' is the minimum resource value, 'g' is the maximum resource value, 

and 'h' is any random number between 'f' and 'g'. 'Six' represents the resource 

configuration of i
th

 particle x
th

 dimension. Here, dimensions imply the resource 

types: adder and multiplier (X=2). At first, the fitness cost value (using the 

cost function) corresponding to each particle (
‘
i
th’

) (as explained earlier in the 

above section) is computed. Subsequently, in its first iteration, the global best 
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particle position is determined based on each particle's initial cost value. The 

particle with minimal cost function value among all particles is selected as the 

global best resource configuration by the PSO-DSE. Subsequently, the new 

position of the particles is computed by adding the computed velocity/ 

displacement to the previous particle position [78]. Furthermore, if the 

computed velocity causes excessive exploration drift, then the velocity 

clamping is performed to keep the particle within the design space. However, 

if the new particle position outreaches the boundary space, adaptive end-

terminal perturbation is performed to limit the particle within its valid design 

space [78]. This process is executed for each remaining particle selected by 
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the IP designer in the design space. Subsequently, the cost is computed for 

each of the remaining particles in the population (i.e., for i<n, where ‘n’ is the 

total number of particles in the population), and if the currently computed cost 

is less than the cost of the particle obtained in the previous iteration, then both 

local best particle position, global best particle position and also the respective 

cost values are updated with currently computed cost. Moreover, a particle 

with a lesser fitness cost value is declared as the fittest among the remaining 

particles. In the next phase, the mutation is performed on each particle position 

to diversify the solution, better explore the design space and avoid getting 

stuck in the local minima [78]. Subsequently, each mutated particle's fitness 

cost is computed, and local and global best resource configurations are also 

updated. This process continues until the terminating condition is met. The 

exploration process gets terminated if the algorithm has already converged to 

global minima and results in no further updation/ exploration for the next ten 

consecutive executions (T1= 10) or if the number of iteration counts is 

exhausted (T2 ≥50). Thereby, an optimal design architecture solution for 

Trojan resistant TMR design is obtained using PSO-DSE.  

8.3. Process Demonstration: Motivational Example 

The demonstration of enabling Trojan-resistant capability of hardware IP 

cores used in computing systems is shown using finite impulse response filter 

(FIR) as follows: (i) high-level representation of FIR filter application is 

transformed to corresponding data flow graph (DFG). This is performed by 

parsing the transfer function of the FIR filter into matrix multiplication format 

comprising of input data samples, FIR filter coefficients and output samples. 

Further, the matrix multiplication format is generically represented as a 

mathematical function for computing the n
th

-output data sample. Finally, this 

mathematical function is represented as a connected graph, where each node 

represents the mathematical operations and the edges represent the data 

dependency, (ii) subsequently, two other units (duplicate and triplicate) are 

created corresponding to the same application (main/ original) in regard of 

TMR design (iii) all the three units corresponding to TMR design are 

scheduled using optimal resource configuration (adders and multipliers) 

obtained using PSO-driven design exploration. For a single unit, explored 
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resource configurations are three multipliers and one adder. The first unit 

(original unit) is scheduled by considering the inputs from vendor VD1. 

Subsequently, the second (duplicate unit) and third (triplicate unit) are 

scheduled using resources from vendor VD2 and vendor VD3, respectively. The 

proposed approach considers the simultaneous execution of the original unit 

along with two duplicate units. Further, the TMR design is scheduled using the 

LIST scheduling algorithm. In order to schedule the TMR design of the FIR 

filter, a total of nineteen control steps are required to generate the functional 

output value. The SDFG of the TMR design corresponding to the FIR filter 

using the proposed approach is shown in Fig. 8.5. 

8.4. Advantages and Limitations of Low-Cost Trojan 

Resistant TMR Framework 

Advantages:   

a) The proposed approach generates a complete Trojan resistant DSP 

hardware design capable of providing 100 percent resistance against 

functional Trojans (that affects the computational outputs). The 

Trojan-resistant design automatically detects and isolates the malicious 

logic (Trojans) present in the design. 

b) Additionally, the proposed approach discusses a framework of 

integrating the Trojan resistant design with the PSO-DSE (considering 

area and latency metric tradeoff) to generate low-cost optimized 

Fig. 8.5. Scheduled data flow graph of FIR filter (TMR) with 9(*), 3(+) 
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architecture corresponding to Trojan resistant hardware design. PSO 

prunes the potential architecture solutions present in the design search 

space to obtain a low-cost optimized solution. 

Limitations:  

a) The integration of PSO-DSE with the proposed Trojan resistance 

design is mandatory to handle the overhead caused by the replication 

of functional units (FUs) in the proposed approach.  

b) The values of various control parameters used in PSO-DSE, such as 

inertia weight, random numbers, weights, social and cognitive factors, 

should be chosen appropriately to facilitate proper convergence of 

PSO-DSE to optimal solution in an acceptable time. 

c) The proposed approach is based on assumptions of using fault-tolerant 

voter [132], error detection block [124], [132] based on multi-stage 

comparators to guard against faulty comparisons, and trustworthy 

(Trojan-free) fault-tolerant voters and comparators designed in-house. 

8.5. Summary 

This chapter discusses a low-cost solution for making hardware IP designs 

resistant to hardware Trojans for application-specific computing systems. It 

combines a PSO-based design space exploration technique with a TMR-based 

security strategy to create an optimal, low-cost SoC design that provides 

functional Trojan resistance in hardware applications. This approach utilizes a 

unique vendor allocation policy for the original, duplicate, and triplicate units 

within the TMR-based SoC design. Even if one of the TMR units is 

compromised by a functional Trojan, the system still produces correct outputs. 

As discussed in the Chapter 9, this Trojan-resistant method adds only a 

minimal design cost overhead. 
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Chapter 9 

Results and Analysis 

This chapter presents the experimental results and analysis of the proposed 

hardware security techniques aimed at ensuring the security and protection of 

data-intensive hardware IP cores. The results were obtained using various 

data-intensive DSP and multimedia benchmarks [83]-[86].  

9.1. Experimental Results: Exploration of Low-Cost 

Hardware IPs during HLS using Multiphase Encryption 

and Crypto-Chain Signature 

The experimental results of the proposed low-cost multi-phase encryption and 

low-cost crypto-chain signature based security methodologies (discussed in 

Chapter 3) are analyzed and discussed in this section. The proposed low-coat 

multi-phase encryption based security approach is validated on a system with 

a 2.30 GHz processor and 4GB RAM. The parameters for PSO-based 

architecture exploration are initialized as follows: acceleration coefficients (f1 

and f2) =2, k1 and k2 = 1, N =3, and ω = linearly decreasing between 0.9 to 0.1 

[79]. Further, the experimental analysis of the proposed FFA based crypto-

chain security approach has been performed on a system with a 2.30 GHz 

workstation and 4GB main memory. The parametric values used for the 

proposed approach: firefly population size (Y) =3,5, and 7, q1=q2=0.5, β0 = 1, 

γ = linearly decreasing from 0.5 to 0.1, αx and αy = linearly decreasing value 

from the maximum value of the first dimension and maximum value of the 

second dimension, and rand = 1.5 [80]. The evaluation of area and latency 

corresponding to JPEG-CODEC is performed using a 15nm scale using 

NanGate library [86]. 

9.1.1. Results in terms of security, design cost, and implementation 

complexity analysis 

(i). Security Analysis: The proposed security methodologies security is 

analyzed using two established security metrics (a) probability of coincidence 

(Ci) and (b) tamper tolerance (To) [25], [31], [32], [33]. The probability or 

likelihood of detecting identical covert security information in a baseline 



159 

design is called the probability of coincidence (PC/Ci). The PC/Ci is 

formulated as (9.1): 

Ci = (1− 1/b )
p
                                                                                               (9.1)                                                                                                                                                      

Where 'b' denotes the number of registers (color) present in the SDFG of target 

application before embedding secret security constraints, and 'p' denotes total 

embedded secret security/watermarking constraints. The robustness of the 

proposed security approach is inversely proportional to the value of Ci (i.e., a 

lower value of Ci indicates a stronger security approach in terms of obtaining 

stronger digital evidence). The presence of a unique watermark signature 

inside the design of hardware application helps in the definitive and robust 

detection of pirated IP cores from genuine ones. Further, tamper tolerance 

(TT/To) is formulated as (9.2):  

𝑇o = v
p
                                                                                                           (9.2)                                                                                                                                           

Where 'p' denotes total embedded secret security data, and 'v' denotes the 

quantity of distinctive encoding variables employed in the security approach. 

The greater the magnitude of To, the bigger the signature space (i.e., stronger 

security). The generation of different signature combinations increases with an 

increase in the T0, making it challenging for attackers to decode the precise 

signature blend to extract the covert constraints. Consequently, the security 

technique's sturdiness against tampering attacks increases with a higher value 

of To. The primary purpose of the adversary is to regenerate the exact 

signature (using different mechanisms such as brute force attack, etc.) so that 

they can easily evade the IP counterfeit detection process. Therefore, a higher 

value of To hinders the adversary from performing a tampering attack on the 

secured IP core design. 

Proposed low-cost multiphase encryption based security methodology: Fig. 

9.4 shows the comparison of PC between the proposed approach and [37]. 

Further, Fig. 9.5 and 9.6 report a similar comparison of PC between the 

proposed approach and related works [31] and [32], respectively. The 

proposed approach reports a lower PC than [31], [32], and [37], which means 

the proposed approach provides stronger digital evidence than [31], [32], and 

[37] due to generation of a higher number of hardware security constraints. 
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Due to embedding a higher number of generated security constraints, it 

becomes challenging for an adversary to detect the same security constraints 

in an unsecured design. Further, embedding a higher number of security 

constraints increases the presence of IP vendor-specific digital evidence in the 

design. 

Next, Fig. 9.7 and 9.8 show a comparison of tamper tolerance between the 

proposed approach and the related works [31] and [32]. The proposed security 

methodology shows a significantly higher tamper tolerance ability over [31] 

and [32] due to generation and embedding of a higher number of hardware 
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Signature embedded secured design Design 

cost 

overhead 

% 
Design 

area (um2) 

Design 

latency (ps) 

Design 

cost 

Design 

area (um2) 

Design 

latency (ps) 

Design 

cost 

Blur filter (BF) 3(+), 4(*) 147.849 927.399 -0.112 147.849 927.399 -0.112 0 

Sharpening filter (SF) 4(+), 2(*) 243.79 794.91 -0.193 243.79 794.91 -0.193 0 

Laplace edge detection filter 

(LED) 

2(+), 2(*) 199.75 728.671 -0.108 199.75 728.671 -0.108 0 

Vertical embossment (VE) 1(+), 1(*) 99.09 596.185 -0.077 99.09 596.185 -0.077 0 

Horizontal embossment (HE) 1(+), 1(*) 99.09 596.185 -0.077 99.09 596.185 -0.077 0 
 

Table. 9.1:Area, latency, cost, and resource configuration of proposed security methodology before and after embedding signature 

 

 

Fig. 9.1. Design cost comparison between proposed approach 

and (Sengupta et al., 2019) [37], (Koushanfar et al., 2005) [31], 

and (Sengupta et al., 2016) [32] 

 

Fig. 9.2. Convergence time and exploration time for the 

proposed methodology 
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security constraints. Further, the comparison of TT is not reported here 

between the proposed and the related work [37] as security methodology [37] 

does not use an encoding mechanism (where encoding variables are not 

required) to generate the hardware security constraints. Moreover, the 

proposed approach is highly robust in terms of security because of the 

following factors: (a) generation of RAT based on low-cost resource 

architecture obtained through a heuristic, (b ) IP vendor selected key for initial 

state matrix generation, (c) IP vendor selected key for row-diffusion (d) IP 

vendor selected key for byte concatenation, (e) IP vendor selected encoding 

rule (f) IP vendor selected keys for TRIFID cipher computation. 

