
1

Chapter 07

Key-triggered Hash-chaining based Encoded Hardware Steganography

for Securing DSP Hardware Accelerators

This chapter describes a multi-encoding driven key-triggered hash chaining based hardware steganography approach for securing

DSP hardware accelerators which uses multiple layers of encoding and key-based parallel switch blocks to drive multiple secure

hash chaining blocks in the algorithm. The presented approach is highly robust against fraud ownership claim and piracy threats.

The chapter is organized as follows: Section 7.1 provides some introduction to the research problem, followed by some discussion

on other selected approaches in Section 7.2; Section 7.3 describes the presented hash-chaining based hardware steganography

approach. Section 7.4 presents the design process of securing FIR filter using this hardware steganography process; Section 7.5

presents the KHC-Stego tool of this corresponding key-triggered hash chaining hardware steganography approach; Section 7.6

discusses the analysis on case studies; Section 7.7 concludes the chapter while Section 7.8 presents some exercise for readers.

7.1. Introduction

The rage of development is increasing the demand of electronics systems in the market. To cope up with the increasing demand,

the design of reusable intellectual property (IP) cores is automated through design automation tools to reduce the design time and

effort (Sengupta et al., 2019a). Moreover, the design of highly complex IP cores such as digital signal processing (DSP) and

multimedia makes the role of automated high level synthesis (HLS) process more significant (Sengupta et al., 2010;

Schneiderman, 2010; Plaza and Markov; 2015). The HLS process accepts the algorithmic description of an application and

generates its equivalent register transfer level or Verilog/VHDL description (which is referred as soft IP core) (Chakraborty and

Bhunia, 2019). Further, the journey of an electronics design from its algorithmic description to an end integrated circuit (IC)

involves various design houses forming a design chain. More explicitly, an IP core design process is outsourced to a separate

design house in the supply chain for SoC integration later. The various design houses involved in the design supply chain are

situated globally and may not be trustworthy (Yasin et al., 2016). This is because an attacker in the untrustworthy design house

may pirate the IP core and sell the counterfeited/cloned IPs/ICs in the market to earn illegal revenue. Moreover, a dishonest IP

Pre-print of chapter 7 of IET Book: “Secured hardware accelerators for DSP and image processing applications”

(Book Author: Anirban Sengupta)

Anirban Sengupta

Computer Science and Engineering

Indian Institute of Technology Indore

2

buyer may fraudulently claim the IP ownership, deceiving the genuine owner. This renders an IP core design vulnerable against

‘fraudulent claim of ownership’ and piracy threats (Zhang, 2016; Sengupta, 2016; Sengupta, 2017; Sengupta et al., 2019b).

To nullify the false ownership claim and to enable the detection of counterfeiting/cloning, designer’s secret-mark can be

embedded into an IP core design (Colombier and Bossuet, 2015; Newbould, 2002; Sengupta et al., 2018; Sengupta et al., 2019c;

Sengupta and Mohanty, 2019). However, the embedded secret constraints (secret-mark) are also required to be highly secured so

that an attacker would not be able to nullify the purpose of embedding secret-mark by extracting it (Sengupta, 2020). In order to

enhance security of DSP cores, Sengupta and Rathor, 2020 proposed an ‘encoding and key-driven hash-chaining based hardware

steganography’ approach that produces a highly robust stego-mark which is arduous to be extracted or regenerated by an

adversary. Hence the adversary fails to evade counterfeit detection process by embedding stego-mark of genuine author post

regeneration or extraction of it. The encoding and hash-chaining driven hardware steganography approach (Sengupta and Rathor,

2020) ensures robustness of the secret-mark by generating it through a large size secret-key, designer chosen encoding rules,

encoded bitstreams and number of iterations of round function in each hash-unit of the chaining process.

7.2. Discussion on Selected Approaches

In the field of protection of reusable IP cores for DSP hardware accelerators, there are two categories of approaches available in

the literature viz. firstly, hardware (IP) watermarking approaches (Sengupta and Bhadauria, 2016; Sengupta and Roy, 2017;

Koushanfar et al., 2005; Le Gal and Bossuet, 2012) which are signature based mechanisms and secondly, hardware (IP)

steganography approaches (Sengupta and Rathor, 2019a; Sengupta and Rathor, 2019b) which are signature free techniques. For

example in hardware watermarking approaches (Sengupta and Bhadauria, 2016; Sengupta and Roy, 2017), multi-variable

signature encoding algorithm was employed to generate the watermarking constraints for implanting into high-level synthesis

phase of DSP hardware accelerator design; while (Koushanfar et al., 2005) employed binary digit combination to form vendor

signature, followed by implanting watermarking constraints during high-level synthesis. Further, (Le Gal and Bossuet, 2012) uses

mathematical relationships between numeric values as inputs and outputs at specified times to generate watermarking constraints.