 

 

 

 

 

Fig. 9.3. Reduction of global best solution design cost over the iteration counts during determining low-cost architecture 

configuration for proposed approach. Note: Baseline parameters for PSO-based architecture exploration: 𝒌𝟏, 𝒌𝟐 = 0.5;  𝝎 = linearly 

decreasing [0.9–0.1]; 𝒇𝟏, 𝒇𝟐 = 2; N = 3. 
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Proposed low-cost crypto-chain based security methodology: Table 9.5 

illustrates a comparative study of Ci between the proposed and [44], [37], [32], 

[43], [31], and [107]. The proposed FFA based crypto-chain security approach 

surpasses all of the above-mentioned approaches with a lower value of Ci. 

This is because the proposed approach facilitates determining and implanting 

higher covert constraints (i.e., security constraints that provide stronger digital 

evidence) than the related approaches. The production and implantation of a 

greater count of security information into the design make the incidence of the 

same security information in an unsecured design highly improbable for an 
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Fig. 9.8. Comparison of TT between the 

proposed and (Sengupta et al., 2016) [32] 

 

 

 

Fig.  9.4. Comparison of PC between the 

proposed and (Sengupta et al., 2019) [37] 

 

Fig. 9.5. Comparison of PC between the 

proposed and (Koushanfar et al., 2005) [31] 

 

 

Fig. 9.6. Comparison of PC between the proposed 

and (Sengupta et al., 2016) [32] 

 

 

Fig. 9.7. Comparison of TT between the 

proposed and (Koushanfar et al., 2005) [31] 

 

 

Benchmarks GEN Spacing 

(SPA) 

Spread 

(SPD) 

Weighted 

metric (WEM) 

BF 0.00 0.111 0.372 0.186 

SF 0.00 0.745 0.611 0.306 

VE 0.00 0.00 0.00 0.00 

HE 0.00 0.00 0.00 0.00 

LED 0.00 0.5 0.167 0.084 

 

Table. 9.2: Result of the proposed approach in terms of optimality 
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adversary. 

Next, Table 9.5 also shows a comparative investigation of To between the 

proposed and [44], [32], [43], [31], and [107]. The proposed FFA based 

crypto-chain security approach surpasses all of the above-mentioned 

approaches with a higher value of To. Extracting the exact security constraints 

from the derived crypto-chain signature combination amongst the innumerable 

combinations in the signature space becomes impossible when the tamper 

tolerance value is large, which is the case for the proposed approach. On the 

contrary, the related approaches achieve lesser tamper tolerance magnitude, as 

evident from Table 9.5. This indicates that the proposed approach is more 

secure and robust than all the related approaches. Further, To corresponding to 

[37] is not reported as this security mechanism does not employ signature 

encoding to generate security constraints. Additionally, Table 9.6 reports 

variations in the values of Ci and To w.r.t. embedded crypto-chain signature 

bits into the design for JPEG-CODEC. The value of Ci decreases with an 

increase in the embedded signature bits, while the value of To increases. 

Furthermore, the presented FFA based security technique provides more 

sturdy security due to the following reasons: (a) IP vendor specified encoding 

rules, (b) IP vendor specified keys to drive crypto-chain based security 

methodology, (c) IP vendor specified bit padding and embedding rules, (d) IP 

vendor specified truncation length, and (e) scheduling information obtained 

through transformed JPEG-CODEC SDFG. 

(ii). Design Cost: 

Proposed low-cost multiphase encryption based security methodology: The 

design cost for the proposed approach is evaluated with the help of the design 

cost function explained in equation (3.9). The evaluated design cost before and 

after embedding the hardware security constraints for different image 

processing filter benchmarks is reported in Table 9.1. Further, Table 9.1 

reports the low-cost resource architecture explored with PSO-based 

architecture exploration corresponding to the secured target image processing 

filter IP core. Table 9.1 shows that the proposed approach obtains a secured 

image processing filter IP core at zero design cost overhead. Moreover, Fig. 

9.1. shows design cost comparison between the proposed approach and a 
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recent approach [31], [32], and [37]. As evident, the proposed approach offers 

significant improvement in quality of results (QoR). It is evident from Fig. 9.1 

that the proposed approach achieves a significantly better QoR as compared to 

0
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120

Convergence time

(sec)

Exploration time

(sec)

Convergence

iteration count

Y=3 Y=5 Y=7

Benchmarks FFA 

explored 

architecture 

Initial design (i.e., pre 

signature implanted unsecured 

design) 

Final secured crypto-chain 

signature implanted design 

 

Design 

cost 

overhead 

% 
Area 

(um2) 

Latency 

(ps) 

Design 

cost 

Area 

(um2) 

Latency 

(ps) 

Design 

cost 

JPEG-CODEC 6(+), 8(*) 818.67 3245.897 -0.3246 818.67 3245.897 -0.3246 0 

 

Table. 9.3: Results of presented technique pre and post implanting crypto-chain signature  

 

 

Fig. 9.9. Design cost evaluation of presented technique with Watermarking [31], Steganography [37], 

Watermarking [32], Palmprint biometric[44],  Encrypted signature [43], and DNA biometric [107] for JPEG-

CODED hardware IP core 

 

 

Fig. 9.10. Comparison of convergence time, exploration time 

and convergence iteration count corresponding to the swarm 

(population) sizes (Y) = 3, 5, and 7 for the proposed FFA-

based security approach for secured JPEG-CODEC hardware 

IP core design 

Time (sec) 

Swarm size 
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[31], and [37] with an average design cost reduction of 56.92 percent for all 

benchmarks. Further, the average design cost reduction for the proposed 

approach compared to [32] is 36.84 percent for all the benchmarks, indicating 

a better QoR for the proposed approach than [32]. The integration of PSO-

based architecture exploration with the proposed multi-phase encryption 

algorithm helps to determine low-cost optimal secured image processing filter 

IP core datapath with significantly lower design cost (higher QoR). Further, 

the convergence and exploration time of the proposed approach to obtain 

secured target filter IP cores are reported in Fig. 9.2. The proposed algorithm 

reports an average convergence time of 77.2ms and an average exploration 

time of 462.8ms. This shows that the proposed low-cost multi-phase 

Proposed approach  [78] 

Swarm size Y=3 Y=5 Y=7 Y=3 Y=5 Y=7 

Convergence 

time (sec) 

65.80 57.22 35.47 103.68 70.65 40.69 

Exploration 

time (sec) 

111.73 109.94 106.11 146.22 140.75 120.94 

Convergence 

iteration 

20 16 7 31 15 9 

 

Table. 9.4: Comparison of convergence and exploration time between presented technique and [78] 

for generating low-cost optimized architectural solution against secured JPEG-CODEC IP core 

datapath 

Fig.9.11. Decrement of global best cost with progressing iterations corresponding to different swarm sizes (Y) during computing 

low-overhead hardware configuration for presented method 

 

 

 

Y=3 

Y=5 

Y=7 
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encryption algorithm converges to an optimal solution in an acceptable time.  

Moreover, the global best design cost reduction graph corresponding to 

different image processing filter benchmarks for PSO based architecture 

exploration is reported in Fig. 9.3. The graph depicts the reduction in the 

global best solution design cost over various iterations obtained using PSO 

based architecture exploration in order to determine low-cost final resource 

architecture. As evident from Fig. 9.3, the proposed algorithm converges to 

the global optimal solution in fewer iterations for smaller image processing 

filter applications such as vertical and horizontal embossment. However, it 

consumes 2 or 3 additional iterations for slightly larger applications, such as 

blur and sharpening filters. It is evident that the proposed algorithm can 

provide robust security with zero overhead in final design cost (i.e., no extra 

register is required). 

Proposed low-cost crypto-chain based security methodology: The proposed 

FFA-based crypto-chain based security approach’s design cost is computed 

using area and latency-based design cost function shown in eqn. (3.9). Table 

9.3 reports the computed design cost corresponding to low-cost JPEG-CODEC 

IP core datapath before and after embedding the secret security constraints. 

Further, Table 9.3 highlights the FFA-DSE based low-cost optimized 

architectural solution corresponding to secured JPEG-CODEC hardware IP 

core, design area, and design latency. It is clearly evident from Table 9.3 that 

the proposed FFA-DSE based security incurs zero design cost overhead while 

securing the JPEG-CODEC hardware IP core. Next, a comparative study of 

design cost between the presented technique and [31], [32], [37], [43], [44], 

and [107] is illustrated in Fig. 9.9. As apparent from Fig. 9.9, the proposed 

methodology offers an average design cost saving of 71.11% in comparison to 

[44], [43], [33], and [107]. Further, it reports an average design cost saving of 

11.08 % compared to [32] and [37]. This indicates that the presented approach 

provides a notable advancement in the quality of results (QoR). The 

incorporation of FFA based resource exploration with the presented key-

driven crypto-chain based security algorithm facilitates the production of a 

low-overhead optimized secured JPEG-CODEC hardware IP core with a 

higher QoR (i.e., lower design cost).  
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Next, Fig. 9.10 reports the exploration and convergence time of the presented 

approach to determine the secured JPEG-CODEC IP core datapath. The 

average exploration and convergence times are 109.26 sec and 52.83 sec, 

respectively. Additionally, Table 9.4 also reports the exploration time, 

convergence time, and convergence iteration corresponding to different 

population sizes (i.e., 3, 5and 7). The convergence iteration count (i.e., the 

iteration required by the DSE algorithm to converge to the global best 

architecture solution) decreases with an increase in the population size of 

fireflies. Table 9.4 establishes that the probability of convergence toward the 

global best solution increases with the increase in the population size. Further, 

Table 9.4 compares the proposed approach (that uses FFA-driven DSE) with 

Security approach  Security parameters 

 Embedded 

security 

constraints  

(Ci) (TO) 

Proposed approach 512 1.86E-02 1.34E+154 

Palmprint biometric [44] 231 1.65E-01 3.45E+69 

Steganography[37] 100 4.59E-01 NA 

Watermarking [32] 240 1.54E-01 3.12E+144 

Encrypted signature [43] 160 2.87E-01 1.46E+48 

Watermarking [31] 240 1.54E-01 1.76E+72 

DNA biometric [107] 128 3.69E-01 3.40E+38 

 

Table. 9.5: Comparison of probability of coincidence (Ci) and tamper 

tolerance (TO)  between the proposed approach, [44], [37], [32], [43], 

[31], and [107] corresponding to JPEG CODEC 

 

Signature bits 

(embedded into the 

design) 

Probability of 

coincidence (Ci) 

Tamper tolerance 

(To) 

32 7.79E-01 4.29E+09 

64 6.07E-01 1.84E+19 

128 3.69E-01 3.40E+38 

256 1.36E-01 1.15E+77 

512 1.86E-02 1.34E+154 

 

Table. 9.6: Variation of probability of coincidence and tamper 

tolerance corresponding to proposed approach w.r.t. embedded crypto-

chain signature bits into the design for JPEG-CODEC 

Benchmarks Proposed approach 

Proposed approach 5.61E-177 

Palmprint biometric [44] 2.38E-87 

Watermarking [32] 5.65E-73 

Encrypted signature [43] 2.01E-87 

Watermarking [31] 1.66E-111 

DNA biometric [107] 2.9E-39 

 

Table. 9.7: Comparison of entropy between the proposed approach, 

[44], [32], [43], [31], and [107] corresponding to JPEG-CODEC 

 

 

Parameters Values 

Spacing (SPA) 0.476 

Generational distance 

(GEN) 

0 

Weighted metric (WEM) 0.232 

Spread (SPD) 0.463 

 

Table. 9.8: Optimality analysis of proposed technique for JPEG-CODEC 
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PSO-driven DSE [78] regarding exploration time, convergence time, and 

convergence iteration corresponding to optimal secured JPEG-CODEC IP core 

datapath. Table 9.4 indicates that the presented technique supersedes [78] in 

terms of lower exploration and convergence time values to achieve the global 

optimal solution. Moreover, [78] report the advancement of PSO-driven DSE 

over other meta-heuristic based DSE approaches such as GA, ACO, etc.  

Further, Fig. 9.11 depicts the design cost reduction graph while achieving the 

global best configuration corresponding to JPEG-CODEC hardware IP core 

for FFA-based architecture exploration. The graph illustrates the design cost 

reduction while reaching the global best solution over various iterations. As 

explained above in this sub-section, the FFA architecture exploration process 

converges in fewer iterations with an increase in firefly population size 

(shown in Fig. 9.11). Additionally, a design cost vs. probability of coincidence 

tradeoff for the proposed approach corresponding to varying signature sizes is 

shown in Fig. 9.12. As evidenced from Fig. 9.12, the proposed approach 

incurs zero design cot overhead with significantly lower value of Ci on 

increasing the embedded signature bits. 

(iii). Entropy analysis: Entropy is described as the effort required by an 

adversary and uncertainty encountered in decoding the embedded hidden 

information inside the IP design [134]. The proposed approach’s entropy is 

estimated using ET: 

ET = ((1/2
Z
)*(1/En)*(1/R)*(1/2

64
)))                                                              (9.3) 

Where ‘z’ is the magnitude of generated signature, ‘En’ is IP vendor specified 

encoding rules, ‘R’ is the round computation’s maximum value, and (1/2
64

) is 
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the probability of finding the exact key hash buffer initialized value in SHA-

512 cryptographic module (each hash buffer is initialized with pre-defined 64-

bit value). Table 9.7 compares the entropy of the proposed approach with 

similar approaches [31], [32], [43], [44], and [107]. The proposed approach 

offers a stronger entropy value (lower probability value) compared to the prior 

state-of-the-arts. 

9.1.2. Optimality analysis 

The optimality assessment of the proposed security methodologies with 

respect to the determination of the explored architectural solution for secured 

image filters and JPEG-CODEC IP core is performed using the following 

optimality metrics: (a) spacing (SPA), (b) Generational distance (GEN), (c) 

weighted sum (WEM), and (d) spreading (SPD). Table 9.2 and 9.8 highlight 

the computed values corresponding to all optimality metrics for the proposed 

low-cost multiphase encryption and low-cost crypto-chain based security 

methodologies. A zero value of the 'G' shows that the list of obtained solutions 

using the presented approach lies on the true Pareto front. Likewise, a zero 

value (or marginally higher than zero) for the spacing parameter designates the 

even scattering of Pareto points on the curve.  Next, the spread metric 

computes how comprehensively the true Pareto front is covered. The obtained 

lower value (i.e., near to zero) corresponding to both spreading and spacing 

metric indicates the scattering evenness of the obtained solutions along with 

its extreme covering of true Pareto front. 

9.2. Experimental Results: Enhanced Security for Hardware 

IPs Using IP Seller’s Protein Molecular Biometrics and 

Facial Biometric-based Encryption Key 

The experimental results of the proposed encrypted protein molecular 

biometric based security methodology (discussed in Chapter 4) are analyzed 

and discussed in this section. 

9.2.1. Experimental setup and benchmarks 

The specification of the system used to implement the proposed approach is 

processor-intel core2 duo, 2.10GHz RAM -3GB. A 15nm open-cell library 
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[86] is used to determine both the latency and area of a DSP hardware design, 

corresponding to resource constraints. 

9.2.2. Security analysis: Analysis of PC and TT 

The probability of coincidentally detecting embedded security constraints in 

an unsecured design is evaluated using PC metric. It is a measure of the false 

positive of the methodology. The probability of coincidence, that the same 

design with the security constraints (example, watermark) is produced by any 

other authors (IP vendors) must be reduced. The probability is proportional to 

the probability that any specific design is produced by a synthesis tool or by a 

manual design. It also is an indicator of the presence of digital evidence inside 

a secured design that can be used as a digital proof to handle IP piracy and 

verify true IP vendor ownership. A lower value of PC indicates a more robust 

security methodology with a higher value of digital evidence. Moreover, a 

lower value of PC helps in the generation of signatures with greater 

uniqueness (digital proof), which provides a smooth, definite, and robust 

differentiation between authentic and pirated IP cores during the detection 

process. Further, security against tampering attack is evaluated using the 

tamper tolerance ability (TT) of the design. The larger is the key-space, the 

harder it is for an attacker to find the exact embedded encrypted protein 

molecular signature to tamper. The formulas of PC and TT are already 

discussed in the previous section of this chapter. 

The PC attained using proposed approach corresponding to DSP IP cores has 

been reported for varying amino acid sequence length and encrypted protein 

molecular signature size, as shown in Table 9.9. As evident from Table 9.9, 

with the increase in the number of amino acids in the chain, the encrypted 

protein molecular size increases, thereby resulting into larger number of 

security constraints producing lower PC value. The proposed protein 

molecular signature methodology is also compared with recent state-of-the art 

hardware security approaches based on fingerprint biometric [40] and 

chromosomal DNA [107]. The comparison of PC of proposed approach with 

[40] and [107] are reported in Table 9.10 and 9.11, respectively. As evident, 

the proposed approach attains lesser PC (higher strength of ownership proof) 

compared to both [40] and [107]. Further, PC comparison has also been 
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reported for two different amino acid chains (protein sequence-1 and 

sequence-2) for different DSP cores, as shown in Table 9.12. Moreover, the 

PC comparison with conventional approaches [31], [36], [39], [43] has been 

shown in Table 9.13. As evident the proposed approach attains lower PC value 

(desirable) than the conventional approaches [31], [36], [39], [43]. This is 

because the proposed protein molecular signature capacitates the IP vendor to 

generate more secret security constraints as compared to generated using 

related approaches. 

#Amino 

acids 

Encrypted 

protein 

molecular 

signature size 

FIR DFT 4point DCT 8-point DCT JPEG 

PC 

Embedded security constraints 

50 200 2.5E-12 9.8E-3 5.6E-3 5.4E-7 6.3E-2 

200 30 18 108 200 

150 599 3.4E-13 9.8E-3 5.6E-3 5.4E-7 2.5E-4 

215 30 18 108 599 

250 990 3.4E-13 9.8E-3 5.6E-3 5.4E-7 1.1E-6 

215 30 18 108 990 

350 1382 3.4E-13 9.8E-3 5.6E-3 5.4E-7 5.2E9 

215 30 18 108 1382 

 

Fingerprint image # of embedded     

security 

constraints of 

fingerprint 

approach 

PC of 

fingerprint 

approach [40] 

Proposed 

amino acid 

chain of 

protein 

sequence 

# of embedded 

security 

constraints of 

proposed 

approach 

PC of 

proposed 

approach 

% Reduction of 

PC obtained 

using proposed 

approach 

Image:101_1 350 8.0E-3 150 599 2.5E-4 96.8% 

Image:101_2 418 3.1E-3 200 799 1.6E-5 99.4% 

Image:101_8 526 7.0E-4 250 990 1.1E-6 99.8% 

Image:102_3 538 5.9E-4 300 1184 8.0E-8 99.9% 

Image:103_8 555 4.7E-4 350 1382 5.2E-9 99.9989% 

 

Table. 9.9: Variation in PC for different size of encrypted protein molecular signature using proposed approach Table. 9.10: Comparison of security in terms of PC for jpeg-codec IP core between proposed approach and IP fingerprinting [40] 
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Next, the comparison of tamper tolerance of the proposed approach with [40] 

and [107] is shown in Table 9.14 and Table 9.15, respectively. As evident, the 

tamper tolerance of the proposed approach is significantly higher due to 

generation of more security constraints using protein molecular biometric 

signature than [40], [107]. Further, TT has also been compared corresponding 

to two different amino acid chains using proposed approach. As evident from 

Table 9.16, TT is higher for larger chain of amino acids (protein sequence-1). 

Moreover, the TT comparison with conventional approaches [31], [36], [39], 

[43] has been shown in Table 9.17. As evident the proposed approach attains 

higher TT value (desirable) than the conventional approaches [31], [36], [39], 

[43]. Thus, the proposed approach offers robust security than contemporary 

approaches against piracy and fraudulent ownership claim. 

9.2.3. Design cost analysis 

The design cost DC, pre and post-embedding of generated secret hardware 

security constraints corresponding to encrypted protein molecular signature is 

evaluated using the following design metric [32]: 

𝐷𝐶 = 𝑒1
𝑇𝑑

𝑇𝑚
+ 𝑒2

𝐴𝑑

𝐴𝑚
                                                                                      (9.4) 

Where, Pi denotes the resource constraints of the design, Td and Ad signify the 

security constraint embedded design latency and design area respectively, Am 

and Lm denote the maximum possible area and maximum possible latency of 

the design. e1 and e2 denote weights of latency and area in the normalized cost 

function. The used design cost function is similar to design cost function 

discussed in previous section. Table 9.18 presents the design cost of proposed 

security approach post embedding security constraints corresponding to two 

different encrypted protein molecular signature extracted from two different 

protein sequences. The proposed approach incurs negligible design cost 

overhead post implanting facial biometric encrypted protein molecular 

Bench-

marks 

[84] 

Proposed  Related work [107] 

Max. 

constraints 

Pc Max. 

constraints 

Pc 

FIR 225 0.9E-13 128 3.7E-8 

ARF 306 1.79E-18 128 3.7E-8 

DWT 110 2.1E-11 92 1.2E-9 

JPEG 1408 3.6E-9 128 1.7E-1 

MESA 1408 1.3E-13 128 3.7E-8 

 

Table. 9.11: Comparison of PC w.r.t. related work [107] 
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signature corresponding to different protein sequence of varying length.  

Further, a particular molecular signature of appropriate signature length can be 

chosen by considering the security-design cost tradeoff. The security (Pc)-

design cost tradeoff for two different protein sequences (sequence-1 and 

sequence-2) corresponding to the varying strength of embedded security 

constraints is shown in Fig. 9.13. As evident from Fig. 9.13, the lesser value of 

probability of coincidence is achieved (desirable) with an increase in the 

number of embedded security constraints for both the protein sequences (1 and 

Fingerprint image # of embedded 

security 

constraints of 

fingerprint 

approach 

TT of 

fingerprint 

approach 

[40] 

Proposed amino 

acid chain of 

protein 

sequence 

# of embedded 

security constraints 

of proposed 

approach 

TT of 

proposed 

approach 

% Increment of TT 

obtained using 

proposed approach 

Image:101_1 350 2.29E+105 150 599 2.07E+180 9.0393E+76% 

Image:101_2 418 6.76E+125 200 799 3.33E+240 4.92604E+116% 

Image:101_8 526 2.19E+158 250 990 1.04E+298 4.74886E+141% 

Image:102_3 538 8.99E+161 300 1184 ~1.0E+358 ~+198% 

Image:103_8 555 1.17E+167 350 1382 ~1.0E+417 ~+253% 

 

Amino acid 

chain 

sequence 

#Amino acids #Constraints FIR DFT 4point 

DCT 

8-point DCT JPEG 

PC 

Embedded security constraints 

Sequence-1 350 1382 3.4E-13 9.8E-3 5.6E-3 5.4E-7 5.2E-9 

Sequence-2 51 197 3.76E-12 9.8E-3 5.6E-3 5.4E-7 6.6E-2 

 

Benchmarks Proposed 

approach 

 [39]  [36]  [31]  [43] 

FIR 3.4E-13 1.09E-7 1.9E-8 2.1E-3 2.6E-1 

ARF 1.79E-18 2.29E-5 2.8E-14 5.1E-2 5.2E-1 

1D-DWT 1.95E-9 4.62E-7 1.7E-7 4.2E-3 1.6E-1 

 

Table. 9.12: Variation in PC for two different encrypted protein sequence of varying length using proposed approach Table. 9.13: Comparison of PC with related approaches Table. 9.14: Comparison of TT for JPEG-CODEC between proposed approach and IP fingerprinting [40] 
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2). This is because embedding a higher number of security constraints makes 

it more challenging for an adversary to detect the authentic signature in an 

unsecured design version.  