On the other hand, hardware steganography approaches (Sengupta and Rathor, 2019a; Sengupta and Rathor, 2019b) derive secret

relationships from cover design data (colored interval graph of architectural synthesis phase) of DSP hardware design process and

constructs encoding algorithms to form secret stego-constraints for implanting, without requiring IP vendor signature at all. The

threat model for both the category of techniques is same and intends to primarily prove fraudulent claim of ownership as well as

detect pirated IP cores such as counterfeited/cloned ICs/IPs in the design chain.

3

However, it is well established that in the context of DSP hardware accelerators, steganography provides better designer control

in terms of secretly implanted design constraints and incurs lesser design overhead than hardware watermarking approaches

(Sengupta, 2020). This is vastly due to the inherent nature of the IP steganography algorithms which neither depends on the

strength of the vendor signature chosen nor its combination. Instead, it is dependent on the stego-constraints converter algorithm

and its equivalent secret encoding algorithm. Nevertheless, in both existing IP steganography approaches such as (Sengupta and

Rathor, 2019a; Sengupta and Rathor, 2019b) and watermarking approaches (Sengupta and Bhadauria, 2016; Sengupta and Roy,

2017; Koushanfar et al., 2005; Le Gal and Bossuet, 2012), proof of ownership could still be relatively easier from an attackers

perspective due to non-existence of robust secret keys and multi-layered encoding algorithms. On the contrary, in the switch

based encoding driven hardware steganography approach (Sengupta and Rathor, 2020), the secret stego-constraints are generated

through interweaving of hash-chaining process, switch based hash units, robust stego-keys, multiple encoding algorithms and

steganography embedder algorithm. The complexity of encoding and key-driven hash-chaining based steganography (Sengupta

and Rathor, 2020) algorithm makes it infeasible for an attacker to generate/extract the implanted secret stego-constraints to prove

IP ownership. The switch based encoding driven steganography (Sengupta and Rathor, 2020) provides stronger security than

hardware watermarking approaches in terms of lower probability of co-incidence (reflecting more digital evidence), greater

designer control (due to no dependency on signature) and lower design overhead.

7.3. Encoding and Key-driven Hash-chaining based Hardware Steganography Methodology

1. Threat Model

A vendor’s IP core is susceptible to fraudulent claim of ownership by a dishonest buyer. The encoding and key-driven hash-

chaining based hardware steganography approach (Sengupta and Rathor, 2020) handles the ‘fraudulent claim of ownership’ threat

for IP cores by embedding vendor’s secret stego-mark (secret steganography information) into the design. The embedded robust

stego-mark also enables the detection of counterfeited/cloned IPs/ICs.

2. High Level Description

The encoding and key-driven hash-chaining based steganography methodology (Sengupta and Rathor, 2020) generates secret

stego-constraints (steganography information) through key-triggered hash-chaining steganography process. The generated stego-

constraints are embedded during register and functional unit (FU) allocation phase of the HLS process. This results into a stego-

embedded DSP hardware design which is secured against the fraudulent claim of ownership and counterfeiting/cloning threats.

The overview of the switch based encoding driven steganography approach (Sengupta and Rathor, 2020) is shown in Fig. 1. As

shown in the figure, following are the inputs to the approach (a) DSP application in the form of data flow graph (DFG) (b)

4

resource constraints (c) module library. These inputs are fed to the HLS block whose output is a scheduled DFG of the DSP

application. The role of this block is to schedule the DFG based on designer specified resource constraints. Further, the scheduled

DFG is fed as input to the parallel encoding block. The output of this block is a number of bitstream representations of the

respective DSP application. The role of this block is to encode the scheduled DFG of DSP application into a number of unique

bitstreams based on designer chosen encoding rules. Thereafter, all encoded bitstreams are fed to the stego-constraints generator

block whose output is the stego-constraints to be implanted into the DSP core, as secret steganography information. The role of

this block is to generate stego-constraints through two sub-blocks viz. parallel switch block and hash-chaining block as shown in

Fig. 1. Another input to the stego-constraints generator is the output of stego-key block which provides keys required to generate

the stego-constraints. These stego-keys are fed to the parallel switch block along with the encoded bitstreams generated from the

parallel encoding block. The role of each switch in the parallel switch block is to select an encoded bitstream (out of all available)

based on specific stego-key value. The output of parallel switch block is the selected bitstreams (based on vendor stego-key