A lower value of PC depicts the presence of stronger digital evidence 

(definitive proof of ownership). Further, embedding more security constraints 

may impact the design cost. This is because embedding a higher number of 

security constraints into a smaller IP design may require extra storage element 

(registers) for accommodating storage variables post performing the local 

alteration as per the constraints embedding rule (a single register cannot be 

assigned with two storage variables at the same control step). Therefore, 

sometimes, new registers may be required to accommodate all the generated 

hardware security constraints into the design, which in turn may increase the 

design cost of the secured IP. However, in the proposed methodology an IP 

Bench-

marks 

[84] 

Proposed  Related work [107] 

Max. 

constraints 
TT Max. 

constraints 
TT 

FIR 225 5.39E+67 128 3.40E+38 

ARF 306 1.30E+92 128 3.40E+38 

DWT 110 1.29E+33 92 4.95E+27 

JPEG 1408 1.0E+421 128 3.40E+38 

MESA 1408 1.0E+421 128 3.40E+38 

 

Amino acid 

chain sequence 

#Amino 

acids 

# 

Constraints 

(z) 

TT 

Sequence-1 350 1382 ~1.0E+417 

Sequence-2 51 197 2.0E+59 

 

Benchmarks 

[84] 

Design cost of 

encrypted protein 

molecular signature 

implanted design 

corresponding to 

Sequence-1 (1408 

digits) 

Design cost of encrypted 

protein molecular signature 

implanted design 

corresponding to 

Sequence-2 (128 digits) 

8-point 

DCT 

0.473 0.473 

FIR 0.569 0.567 

ARF 0.476 0.473 

DWT 0.615 0.617 

JPEG 0.214 0.214 

MESA 0.280 0.280 

 

Benchmarks Proposed 

approach 

 [39]  [36]  [31]  [43] 

FIR 5.39E+67 1.32E+32 7.5E+38 7.0E+13 1.0E+3 

ARF 1.30E+92 1020E+24 7.5E+38 7.0E+13 1.0E+3 

1D-DWT 1.29E+33 1.20E+24 7.9E+16 1.0E+6 1.0E+3 

 

Table. 9.15: Comparison of tamper tolerance (TT) w.r.t. related work [107] 

Table. 9.16: Variation in TT for two different encrypted protein 

sequence of varying length using proposed approach 

Table. 9.17: Comparison of TT with related approaches 

Table. 9.18: Design cost of embedding encrypted protein molecular signature 
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vendor can choose the strength of hardware security constraints for embedding 

depending upon the size of application and desirable security strength. 

9.2.4. Entropy analysis 

The effort required to guess the exact protein molecular signature embedded 

can be quantified as: , where 's' stands for the number of generated 

protein molecular signature bits. For example, if the value of ‘s’ is 1382 bits 

(protein molecular sequence-1), then the value of ‘e’ is 9.4742751E-417. This 

is an estimation of the entropy of the proposed approach in terms of the 

hardness of the adversarial guessing and effort. In the proposed approach, the 

order in which the amino acid is sequenced in polypeptide chain to obtain the 

protein molecular signature is unknown to an adversary. In the proposed 

approach, 20 different amino acid elements can be concatenated to generate a 

Facial 

features 

(m) 

Facial 

encryption 

key size (k) 

Generated 

security 

constraints (s) 

Entropy 

5 32 1382 2.27E-452 

9 64 1382 5.28E-462 

11 83 1382 1.01E-467 

 

Proposed 

approach 

Key based RNG 

techniques [31], [39] 

SSL TRNG 

[133] 

1.01E-467 2.98E-39 9.33E-302 

 

Benchmarks Computational 

time without facial 

encryption (msec) 

Computational 

time with facial 

encryption (msec) 

FIR 744 824 

ARF 842 922 

DWT 840 920 

JPEG 1598 1678 

MESA 1152 1232 

 

Table. 9.19: Entropy of the proposed approach 

Table. 9.20: Comparison of entropy between proposed approach 

and RNG techniques (crypto key based and SSL TRNG) 

Table. 9.21: Total computational time of the proposed approach 

with and without facial encryption mechanism 
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Fig. 9.13. Security-design cost trade-off for 8-point DCT corresponding 

to two different protein sequences for varying security constraints 
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robust protein molecular signature. This results in 20! (Factorial 20) 

permutations. Further, 11 different facial features can also be concatenated to 

generate facial encryption key. Therefore, the total effort (TE) required from an 

adversarial perspective: 

Entropy = 1/n!  1/2
s
  1/m!  1/2

k
                                                              (9.5) 

Where ‘n’ is the number of the different amino acid elements used for the 

signature bit generation, ‘m’ is the number of facial features for generating the 

encryption key and ‘k’ is the size of facial encryption key. For example, when 

n=20, s=1382, m=11 and k=83 then TE= 1.01E-467. The larger the value of n, 

s, m and k, the higher the effort required from an adversarial perspective. The 

entropy in terms of the hardness of the adversarial guessing and effort of the 

proposed approach corresponding to varying encryption key size (based on 

different facial features), is shown in Table 9.19. Table 9.19 presents the 

entropy corresponding to varying size of encryption key and embedded 

security constraints generated through proposed protein molecular signature. 

Additionally, the comparison of entropy of the generated signature using 

proposed approach with crypto key and semiconductor superlattice true 

random number generator (SSL-TRNG) based approach, is shown in Table 

9.20. The proposed approach depicts improved entropy (lesser probability 

value) than techniques [31], [39] and [133]. Further, the computational time of 

the proposed approach corresponding to different benchmarks in case of ‘with 

and without facial encryption module’ is shown in Table 9.21. The 

computational time corresponding to facial encryption key generation block is 

adopted from [41]. 

9.3. Experimental Results: Securing Hardware IPs by 

Exploiting Statistical Watermarking Using Encrypted 

Dispersion Matrix and Eigen Decomposition Framework 

The experimental results of the proposed statistical watermarking based 

security methodology (discussed in Chapter 5) are analyzed and discussed in 

this section. 

9.3.1. Experimental setup and benchmarks 
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The experimental assessment of the proposed approach has been performed on 

a system with a 2.30 GHz processor and 4 GB RAM. A 15 nm technology 

scale based on the NanGate library [86] is used in the proposed approach to 

evaluate design area and latency corresponding to IP vendor selected resource 

configurations. The benchmarks used in the experimental analysis and their 

details (including their CDFGs, scheduling, register count, etc.) are available 

in [40],[41],[84]. The framework/tool used for characterizing area/latency is 

adopted from [41] and is publicly available at [85]. The maximum design 

space capacity (in terms of exhaustive resource configurations available) is as 

follows: 8-point DCT – 8; FIR – 64; ARF- 32; DWT- 20; JPEG- 2048 [46]. 

9.3.2. Analysis of attack scenarios 

(i). Security Against Forgery Attack: In the proposed approach, it is not 

mandatory to store the embedded signature. The authentic IP vendor can easily 

perform IP ownership resolution by matching the security constraints with the 

embedded security constraints of the IP design. On the contrary, regeneration 

of original encrypted security constraints is impossible for the adversary as the 

regeneration process requires decoding of several security parameters such as 

(a) IP vendor selected p-bit key for resource configuration generation, (b) IP 

vendor chosen AES encryption key, (c) IP vendor chosen characteristic 

security parameters such as: var (Ad), var (Ld), (cov (Ad, Ld), eigen roots, and 

the number of resource configuration chosen, (d) concatenation rule for 

appending the encrypted characteristic secret data to generate the final 

encrypted signature, and (e) IP vendor specified encoding rule to convert the 

encrypted signature into security constraints. Therefore, the proposed 

approach is resilient against possible forgery attack by an SoC integrator. The 

used acronyms are explained in Chapter 5. 
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(ii). Security Against Brute Force Attack: The proposed approach is capable 

of providing resistance against brute force attack due to its very high tamper 

tolerance ability. Due to greater size of the watermark signature generated, the 

signature space of the proposed approach is extremely large. Therefore, from 

an attacker’s perspective, the probability of finding the exact signature 

combination used for embedding security constraints is extremely low. 

Henceforth, the proposed approach provides sturdy resilience against brute 

force attack used for tampering and/or removal of the embedded watermark. 

(iii). Security against False Positive and Ghost Signature Search Attack: 

The implanted secret mark (watermark) should be seamlessly detectable to 

Benchmarks  Proposed approach [41] [43] 

 Register count 

before 

embedding 

security 

constraints  

Embedded 

security 

constraints 

(c) 

(Ci) Embedded 

security 

constraints 

(c) 

(Ci) Embedded 

security 

constraints 

(c)  

(Ci) 

8-point DCT 16 214 1.00E-06 81 5.36E-03 160 3.27E-05 

FIR 16 343 2.43E-10 81 5.36E-03 160 3.27E-05 

ARF 16 441 4.35E-13 81 5.36E-03 160 3.27E-05 

DWT 10 164 3.13E-08 81 1.96E-04 160 4.77E-08 

JPEG-CODEC 137  896 1.41E-03 81 5.52E-01 160 3.09E-01 

 

Table. 9.22: Comparison of probability of coincidence (Ci) between the proposed approach, [41], [43] 

 

Benchmarks  Proposed approach            [31] [40] 

 Register count 

before 

embedding 

security 

constraints  

Embedded 

security 

constraints  

     (Ci) Embedded 

security 

constraints  

(Ci) Embedded 

security 

constraints  

(Ci) 

8-point DCT 16 214 1.00E-06 128 2.58E-04 199 2.64E-06 

FIR 16 343 2.43E-10 128 2.58E-04 199 2.64E-06 

ARF 16 441 4.35E-13 128 2.58E-04 199 2.64E-06 

DWT 10 164 3.13E-08 128 1.39E-06 164 3.13E-08 

JPEG-CODEC 137  896 1.41E-03 128 3.91E-01 199 2.32E-01 

 

Table. 9.23: Comparison of probability of coincidence (Ci) between the proposed approach, [31], [40] 

 

Benchmarks Proposed 

approach 

[41] [43] [31] [40] 

8-point DCT 2.63E+64 2.41E+24 1.46E+48 3.40E+38 8.03E+59 

FIR 1.79E+103 2.41E+24 1.46E+48 3.40E+38 8.03E+59 

ARF 5.67E+132 2.41E+24 1.46E+48 3.40E+38 8.03E+59 

DWT 2.33E+49 2.41E+24 1.46E+48 3.40E+38 8.03E+59 

JPEG-CODEC 5.28E+269 2.41E+24 1.46E+48 3.40E+38 8.03E+59 

 

Table. 9.24: Comparison of tamper tolerance (Zt) between the proposed approach, [41], [43], [31], and [40] 
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establish the proof of authorship. This indicates the credibility of the 

embedded watermark. No third party (i.e., other than the IP owner) should be 

able to claim the watermark by chance. The probability of coincidence serves 

as a metric to assess the likelihood of coincidently detecting the exact security 

constraints within an unsecured IP design (false positive). The likelihood of a 

successful ghost signature search attack is the same as the probability of 

coincidence. In the proposed approach, the credibility of the embedded 

watermark is extremely high due to its lower probability of coincidence. This 

is because the proposed approach is capable of generating/embedding much 

larger number of secret watermarking constraints into the IP design. 

Therefore, the likelihood of launching successful ghost signature search attack 

is extremely low. 

9.3.3. Security analysis: PC, TT and entropy analysis  

Tables 9.22 and 9.23 report the comparison of the probability of coincidence 

between the proposed approach, [31], [40], [41], and [43]. In case of the 

proposed approach, the security constraints that can be generated and 

embedded are larger in size,  therefore the maximum embedding possible (as 

reflected in tables 9.22 and 9.23) corresponding to different applications are 

higher and different, than prior approaches. On the other hand, for prior 

approaches [40], [41], and [43], the security constraints in Tables 9.22 and 

9.23 are same, because the maximum possible generation of security 

constraints for embedding corresponding to different applications is exactly 

same. Further, Table 9.25 shows the comparison of the probability of 

coincidence with variation in signature strength corresponding to the JPEG-

CODEC IP for the proposed approach. The proposed approach depicts a lower 

value of Ci as compared to the prior approaches [31], [40], [41], and [43], 

indicating stronger digital evidence due to the generation and embedding of a 

larger number of hardware security constraints. Table 9.25 shows, the Ci of the 

p-bit key based resource 

configuration 

Variation in 

signature  

Ci Zt 

[1,4], [1,1], and EK =128 bit 512-bit 2.34E-02 1.34E+154 

[1,4], [1,1], [1,8], [1,5], and  

EK =128 bit 

896-bit 1.41E-03 5.28E+269 

[1,4], [1,1], [1,8], [1,5], and  

EK =256 bit  

1792-bit 1.98E-06 2.79E+539 

 

Table. 9.25: Comparison of probability of coincidence (Ci) and tamper 

tolerance (Zt)  with variation in signature strength corresponding to  

JPEG-CODEC IP for the proposed approach  
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proposed approach decreases with the increase in signature strength. This 

shows that the proposed approach carries the capability to generate and embed 

larger signatures for achieving a lower Ci value (Note: the same resource 

configuration and encryption key have been used for proposed approach and 

prior works). The proposed approach is capable of producing larger number of 

watermarking constraints for embedding as digital evidence due to the 

following security variables in the framework: (a) creation of mathematical 

watermark by extracting variance and covariance of IP vendor’s chosen design 

space parameters, (b) creation of mathematical watermark by capturing 

variance and eigen roots of the IP vendor’s chosen design space parameters 

(such as resource configurations, area, latency, etc. corresponding to the 

hardware application), (c) inherent capability of the proposed framework to 

extract secret design parametric information for creation of watermarking 

constraints. The above mentioned blocks exploited as watermarking 

framework, has not been used in any prior approaches for 

generation/embedding of security constraints. Therefore, the proposed 

approach is more robust against standard attacks and is capable of offering 

stronger digital evidence than prior approaches.  

Next, Table 9.24 reports comparison of tamper tolerance between the 

proposed approach, [31], [40], [41], and [43]. The proposed approach depicts a 

higher value of TT/Zt as compared to the prior approaches [31], [40], [41], and 

[43] due to the generation of a larger number of hardware security constraints 

and a greater signature space. Further, Table 9.25 compares the tamper 

tolerance with variation in signature strength corresponding to the JPEG-

CODEC IP for the proposed approach. As evident from the Table 9.25, the 

proposed approach's tamper tolerance ability increases with an increase in 

signature strength. 

Further, the entropy of the proposed approach can be represented as follows: 

ET = 1/2
d

 * 1/2
k
 * 1/2

p
 * (1/(AM*MM))

t 
                                                         (9.6) 

Where 'd' is the length of the final generated encrypted signature, 'k' is the size 

of the encryption key, 'p' is the size of the secret key used by the IP vendor for 

deciding the input resource configuration, 'AM' is the maximum possible value 
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for adder, 'MM' is the maximum possible value for the multiplier corresponding 

to the targeted application, and 't' is the IP vendor chosen number of resource 

configurations from the design space. Table 9.27 reports the comparison of 

entropy between the proposed approach, [31], [40], [41], and [43]. Further, as 

evident from Table 9.27, the proposed approach offers a stronger entropy 

value (i.e., a lower probability value) compared to prior approaches [31], [40], 

[41], and [43]. Moreover, Table 9.28 illustrates a comparison between the 

entropy of the proposed approach, cryptographic key random number 

generator (RNG) [31] and a semiconductor superlattice true random number 

generator (SSL-TRNG) [133] based approaches. The proposed approach 

Benchmarks IP vendor 

selected 

resource 

configuration 

for scheduling 

Initial design (i.e., pre signature 

implanted unsecured design) 

 Final secured signature implanted 

design 

 

Design 

cost 

overhead 

% 

 Area 

(um2) 

Latency 

(ps) 

Register 

count 

Design 

cost 

 Area 

(um2) 

Latency 

(ps) 

Design 

cost 

Register 

count 

8-point DCT 1(+), 2(*) 182.45 1324.86 16 0.446 182.45 1324.86 0.446 16 0 

FIR 1(+), 2(*) 106.95 2583.46 16 0.569 109.31 2583.46 0.57 19 0.17 

ARF 1(+), 2(*) 182.45 2450.98 16 0.412 187.95 2450.98 0.415 23 0.72 

DWT 2(+), 3(*) 272.10 1722.31 10 0.656 275.25 1722.31 0.657 14 0.15 

JPEG-

CODEC 

6(+), 8(*) 824.96 3245.89 137 0.157 824.96 3245.89 0.157 137 0 

 

Table. 9.26: Results of proposed approach pre and post implanting generated signature 

 

 

Benchmarks Proposed 

approach 

[41] [43] [31] [40] 

8-point DCT 1.09E-544 1.03E-32 2.01E-87 8.63E-78 3.08E-65 

FIR 3.33E-549 1.03E-32 2.01E-87 8.63E-78 3.08E-65 

ARF 1.06E-547 1.03E-32 2.01E-87 8.63E-78 3.08E-65 

DWT 6.99E-547 1.03E-32 2.01E-87 8.63E-78 3.08E-65 

JPEG 9.94E-577 1.03E-32 2.01E-87 8.63E-78 3.08E-65 

 

Table. 9.27: Comparison of entropy between the proposed approach, [41], [43], [31], and [40] 
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demonstrates enhanced entropy, indicated by lower probability values 

compared to [31] and [133]. This is because the proposed approach offers 

more resistance and uncertainty to an attacker than other watermarking 

approaches [31], [40], [41], and [43], and [133]. More explicitly, an attacker 

needs to decode the following resistive parameters to overcome the 

uncertainty in regenerating or forging the exact security constraints, which 

offers stronger entropy than existing works: (a) The different p-bit key values 

for deciding the number of input resource configurations, (b) Design 

parameters chosen for dispersion matrix and Eigen matrix, (c) Encrypted 

signature strength, (d) Size of the encryption key (k), (e) Maximum possible 

value ('AM', 'MM') of the resources used, such as adders, multipliers, etc.  

9.3.4. Design cost analysis 

The design cost function used here is same as the design cost function 

discussed in prior sections of this chapter. Table 9.26 reports the IP vendor's 

chosen resource configuration for scheduling, its design area, latency, and cost 

corresponding to the design. As evident from Table 9.26, the proposed 

approach provides robust security at a negligible design overhead of 0.2 %. 

Further,  Fig. 9.14 illustrates the design cost vs. probability of coincidence 

tradeoff for the proposed approach for varying IP vendor signature sizes. The 

value of Ci decreases with an increase in signature size at a constant value of 

design cost for JPEG-CODEC IP. 

 Proposed approach Key based RNG [31] SSL TRNG [133] 

9.94E-577 8.63E-78 9.33E-302 

 

Table. 9.28: Comparison of Entropy between Proposed Approach 

and RNG Techniques (Crypto Key based) for JPEG-CODEC  
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for proposed approach for varying IP vendor signature sizes 

corresponding to JPEG-CODEC IP 
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9.4. Experimental Results: Securing GLRT Cascade 

Hardware IP using IP Seller’s Fingerprint and CIG 

Framework for ECG Detector 

The experimental results of the proposed secure GLRT cascade hardware IP 

design framework (discussed in Chapter 6) are analyzed and discussed in this 

section. The experimental assessment of the proposed secure GLRT hardware 

IP core design for the ECG detector has been performed on a system with a 

2.30 GHz processor and 4 GB RAM. A 15 nm technology scale based on the 

NanGate library [86] is used in the proposed approach to evaluate design area 

and latency corresponding to secure GLRT hardware IP core. The proposed 

design in this paper is a simulated version of the secure GLRT hardware IP at 

register transfer level (RTL). In case fabricated version of the design RTL is 

intended using the layout level information, standard CAD tool based design 

synthesis steps at lower levels can be employed to generate the layout level 

representation of the designed secure GLRT hardware IP (at RTL). 

9.4.1. Analysis of attack scenarios  

(i). Security against Forgery and Spoofing Attack: Forgery and spoofing are 

not feasible in the case of the proposed approach. This is because the 

biometric fingerprint minutiae points are pre-stored in an encrypted format in 

a safe database for validation/detection later. Any attacker endeavoring to 

forge the stored encrypted biometric fingerprint template would be 

unsuccessful in using it since he/she does not have the knowledge of the 

advanced encryption standard (AES) private key needed for decryption. 

Furthermore, a spoofing attack is not applicable in the case of IP piracy 

detection. This is because the attacker's goal is to evade/escape IP piracy 

detection by re-moving/tampering with the original embedded secret signature 

(security constraints). However, an attacker may attempt to launch spoofing to 

falsely claim IP ownership, which is not possible as spoofing of encrypted 

biometric fingerprint template requires forgery of the pre-stored encrypted 

biometric fingerprint template, which is not useful until an attacker is capable 

of successfully decrypting the encrypted template using the AES private key. 

Besides, an attacker also needs to decode the following security parameters: 
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(a) the number of features used in each template for fingerprint, (b) number of 

minutiae points and their exact 4-dimensional coordinates used for template 

regeneration, and (c) concatenation order of minutiae points used for 

regenerating the fingerprint template, for performing successful and accurate 

spoofing to falsely claim IP ownership. Therefore, forgery and spoofing attack 

is not possible in the proposed approach. 

(ii). Security against Side Channel Attack (SCA) and Machine Learning 

(ML)-based Attack: The proposed security methodology stands strong against 

SCA and ML-based attacks, in contrast to PUF-based techniques. This 

resilience is attributed to the fact that the proposed security approach incurs a 

zero impact on the overall design cost of GLRT IP. Hence, the secret 

biometric fingerprint watermark embedded design does not leak significant 

side-channel information (such as delay, power, etc.). In the proposed 

approach, the biometric fingerprint watermark constraints (digital evidence) 

are embedded solely by locally modifying the register assignments (through 

swapping). Consequently, there is no noticeable impact on side channel 

parameters from an attacker's perspective. Furthermore, ML attacks are not 

applicable to a design with an embedded watermark (in case of proposed 

approach), as it does not rely on challenge-response pairs, which are prime 

targets for adversarial/modelling attacks, contrary to PUF-based systems. 

(iii). Security against Brute-Force Attack (Tamper Tolerance): An attacker 

may attempt to perform a brute-force attack to remove/tamper the original 

embedded secret watermark (fingerprint security constraints). Tamper 

tolerance measures security in terms of the brute force attempts by adversaries 

to tamper the design or guess the exact signature combination. A higher TZ 

value is desirable as it indicates a larger signature space, resulting in huge 

possible signature combinations. A higher TZ value increases the complexity 

for attackers in their attempts to discover the exact watermark signature 

combination (security constraints). In the case of the proposed approach, TZ is 

extremely high when launching a brute-force attack. Therefore, removing the 

embedded biometric fingerprint based watermark (security constraints) of the 

proposed approach is highly challenging. 
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(iv). Security against Ghost Signature Search Attack and False 

Positive/Watermark Collision (Probability of Coincidence): The credibility 

of the embedded secret watermark should be seamlessly detectable for the 

evidence of authorship. No third party (i.e., other than the IP owner) should be 

able to claim the watermark by chance (in order words watermark collision 

should be as low as possible). The probability of coincidence serves as a 

metric to assess the likelihood of coincidently detecting the exact security 

constraints within an unsecured IP design (false positive). The likelihood of a 

successful ghost signature search attack is the same as the probability of 

Proposed secure GLRT IP  

with fingerprint 

Design with facial 

constraints [40] 

Design with digital 

signature [39] 

Security        

constraints 

Ci Security 

constraints 

Ci Security 

constraints 

Ci 

250 3.57E-10 16 2.48E-01 16 2.48E-01 

275 4.05E-11 32 6.17E-02 32 7.71E-02 

300 4.60E-12 64 3.81E-03 64 3.81E-03 

346 8.41E-14 81 8.69E-04 128 1.45E-05 

 

Table. 9.29: Comparison of probability of coincidence (Ci) between the proposed fingerprint 

embedded secure GLRT cascade IP with facial biometric [40] embedded IP design and 

digital signature embedded IP design [39] 

 

Proposed secure GLRT IP  

with fingerprint 

Design with encrypted 

signature [43] 

Design with watermark  

[31] 

Security        

constraints 

Ci Security 

constraints 

Ci Security 

constraints 

Ci 

250 3.57E-10 32 6.17E-02 32 6.17E-02 

275 4.05E-11 64 3.81E-03 64 3.81E-03 

300 4.60E-12 128 1.45E-05 128 1.45E-05 

346 8.41E-14 160 8.99E-07 240 8.52E-10 

 

Table. 9.30: Comparison of probability of coincidence (Ci) between the proposed fingerprint 

embedded secure GLRT cascade IP with encrypted signature embedded IP design [43] and 

hardware watermarking embedded IP design [31] 

 

Proposed secure GLRT IP  

with fingerprint 

Design with encrypted 

signature [43] 

Design with watermark  

[31] 

Security        

constraints 

Ti Security 

constraints 

Ti Security 

constraints 

Ti 

250 1.80E+75 32 4.29E+09 32 4.29E+09 

275 6.07E+82 64 1.84E+19 64 1.84E+19 

300 2.03E+90 128 3.40E+38 128 3.40E+38 

346 1.43E+104 160 1.46E+48 240 1.76E+72 

 

Table. 9.32: Comparison of tamper tolerance (Ti) between the proposed fingerprint embedded 

secure GLRT cascade IP with encrypted signature embedded IP design [43] and hardware 

watermarking embedded IP design [31] 

 

Proposed secure GLRT IP  

with fingerprint 

Design with facial 

constraints [40] 

Design with digital 

signature [39] 

Security        

constraints 

Ti Security 

constraints 

Ti Security 

constraints 

Ti 

250 1.80E+75 16 6.55E+04 16 6.55E+04 

275 6.07E+82 32 4.29E+09 32 4.29E+09 

300 2.03E+90 64 1.84E+19 64 1.84E+19 

346 1.43E+104 81 2.41E+24 128 3.40E+38 

 

Table. 9.31: Comparison of tamper tolerance (Ti) between the proposed fingerprint 

embedded secure GLRT cascade IP with facial biometric [40] embedded IP design and 

digital signature embedded IP design [39] 
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coincidence. Thus, a lower Ci value signifies more robust security and stronger 

credibility, indicating higher level of security. 