Input block

Stego-embedder

Parallel switch

block

Parallel encoding block

Output block

Stego-constraints generator

Fig. 1. Overview of key-triggered hash-chaining based steganography (Sengupta and Rathor, 2020)

DSP
application

HLS block

Scheduled DFG of DSP

application

Stego-key

block

Stego-embedded DSP core

Hash-chaining block

Module
library

Resource-
constraints

5

values) which are fed to the hash-chaining block as input. All encoded bitstreams generated from parallel encoding block are also

directly fed to the hash-chaining block. The role of hash-chaining block is to generate stego-constraints through a chain of hash-

units employed inside. The final output of hash-chaining block is the stego-constraints which are fed to the stego-embedder block

as input. The stego-embedder block embeds the stego-constraints during the register and functional unit (FU) allocation phase of

HLS. The output of stego-embedder block is the steganography embedded DSP hardware accelerator.

3. In-depth Description of Key-triggered Hash-chaining based Hardware Steganography

This section discusses the key-triggered hash-chaining steganography approach (Sengupta and Rathor, 2020) in details. Fig. 2

depicts the details of generating stego-embedded DSP core through key-triggered hash-chaining based steganography. As shown

in the figure, the entire process is divided into the following blocks below:

(a) Input block

This block contains the inputs fed to the key-triggered hash-chaining based steganography approach as shown in Fig. 2. The

DSP application to be secured can be fed as input in the following forms: C/C++ code, transfer function or intermediate

representation such as DFG. Here, DFG representation of DSP application is used as input to the key-triggered hash-chaining

steganography methodology (Sengupta and Rathor, 2020). Besides DFG, module library and resource constraints are also fed

as inputs to the HLS block.

(b) HLS block

This block performs HLS process on the DFG of the DSP application. First, the operations present in the DFG are scheduled

using a scheduling algorithm into control steps (Q), based on designer specified resource/functional unit (FU) constraints.

This results into a scheduled DFG of the DSP application, which is fed as input to the next block.

(c) Parallel encoding block

This block encodes the scheduled DFG of the DSP application into manifold bitstream representations by applying encoding

rules (Sengupta and Rathor, 2020). Each encoding rule is capable to encode the DSP application into a unique bitstream.

Length of each bitstream is equal to the number of operations in the DSP application. For a DSP application having ‘n’

operations, total possible encoded bitstreams are 2
n
 and the length of each bitstream is ‘n’. Out of 2

n
, a designer can generate

‘k’ number of encoded bitstreams (for implementation) by applying k-encoding rules (where, 1≤k≤2
n
) as shown in Fig. 2.

These ‘k’ encoded bitstreams are fed as input to the parallel switch block (these inputs are represented by green lines in Fig.

2) and hash-chaining block (these inputs are represented by red lines in Fig. 2). The nine (k=9) encoding rules (shown in

6

Table 1) to generate nine encoded bitstreams of the DSP application have been proposed by Sengupta and Rathor, 2020.

Because of total 2
n
 possible bitstream representations of the DSP application, an attacker is required to put extremely high

Stego-embedder block

Hash-chaining block

DFG representing
DSP application

Module
library

Resource-
constraints

Applying

Scheduling Algorithm

Scheduled DFG

Applying encoding rules

Encoding-Z1 Encoding-Z2 Encoding-Zk

Inputs

HLS
block

Parallel
encoding
block

Hash
unit-1

Hash
unit-2

Hash
unit-k

Hash
unit-
k+1

Hash
unit-
k+2

Pre-
processing

Bits
padding

Bits
padding

Hash
unit-2k

SB1 SB2 SBk

Parallel

switch

block

(SB)

Stego-key

(SK) block SK-2 SK-1 SK-k

Bits
padding

Bits
padding

Bits
padding

. . .

. . .

. . .

. . .
. . .

.

1024 380 380 380 380 380

512 512
512 512 512

n n n

n n
n

┌log2k┐ ┌log2k┐ ┌log2k┐

512

Bitstream
truncation

Converting bitstream
into stego-constraints

Designer chosen
size of stego-

constraints

Embedding stego-constraints
during register and functional unit
allocation phase of HLS process

Bits to stego-constraints
conversion rule

Scheduled DFG

Stego-embedded DSP core

Output

.

Fig. 2. Details of securing DSP cores using key-triggered hash-chaining based steganography (Sengupta and Rathor, 2020)

7

effort to find out the actual encoded bitstreams used in generating the secret stego-constraints (or stego-mark).