9.4.2. Security analysis 

Embedding the IP vendor's digital fingerprint template provides robust 

security to the designed GLRT hardware IP core of the ECG detector. This is 

because of the following reasons: (a) IP vendor's fingerprint digital template 

facilitates the integration of a unique natural identity with the design synthesis 

flow that increases the robustness of the proposed approach against IP piracy 

and false claim of IP ownership, and (b) the inclusion of several IP vendor 

specific parameters and rules such as concatenation rule, mapping rule, 

truncation length, etc. hinders the adversary from exactly regenerating the 

digital fingerprint template. The security analysis of the proposed secure 

GLRT hardware IP core is performed using established security metrics in the 

literature [25], [31], [32], [33] such as (a) probability of coincidence (false 

positive), (b) tamper tolerance. These metrics are already defined in section 

9.1.1 of this chapter. 

Tables 9.29 and 9.30 report the comparison of Ci between the proposed secure 

GLRT cascade hardware IP with embedded fingerprint and secure GLRT 

cascade hardware IP with facial biometric [40], digital signature [39], 

encrypted signature [43] and hardware watermarking [31]. The proposed 

secure GLRT cascade hardware IP core with embedded fingerprint surpasses 

[40], [39], [43], and [31], as clear from Tables 9.29 and 9.30. The 

determination of the larger number of security constraints in the proposed 

approach helps in achieving a lower value of Ci than [40], [39], [43], and [31]. 

Embedding a larger number of security constraints (i.e., the presence of 

greater digital evidence in the design) increases the attacker's effort to locate 

the same security constraints in an unsecured GLRT hardware IP design. Next, 

Tables 9.31 and 9.32 show the comparison of Ti between the proposed secure 

GLRT cascade hardware IP with embedded fingerprint and secure GLRT 

cascade hardware IP with facial biometric [40], digital signature [39], 

encrypted signature [43] and hardware watermarking [31]. The proposed 

approach supersedes [40], [39], [43], and [31], as clear from Tables 9.31 and 

9.32, due to the determination of larger security constraints. A higher value of 
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Ti signifies a larger signature space because of greater signature combinations. 

This makes it significantly harder by increasing the attacker's effort/time to 

guess the exact embedded signature combination from larger signature space. 

9.4.3. Design cost analysis 

The design cost is computed using equation (9.7): 

𝐷𝑐 = (𝑒1 (
𝐿𝑇

𝐿𝑚𝑎𝑥
 )) +  (𝑒2 (

𝐴𝑅

𝐴𝑚𝑎𝑥
 ))                                                             (9.7) 

where, e1 = e2 = 0.5 for giving equal weightage to design latency and area, LT 

and AR are design latency and area corresponding to GLRT hardware IP. 

Further, Lmax and Amax are their corresponding maximum latency and area, 

respectively. Table 9.33 reports the design latency, area, and IP vendor 

specified resource configuration of the proposed secure GLRT hardware IP for 

the ECG detector before and after embedding the fingerprint template. As 

evident from Table 6, the proposed secure GLRT hardware IP core with 

Application Resource 

configurati

on 

Unsecured design (before 

fingerprint embedding) 

Proposed fingerprint 

embedded secure 

design 

Design 

area 

(um2) 

Design 

latency (ps) 

Design 

area 

(um2) 

Design 

latency 

(ps) 

GLRT cascade 

hardware IP core 

2(+), 3(*) 273.67 1656.07 273.67 1656.07 

 

Table. 9.33: Design latency, area, and resource configuration of proposed secure GLRT IP 

before and after embedding fingerprint signature 

 

 

Application Resource 

configurati

on and 

registers  

Unsecured design (before 

fingerprint embedding) 

Proposed fingerprint 

embedded secure 

design 

Design 

cost 

Leakage  

power 

Design 

cost 

Leakage 

power 

GLRT cascade 

hardware IP core 

2(+), 3(*), 

and 13 

registers 

 

0.43 

 

8.57 μw 

 

0.43 

 

8.57 μw 

 

Table. 9.34: Design cost, leakage power, register count and resource configuration of 

proposed secure GLRT hardware IP before and after embedding fingerprint signature 

 

 

Fig. 9.15. Design cost vs probability of coincidence trade-off for 

proposed secure GLRT cascade for varying fingerprint signature sizes 
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fingerprint biometric provides robust security at zero design cost overhead 

(i.e., no extra registers are required). As evident from Table 9.34, the power 

overhead of the proposed approach is 0%, as the post fingerprint embedded 

design does not incur any extra functional units or registers. Table 9.34 also 

reports the leakage power value of pre-embedded and post fingerprint 

embedded GLRT IP core. Therefore, the proposed secure GLRT IP core 

produces reliable designs as low-power designs result into lesser heat 

dissipation.  

Further, Fig. 9.15 highlights the design cost vs. probability of coincidence 

tradeoff for the proposed secure GLRT cascade for varying fingerprint 

signature sizes. The value of Ci decreases with an increase in signature size at 

constant value of design cost. 

9.5. Experimental Results: Exploiting Voice Biometric-Based 

Watermarking Framework for Securing Hardware IP 

Cores 

The experimental results of the proposed voice biometric based security 

methodology (discussed in Chapter 7) are analyzed and discussed in this 

section. 

9.5.1. Experimental setup and benchmarks 

The experimental validation and analysis of the proposed approach are 

performed on Intel(R) Core (TM) i7-9700 CPU @ 3.00GHz and 4GB RAM. 

We analyze the impact of a varying number of selected voice biometric 

features on the signature template size. Further, the security of the proposed 

approach has been analyzed in terms of (i) strength of IP ownership proof 

using the probability of coincidence metric, (ii) tamper tolerance of the 

proposed voice signature, and (iii) security against forgery attack. 

Additionally, we evaluated the impact of voice biometric-based hardware 

security on design metrics such as area and latency (delay) and the final design 

cost for various DSP benchmarks [84]. A 15nm technology scale-based Nan 

Gate library [86] has been used to compute the design metrics. 
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9.5.2. Effect of feature selection on voice signature size and sensitivity 

analysis 

The impact of varying number of selected features, such as pitch and intensity, 

on voice signature size has been analyzed for different benchmark applications 

in Table 9.35. This table compares different signature strengths generated 

from a different number of selected timestamps (Ts) or pitch and intensity 

features (such as 10, 12, 14, and 15 Ts). As shown, the signature size increases 

with the increase in Ts or the number of features extracted. Hence, a larger 

number of Ts can be chosen to generate a higher size signature for higher 

security. Further, a slight variation in the timestamp does not affect the 

signature size but affects the voice features, viz. pitch, intensity, Jitter and 

Shimmer. This results in a completely different signature template.  It is 

noteworthy that there is an infinite number of timestamps possible for 

extracting pitch and intensity values for a particular voice sample. This may 

lead to an infinite number of possible signatures through variations in 

timestamps or features. However, the genuine IP vendor being aware of the 

selected value of the timestamp, can generate the same signature template for 

verification. On the other hand, the variation in signature with timestamps 

thwarts an adversary from reproducing the same signature template for misuse 

or during verification.    

Scalability of the proposed approach: The proposed approach can generate 

very long size signatures by extracting the features (pitch and intensity) at 

large number of timestamps. Further, the strength of the signature generated 

from a voice sample also depends on the size of the targeted IP core. 

Therefore, the proposed technique is scalable in nature as it provides the 

ability to accommodate more constraints in big size applications like moving 

picture expert group (MPEG) IP for securing them. 

9.5.3. Security evaluation and comparison with prior watermarking 

techniques 

The security evaluation of the proposed approach is performed using 

probability of coincidence and tamper tolerance security metric. The 

probability of coincidence is the measurement of the strength of IP ownership 
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proof. The lower the probability of coincidence, the higher the strength of IP 

ownership proof will be. The PC value corresponding to the target applications 

decreases with the increase in signature size (or timestamps) as shown in 

Table 9.36. Further, the PC achieved using the proposed methodology is 

compared with different state-of-the-art watermarking techniques [31], [36], 

[37], [40], [41], [43] and [44] in Table 9.37. As shown, the proposed approach 

offers a lower probability of coincidence as compared to state-of-the-arts [31], 

[36], [37], [40], [41], [43] and [44], indicating higher strength of IP ownership. 

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

IIR 8-point

DCT

FIR MPEG 4-point

DCT

Voice-001 Voice-002 Voice-003

Voice-004 Voice-005

Table. 9.35: Variation in Signature Size (in bits) with variation in 

selected number of Timestamps (Ts) or pitch and intensity values for 

Voice-001 

Variation in 

number of 

timestamps 

Signature size variation 

IIR IDCT FIR MPEG 4point 

DCT 

10 Ts 191 191 191 191 77 

12 Ts 205 220 220    220 77 

14 Ts 227 249 249 249 77 

15 Ts 234 262 264 264 77 

 

Table. 9.37: Comparison of probability of coincidence of 

proposed with other watermarking techniques 

Water-

marking 

techniques 

Pc 

4-point 

DCT 

8-point 

IDCT 

FIR MPEG 

Proposed 3.42E-5 4.53E-8 3.94E-8 6.76E-5 

[36] 2.08-2 7.8E-2 7.8E-2 7.27E-1 

[37] 3.2E-3 1.9e-6 4.9E-4 1.3E-2 

[40] 3.54E-2 2.36E-4 4.93E-7 2.79E-4 

[41] 2.0E-5 5.36E-3 5.36E-3 5.25E-2 

[44] 2.71E-2 3.13E-4 3.35E-7 2.24E-4 

[31] 2.63E-1 3.79E-1 3.79E-1 5.79E-1 

[43] 2.63E-1 5.24E-1 5.24E-1 6.95E-1 

 

 

Table. 9.36: Comparison of PC value with variation in signature size for 

varying # of timestamps or pitch and intensity values 

#Ts 

variation 

IIR 8-point 

IDCT 

FIR MPEG 4point DCT 

10 Ts 7.12E-7 4.43E-6 4.43E-6 9.62E-4 3.42E-5 

12 Ts 2.52E-7 6.81E-7 6.81E-7 3.35E-4 3.42E-5 

14 Ts 4.94E-8 1.04E-7 1.04E-7 1.64E-4 3.42E-5 

15 Ts 2.94E-8 4.53E-8 3.98E-8 6.76E-5 3.42E-5 

 

Fig. 9.16. Comparison of PC of the proposed approach among 5 

different voice samples (15 timestamps) 
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The higher PC is achieved due to the ability to generate a larger voice 

signature template, embedding a higher number of hardware security 

constraints. Further, the PC value for five different voice samples is reported 

in Fig. 9.16. 

Next, the TT value of the proposed voice signature increases with an increase 

in the signature strength as shown in Table 9.38. The higher tamper tolerance 

helps preserve the author's signature for seamless verification of IP.  Further, 

Table 9.39 shows that the proposed approach has a higher value of TT as 

compared to state-of-the-art [31], [36], [40], [41], [43] and [44]. The high 

value of TT is achieved due to the larger size of the signature and the multiple 

encoding used.  Further, the TT value for five different voice samples is also 

reported in Fig. 9.17.  

9.5.4. Design cost analysis and security trade-offs 

1.00E+00

1.00E+21

1.00E+42

1.00E+63

1.00E+84

1.00E+105

1.00E+126

1.00E+147

IIR 8-piont

IDCT

FIR MPEG 4-point

DCT

Voice-001 Voice-002 Voice-003

Voice-004 Voice-005

#Ts  8-point 

IDCT 

FIR MPEG 4point 

DCT 

10 Ts 9.8E+114 9.8E+114 9.8E+114 2.3E+46 

12 Ts 6.8E+132 6.8E+132 6.8E+132 2.3E+46 

14 Ts 8.2E+149 8.2E+149 8.2E+149 2.3E+46 

15 Ts 5.5E+157 8.8E+158 8.8E+158 2.3E+46 

 

 Table. 9.38: Comparison of tamper tolerance with variation in 

signature size for varying timestamps or pitch and intensity values 

Fig. 9.17. Comparison of TT of the proposed approach among 5 

different voice samples (15 timestamps) 

 

 

Table. 9.39: Comparison of tamper tolerance of proposed with 

other watermarking techniques [36],[40], [41], [44], [31], and [43] 

Water-

marking 

techniques 

Pc 

4-point 

DCT 

8-point 

IDCT 

FIR MPEG 

Proposed  2.28E+46 5.49E+157 8.78E+158 8.78E+158 

[36] 5.08E+50 4.1E+67 4.1E+67 4.1E+67 

 [40] 8.47E+11 5.39E+57 2.25E+107 2.25E+107 

 [41] 2.41E+24 2.41E+24 2.41E+24 2.41E+24 

 [44] 7.62E+12 4.36E+59 1.64E+110 1.64E+110 

 [31]  1.02E+3 3.27E+4 3.27E+4 3.27E+4 

[43] 1.04E+6 1.04E+6 1.04E+6 1.04E+6 
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The design cost function used in the proposed approach has already been 

discussed in prior sections of this chapter. Table 9.40 illustrates the design 

area, execution latency or delay, and design cost before and after embedding 

the voice signature constraints for different benchmarks. Further, it reports the 

incurred design cost overhead due to the embedding of voice biometric-based 

signature into the designs and compares it with the most recent 

watermarking/steganography approaches [36], [37], [44]. The average design 

cost overhead of the proposed technique is 0.18% which is lesser than the 

related approaches [36], [44]. However, the design cost overhead of [37] is 

slightly lower as it embeds a lesser number of constraints than the proposed 

approach. The overhead of PUF based techniques [135], [136] are reported as 

 

Benchmarks Baseline design (before 

signature embedding) 

Voice biometric signature 

embedded design 

Design cost overhead %  

 

Design 

area  

Design 

latency  

Design 

cost 

Design 

area  

Design 

latency  

Design 

cost 

proposed [36] [37] [44] 

8-point 

IDCT 

182.752 1324.856 0.447 186.384 1324.856 0.449 0.4 3.5 0.1 0.4 

FIR 106.954 2583.469 0.569 106.954 2583.469 0.569 0.0 2.3 0.0 0.8 

MPEG 305.135 1391.099 0.436 305.135 1391.099 0.436 0.0 7.8 0.0 0.0 

4-point DCT 176.161 662.428 0.563 178.52 662.428 0.565 0.3 5.5 0.1 0.2 

 

 

Benchmarks Design cost on varying signature strength 

Signature size  

(32-bits) 

Signature size  

(64-bits) 

Signature size  

(128-bits) 

Signature size  

(192-bits) 

Signature size  

(256-bits) 

8-point IDCT 0.447 0.447 0.447  0.447 0.449 

FIR 0.569 0.569 0.569 0.569 0.569 

MPEG 0.436 0.436 0.436 0.436 0.436 

4-point DCT 0.563 0.565 0.565 0.565 0.565 

 

Table. 9.40: Area(um), latency (ps) and design cost analysis of proposed approach and comparison with related works Table. 9.41: Analysis of design cost tradeoff with security for the proposed hardware security approach 
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follows. In the case of [135], area overhead of 52% in LUT, 55% in slices 

count and delay overhead of 17%; and in the case of [136], 5.16% delay 

overhead has been reported previously [136]. Hence, this implies that the 

proposed watermarking is more design cost-efficient than the PUF based 

techniques. Further, Table 9.41 presents a security cost tradeoff analysis of the 

proposed approach. It is evident from the table that embedding a smaller 

signature (such as 32 bits) and a larger one (such as 256 bits) has almost a 

similar effect on design cost with minimal overhead. Hence, the proposed 

approach is capable of offering higher security using larger signature strength 

without significantly affecting design cost. 

9.6. Experimental Results: HLS-Based Exploration of Low-

Cost (Optimal) Functional Trojan-Resistant Hardware 

IP Designs 

The experimental results of the proposed HLS based Trojan resistant approach 

(discussed in Chapter 8) are analyzed and discussed in this section 

9.6.1. Experimental setup and benchmarks 

The proposed approach, [45], [46] and [53] have been implemented using a 

system with 2.30 GHz processor with 4 GB RAM. Further, ten runs have been 

performed to obtain the final result, and the average value has been reported. 

We have given equal weightage (e1 = e2 = 0.5) to both delay and area 

objective to the proposed PSO-DSE-based optimal Trojan resistant hardware 

design approach. Providing equal weightage to the design cost function 

(discussed in Chapter 8) for evaluating fitness ensures both design area and 

schedule delay are given equal priority. This is because, from an SoC 

integrator perspective, designing Trojan resistant may cause area and delay 

overhead concurrently. Therefore, it is necessary for the SoC integrator to 

provide equal preference to both the design parameters during fitness 

evaluation. On the contrary, providing unequal weightage to e1 and e2 in the 

context of area and delay shall provide an imbalanced fitness evaluation, 

causing exploration of results that are not truly optimal. Henceforth, providing 

equal weightage to e1 and e2 = 0.5 in the context of normalized design cost 

function has been established practice for design space exploration in HLS 
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[45], [78]. However, the proposed approach is scalable, i.e., capable of 

handling small and large hardware applications in minimal exploration time. 

The PSO-DSE settings used for generating results (based on empirical 

analysis) for proposed framework are acceleration coefficient (b1 and b2) = 2; 

inertia weight (ω) = linearly decreasing between 0.9 to 0.1; swarm size (n) = 3 

or 5 or 7; random numbers (r1 and r2) = 1; stopping criterion = T1 or T2 [79]. 

9.6.2. Security evaluation and comparison with prior techniques 

The proposed PSO-driven TMR-based approach has been compared with the 

state-of-the-art methodology proposed by [45], [46], [53]. The proposed work 

and [45], [46], [53] deal specifically with Trojans that affect the computational 

output. The cost function used in both approaches above considers the 

complete SoC design area, including all types of functional resources used and 

the required execution time. The area and the execution time have equal 

weightage in the design cost function. PSO-DSE module integrated with the 

proposed Trojan resistance TMR logic is used for generating optimal Trojan 

resistance architecture of hardware IP cores, while in [45], [46] PSO-DSE 

module is used to generate low-cost Trojan detectable architectures. The PSO-

DSE module in the proposed approach accepts input from the TMR schedule 

(allocated with three IP vendors), while in [45], [46], PSO-DSE accepts inputs 

from the DMR schedule (allocated with two IP vendors). Further, the PSO-

DSE module in the proposed approach generates outputs in the form of 

Trojan-resistant TMR schedule latency and area for iteratively pruning the 

search space of Trojan-resistant architectures, while in [45], [46], PSO-DSE 

produces output in the form of Trojan detectable schedule latency and area. 

Moreover, in the proposed approach, the distinct vendor allocation policy 

deployed inside PSO-DSE based scheduling and allocation differs from the 

one used in [45], [46]. Finally, the particle configurations used during the 

initialization process in the proposed approach are different than [45], [46].  

Further, Table 9.45 compares the proposed approach with [45] and [46] in 

terms of design cost and overhead. The proposed TMR-based design is more 

robust than [45] and [46] in terms of security. This is because the proposed 

approach uses three distinct vendors to implement the TMR-based design, thus 

providing greater defense to the hardware IP core in terms of Trojan detection 
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ability and Trojan resistance compared to the [45] and [46], which provide 

only Trojan detection. From Table 9.45, we can observe that with a minimal 

average overhead of 4.6%, the proposed IP core design can provide Trojan 

resistance (isolation) compared to [45] and [46], which only provide Trojan 

detection. Therefore, the proposed approach enables the Trojan resistance 

capability of hardware IP/SoC design with minimal design overhead and 

ensures correct output functionality through a distinct multivendor allocation 

policy. However, the probability of obtaining identical wrong outputs from 

any two of the TMR units is improbable. Further, Table 9.46 compares the 

proposed approach with [53] in terms of design cost overhead while handling 

Trojans. The proposed approach provides Trojan defense (isolation) at an 

average design cost overhead of 2.5 % compared to [53], which only provides 

Trojan detection. 

Further, Table 9.47 provides a comparison of Trojan defense capability 

between the proposed approach and [45], [46] in terms of the respective output 

generated from the Trojan detection DMR unit in [45], [46] and Trojan 

resistant TMR unit in the proposed approach, corresponding to test vectors, 

random sequences, malicious vendor (assuming VD1 has Trojan (i.e., vendor 

VD1 inserted with Trojan logic); or assuming VD2 has Trojan (i.e., vendor VD2 

inserted with Trojan logic)) and its defense status. Since the proposed 

Table. 9.43: Comparison of exploration time (msec) for generating 

trojan resistant hardware designs w.r.t. swarm size ‘n’ 
S. No. Benchmark n=3 n=5 n=7 

1. 4-point DCT 96 130 190 

2. FIR 674 867 973 

3. ARF 231 416 868 

4. JPEG 299 485 1048 

5. DWT 267 281 353 

 

Table. 9.42: Comparison of convergence time (msec) for 

generating trojan resistant hardware designs w.r.t. swarm size ‘n’ 
S. No. Benchmark n=3 n=5 n=7 

1. 4-point DCT 16 24 27 

2. FIR 196 200 200 

3. ARF 32 57 96 

4. JPEG 44 48 93 

5. DWT 65 68 68 

 

Table. 9.44: Area, cost, and time of proposed TMR based design 
S. No DSP IP Global optima TTMR (µs) ATMR (au) Design cost 

1. 4-

pointDCT 

3(+), 9(*) 45.635 25808 -0.120 

2. FIR 3(+), 9(*) 79.77 28272 -0.165 

3. ARF 3(+), 6(*) 264.1 20880 -0.173 

4. JPEG 3(+), 3(*) 88.76 13488 -0.059 

5. DWT 6(+), 9(*) 112.37 31904 -0.091 
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approach handles only IPs where the functionality of the third-party modules 

(IPs) is changed, hence, the process of Trojan insertion in the HDL codes of IP 

modules (such as adders, subtractors, etc.) was imitated by functionality 

altering the hardware operation through insertion of Trojan logic in the HDL 

code as follows: ‘+’ function was modified to ‘⁕’ function, ‘-’ function to ‘+’ 

function and ‘*’ function to ‘+’ function.  As evident from this table, the 

proposed approach is capable of providing Trojan detection and isolation 

(Trojan resistance) with the aid of TMR logic, distinct multivendor allocation 

policy and voter, which [45], [46] are unable to provide. The greater the 

number of computations in the proposed design, the greater the vulnerability, 

Table. 9.45: Comparison of the proposed approach with [45], [133] 
S. No. Benchmark Final architecture 

solution for proposed 

approach  

Final architecture 

solution [45], [133] 