Further, the encoding rules applied by the designer also remain unknown to the attacker. This renders almost infeasible for an

attacker to find the encoded bitstreams used in subsequent blocks for generating stego-constraints.

(d) Parallel switch block

For ‘k’ number of encodings chosen by the designer, total k-parallel switches are used inside the parallel switch block as

shown in Fig. 2. Each switch block (SB) selects one out of ‘k’ encoded bitstreams based on the stego-key value. Each switch

operates on a distinct stego-key value; hence total ‘k’ stego-keys are required. Each switch can be implemented using a

multiplexer of size k:1; where a stego-key acts as the select lines/bits and the size of select line/ stego-key is ⌈log2k⌉ bits. The

selected k-bitstreams through all k-switches are fed to the hash-chaining block (these inputs are represented by blue lines in

Table 1. Encoding rules to encode a DSP application into bitstreams

Encoding Encoding Rules

(operation (O), control step (Q))

Encoded

bit

Z1 If O# and corresponding Q # are both even 0

Otherwise 1

Z2 If O# and corresponding Q# are of same parity

(both even or both odd parity)

0

If O# and corresponding Q# are of different parity 1

Z3 If O# and corresponding Q # are both odd 0

Otherwise 1

Z4 If O# and corresponding Q# are of different parity 0

If O# and corresponding Q# are of same parity 1

Z5 If O# and corresponding Q# are both prime 0

Otherwise 1

Z6 If O# and corresponding Q# are both prime 1

Otherwise 0

Z7 If GCD of O# and corresponding Q# is 1 0

If GCD of O# and corresponding Q# is not 1 1

Z8 If (O#) mod (corresponding Q#) is 0 0

If (O#) mod (corresponding Q#) is not 0 1

Z9 If Q# is equal to 2
nd

 odd sequence of O# 0

Otherwise 1

8

Fig. 2).

(e) Stego-key block

This block provides stego-keys to operate the k-switches in the parallel switch block. As discussed in the previous step, the

size of each stego-key used to operate single switch is ⌈log2k⌉ bits. Since, there are total k-parallel switches, therefore the total

size of stego-key becomes k×⌈log2k⌉ bits. Since the maximum possible encoded bitstreams are k=2
n
 (as discussed earlier in

parallel encoding block), therefore a parallel switch block can have maximum 2
n
 switches and size of each stego-key

becomes ⌈log22
n
 ⌉= n. Hence, the maximum possible key size (Max key size) is given by following equation:

Max key size= (Max number of switches)×(size of each stego key)

 Max key size= 2
n
×⌈log22

n
 ⌉=n×2

n
 bits (1)

Because of very large size stego-key, it is very hard for an attacker to find out the correct key used to generate the stego-

constraints (or stego-mark). This strengthens the security achieved through key-triggered hash-chaining based steganography

approach.

(f) Hash-chaining block

This block is responsible for generating the stego-constraints in the form of hashed bitstream. A chain of total 2k hash-units

(HUs) is employed inside the hash-chaining block, where k is the total number of encodings chosen by the designer. Each

hash unit is fed with the input of 1024-bit and generates output of 512 bits. Each hash unit employs ‘round function

computation (RFC)’ process (Sengupta and Rathor, 2019c) to generate 512-bit hash-output. The number of rounds the RFC

process is run for each hash unit is specified by the designer. The number of rounds varies from 1 to 80. Because of designer

specified number of rounds, the hardness of finding the hash-output and consequently stego-constraints enhances from an

attacker’s perspective.

Further in the key-triggered hash-chaining steganography approach (Sengupta and Rathor, 2020), two different processes are

used to feed input to the hash units:

(1) Pre-processing: This process is used to feed 1024-bit input to the hash unit-1 (HU1) only. The rule of constructing 1024

bits through pre-processing is given by following equation:

(1024 bits)𝐻𝑈1
= (𝑛 𝑏𝑖𝑡𝑠 𝑜𝑓 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 𝑍1) & ′1′ & (𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 (896 − 𝑛 −

 1)𝑧𝑒𝑟𝑜𝑠) & (128 𝑏𝑖𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ ′𝑛′) (2)

 (2) Bit padding: This is the process to form 380-bit input to the remaining hash units (HU2 to HU2k). To form the 380 bits,

the designer chosen combination of (380-n) bits is padded before the n bits of the encoded bitstream. Thus the size of

9

encoded bitstreams (corresponding to encoding Z2-Zk) fed to the hash-units (HU2 to HU2k) becomes 380 bits which are only

known to the designer and unknown to an attacker.