Cost of the final 

solution for 

proposed 

approach 

Cost of the 

final solution 

[45], [133] 

% Change 

(overhead) 

1. 4-point DCT 3(+), 9(*) 2(+), 6(*) -0.120 -0.121 0.82 

2. FIR 3(+), 9(*) 2(+), 6(*) -0.165 -0.176 6.25 

3. ARF 3(+), 6(*) 2(+), 4(*) -0.173 -0.187 7.48 

4. JPEG Sample 3(+), 3(*) 2(+), 2(*) -0.059 -0.062 4.8 

5. DWT 6(+), 9(*) 4(+), 6(*) -0.091 -0.095 4.09 

 

Table. 9.46: Comparison of the proposed approach with [53] 
S. No. Benchmark Final architecture 

solution for proposed 

approach 

Final architecture 

solution [53] 

Cost of the final 

solution for 

proposed 

approach 

Cost of the 

final solution 

[53] 

% Change 

(overhead) 

1. 4-point DCT 3(+), 9(*) 2(+), 6(*) -0.120 -0.121 0.82 

2. FIR 3(+), 9(*) 8(+), 8(*) -0.165 -0.152 0 

3. ARF 3(+), 6(*)      2(+), 4(*) -0.173 -0.187 7.48 

4. JPEG Sample 3(+), 3(*) 8(+), 4(*) -0.059 -0.055 0 

5. DWT 6(+), 9(*) 4(+), 6(*) -0.091 -0.095 4.09 
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as each untrustworthy 3PIP core used during the hardware design is 

considered a potential vulnerability. In the proposed approach, each such 

potential vulnerability has been addressed by using individual distinct vendor 

allocation policy to both original, duplicate, and triplicate units of the design 

of TMR logic. The number of potential vulnerabilities the proposed TMR-

based approach handles for various applications is shown in Fig. 9.18. 

9.6.3. Design cost and optimality analysis 

Table 9.42 compares convergence time (in msec) for generating Trojan 

resistant hardware design w.r.t. swarm size (n) 3, 5, and 7. Further, Table 9.42 

dictates that the convergence time of the proposed method to find the optimal 

Trojan-resistant DSP core architectural solution nominally increases with the 

increase in swarm size, while the same final solution is obtained in each case. 

The increase in the convergence time w.r.t. swarm size is because the time 

required for the cost computation increases with the rise in the number of 

 

Table. 9.47: Comparison of Trojan defense capability of proposed approach and [45], [46] 
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swarm positions (n) or resource architectures. A similar pattern can also be 

observed in the case of Table 9.43 (showing exploration time (in msec) for 

generating Trojan-resistant hardware design w.r.t. swarm size (n) = 3, 5, and 

7). Because of this, the computation time increases with the rise in the number 

of swarm positions while yielding the exact optimal solution in each case. 

Table 9.44 shows the global best resource architecture obtained for Trojan 

resistant hardware IP core using PSO-DSE. For instance, if we take the 

example of the FIR IP core, then three adders and nine multipliers (from three 

different vendors) are required to design the proposed TMR-based Trojan-

resistant logic. Further, Table 9.44 depicts the hardware area (ATMR), 

corresponding execution time (TTMR), the global best resource architecture, 

and the design cost for the respective TMR-based  Trojan-resistant IP core. 

The benchmarks (adopted from [84]) have been evaluated for design area and 

the latency (delay). Further, the total design area and latency are computed 

using (8.1) and (8.2), respectively. Here, the normalized design cost is 

computed by providing equal weightage to both hardware area and execution 

time, as shown in (8.3). For instance, for the FIR IP core, the execution time 

0 100 200 300

4-DCT

8-DCT

FIR

ARF

JPEG

MESA

IDCT

WDF

DWT

Total # of Vulnerabilities corresponding to DSP

frameworks

Benchmarks GEN Spacing 

(SPA) 

Spread 

(SPD) 

Weighted 

metric 

(WEM) 

DCT-4 0.00 0.00 0.00 0.00 

FIR 0.00 1.16 0.54 0.27 

ARF 0.00 1.41 0.66 0.132 

JPEG-sample 0.00 0.00 0.00 0.00 

DWT 0.00 0.47 0.34 0.17 

 

Table. 9.48: Optimality Analysis of the proposed approach 

 

Fig. 9.18. Number of potential untrustworthy 3PIPs 

vulnerabilities handled using proposed approach 
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required for the scheduling Trojan-resistant design with explored 3(+) and 9(*) 

resources is 79.77µs, while the area required and design cost are 28272au and 

0.41, respectively.  

Further, in order to determine the quality of the Trojan-resistant solution 

explored using PSO, it is essential to analyze the optimality of the proposed 

approach using various key metrics, such as generational distance (GEN), 

spacing (SPA), spreading (SPD) and weighted sum (WEM). The optimality 

analysis for the proposed strategy is presented in Table 9.48. A zero value for 

the GEN parameter indicates that the solutions obtained using the proposed 

methodology are on the true Pareto front. Similar to the GEN parameter, a 

value of zero (or slightly greater than zero) for spacing denotes a uniform 

distribution of Pareto points along the curve. Additionally, the spread metric 

measures the extent to which the true Pareto front is covered. It is clear from 

Table 9.48 that the proposed approach is capable of achieving a lower value 

(i.e., either zero or close to zero) for both spacing and spreading metrics, 

which shows that the achieved solutions cover the extremes of the true Pareto 

Front in addition to their uniform distribution on the curve. 
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Chapter 10 

Conclusion and Future work 

10.1 Conclusion  

The rise of DSP, multimedia, machine learning, and healthcare applications 

has become central to modern electronics ecosystem. Designing secure 

hardware IP cores for these SoC is therefore vital. Given the global nature of 

SoC design, where multiple design houses collaborate from different regions, 

it is crucial to establish trust in the hardware design before integrating third-

party IP cores. This necessitates the development of robust security measures 

to counter external hardware threats, which can negatively impact not only the 

end-user but also the system itself and the IP vendors/designers. This thesis 

introduces various innovative security techniques for securing IP cores in 

computing and consumer electronics systems. The objectives achieved are the 

following: 

 Proposed two novel security techniques were proposed: (a) PSO-driven 

multi-phase encryption and (b) firefly algorithm-based, low-cost 

crypto-chain frameworks for designing secure IP cores in image 

processing and JPEG-CODEC applications. The PSO-driven multi-

phase encryption employs a series of strong security layers including 

bit manipulation, row diffusion, TRIFID cipher computation, 

alphabetic substitution, and byte concatenation. These layers work 

together to form a highly resilient and tamper-resistant signature aimed 

at countering IP piracy and false ownership claim. The threat model 

assumes that the IP vendor is defending against attacks from attackers 

in SoC integrators or foundries. In the second approach, the low-cost 

crypto-chain method incorporates an encoding mechanism specified by 

the IP vendor, combined with cryptographic keys, SHA-512 hash 

slices, and mapping rules to produce security constraints. These are 

embedded into the hardware IP core, which has been optimized using 

the firefly algorithm, ensuring that the IP cores remain protected 

against piracy with minimal design overhead. 
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 Proposed a protein molecular biometric signature based watermarking 

approach, derived from a human body sample, with a facial biometric 

encryption key unique to the IP vendor. During the HLS process, an 

encrypted version of this protein molecular signature is embedded into 

the design, preventing counterfeit IPs and false IP ownership claim. 

This dual-layer security approach, combining molecular and facial 

biometrics, offers stronger tamper resistance and a lower probability of 

coincidence than current state-of-the-art methods. 

 Proposed a statistical modelling based hardware watermarking 

approach using 2D encrypted dispersion matrix combined with an 

eigen decomposition security framework. This approach secures IP 

cores from piracy and false IP ownership claim by embedding a 

tamper-resistant mathematical watermark signature within the 

hardware design. This framework relies on the IP vendor’s specific 

resource configurations, combined with AES, to ensure robust 

protection. The embedded watermark is highly resistant to tampering 

(as it is generation from the hardware design space parameters) and 

facilitates the detection of pirated versions with minimal design cost 

overhead. 

 Proposed a novel secure GLRT cascade IP cores with embedded 

fingerprint biometric-based watermarking constraints, specifically for 

medical applications like ECG detectors. The fingerprint watermark is 

unique to the IP seller and ensures that only authentic GLRT IP cores 

are integrated into medical devices. This approach not only prevents 

counterfeit IPs from entering sensitive medical systems but also 

guarantees the safety and accuracy of critical medical devices like 

ECG detectors and cardiac pacemakers. The inclusion of authentic 

GLRT IP in ECG SoCs ensures that only verified cores are used, 

thereby safeguarding patient health from the risks associated with 

counterfeit components. 

 Proposed a security/watermarking technique using voice biometrics, 

which captures unique features such as jitter, shimmer, pitch, and 
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intensity at different timestamps of IP seller’s voice sample to create a 

distinct watermark signature. This signature is embedded into the 

target IP core design during the HLS process. This approach provides 

robust security with enhanced tamper tolerance and a lower probability 

of coincidence, making it a robust method for securing IP cores against 

piracy and false ownership claim. 

 Proposed a low-cost solution to protect hardware IP designs from 

functional hardware Trojans. This method combines PSO-based design 

space exploration with triple modular redundancy (TMR) to create a 

secure, low-cost SoC. The system employs a distinct multi-vendor-

specific allocation policy for original, duplicate, and triplicate units. 

Even if one unit is compromised by a Trojan, the system continues to 

function correctly. Further, the integration of PSO based design space 

exploration  module leads to the generation of optimized Trojan 

resistant design. This methodology provides comprehensive security 

against functional Trojans with minimal design overhead, ensuring that 

malicious blocks are isolated from the rest of the system. 

10.2 Future work  

This thesis has presented various alternative paradigms hardware security 

techniques for generating low-cost secure hardware IP cores/designs 

corresponding to different data intensive applications from the various 

domains such as DSP, electronic, multimedia, healthcare applications, etc. 

Future research in the security of hardware IP cores can focus on multiple 

promising directions to address evolving challenges.  

 One key area involves developing security-aware synthesis flows using 

HLS and physical design methodologies. Security features, such as 

watermarks, can be covertly embedded during the design process to 

detect and deter IP piracy with greater resistance to tampering and 

minimal false positives. By incorporating these security constraints in 

both the HLS and physical design phases (e.g., floorplanning and 

routing), we can ensure that they impose minimal overhead on the final 

hardware layout.  



203 

 Another important focus is creating hybrid security solutions for IP 

cores to handle a wider range of hardware security threats, particularly 

for fields like medical devices and the Internet of Things (IoT). 

Additionally, more robust alternative paradigms for securing hardware 

IP design can be explored than the proposed ones (such as protein 

molecular, statistical modelling, and voice biometric based hardware 

watermarking). 

 To explore beyond traditional watermarking techniques, such as using 

molecular and cognitive biometrics (e.g., DNA or cognitive data) for 

IP authentication. These techniques offer a stronger defense against 

piracy and replication, with the potential to provide more distinct and 

robust watermark signature.  

 Combining watermarking with logic encryption can offer dual 

protection against IP piracy and reverse engineering for data-intensive 

hardware applications, such as multimedia and healthcare devices. 

Further, integrating fault tolerance mechanisms alongside piracy 

detection systems would further enhance security.  

 Future work should also aim to overcome the limitations of current 

systems, such as improving the generation of optimal datapath for 

loop-based applications (such as FIR, etc.) through advanced 

optimization algorithms. This would enable efficient resource 

configuration with reduced costs in terms of area and latency. 

Additionally, exploration of optimal watermarking constraints, so that 

they do not incur any design cost overhead is also crucial from future 

research perspective. 

 Furthermore, investigating hardware Trojan (HT) attacks introduced 

via compromised computer-aided design (CAD) tools, including HLS 

tools, is another critical area. Rogue insiders or external attackers could 

potentially insert malicious code during the design cycle. Detecting 

such Trojans at the RTL level, especially attacks that degrade 

performance or exhaust system resources, will be crucial for ensuring 

hardware security in future designs.    
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