Further, the total 1024-bit input to the remaining hash units (HU2 to HU2k) is formed using following equation:

(1024 bits)𝐻𝑈2−2𝑘
= (512 𝑏𝑖𝑡 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 ℎ𝑎𝑠ℎ 𝑢𝑛𝑖𝑡)&"1000" & (380 𝑏𝑖𝑡 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑏𝑖𝑡 𝑝𝑎𝑑𝑑𝑖𝑛𝑔)&

 (128 𝑏𝑖𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 ℎ𝑎𝑠ℎ 𝑜𝑢𝑡𝑝𝑢𝑡) (3)

The 2k hash units employed in the hash-chaining block are categorised into two types viz. regular hash units and key-

triggered hash units.

(i) Regular hash units (HU1 to HUk):

The first ‘k’ hash units in the hash-chaining block are the regular hash units. These hash units (HU1 to HUk) exploit

encodings Z1 to Zk respectively to generate hash-output. 1024-bit input for HU1 is formed using (2) and 1024-bit

input for HU2 to HUk is formed using (3).

(ii) Key-triggered hash units (HUk+1 to HU2k):

 The last ‘k’ hash units in the hash-chaining block are the key-triggered hash units. This is because a particular

encoding (out of k-encodings) used by a key-triggered hash unit is selected based on the specific value of stego-key.

The 1024-bit input for HUk+1 to HU2k is formed using (3).

It is important to note here that the total hash-units (2k) employed in the hash-chaining block are two times of the number of

encodings (k) chosen by the designer. And total key-triggered hash-blocks (k) are equal to the number of encodings (k)

chosen by the designer. The 512-bit hash-output of the hash-chaining block is fed as input to the next block.

(g) Stego-embedder block

This block is responsible for embedding stego-constraints into the design during HLS process. The entire process is explained

Table 2. Rules to convert a hash-bitstream into corresponding stego-constraints

Bit Conversion rule

‘0’ An edge is embedded between node pair <even, even> in to CIG

‘1’
If operation (O)# is odd, then it is allocated to FU of vendor type 1 (V1)

and if O# is even, then it is allocated to FU of vendor type 2 (V2)

10

using following three sub-processes:

(i) Bitstream truncation: This process truncates the 512-bit hash-bitstream (obtained from hash-chaining block) to the

designer specified size of stego-constraints.

(ii) Conversion into stego-constraints: All ‘0’ and ‘1’ bits in the truncated bitstream are converted into corresponding stego-

constraints by applying conversion rules as shown in Table 2. Thus obtained stego-constraints are fed to the ‘embedding

stego-constraints’ process.

(iii) Embedding stego-constraints: Inputs to this process are scheduled DFG and stego-constraints to be embedded. This

process embeds stego-constraints into the DSP core design during register allocation and FU allocation phase of HLS

process. The stego-constraints corresponding to bit ‘0’ are embedded during register allocation and those corresponding to bit

‘1’ are embedded during FU allocation. To embed stego-constraints corresponding to bit ‘0’ during register allocation phase,

a colored interval graph (CIG) framework is leveraged. A CIG represents graphically the assignments of all storage variables

of the design to the minimum possible registers, where each register is denoted using a distinct color and storage variables are

denoted using nodes in the CIG (Sengupta and Bhadauria, 2016). An edge between two nodes in the CIG indicates that the

respective storage variables/nodes are essentially executed through two distinct registers/colors. The storage variables of the

design can be extracted out from the scheduled DFG, where all primary and intermediate inputs/output of the design are

assigned to variables. The stego-constraints corresponding to bit ‘0’ are embedded as extra edges (constraint edges) in the

CIG complying with the condition that two nodes connected through an edge should be of different colors. To satisfy this

condition, alteration of node colors in the CIG may be required to perform. The added constraint edges into the CIG are

reflected in the scheduled DFG through the reallocation of storage variables to the registers/colors.

Further, the stego-constraints corresponding to bit ‘1’ are embedded by reallocating the operations in scheduled DFG to a

particular vendor type, which is determined based on the rule mentioned in Table 2. Thus, each embedded stego-constraint

corresponding to bit ‘1’ indicates the allocation of an operation to a fixed vendor type.

The embedding stego-constraints (stego-mark) results into a stego-embedded DSP core. By detecting the embedded

steganography during forensic detection, false claim of ownership of the IP core can be nullified and counterfeited/cloned

IPs/ICs can be detected.

4. Detection of Steganography

To nullify the fraudulent claim of ownership, the stego-constraints (or secret steganography information) are detected in the

design under test. To do so, the RTL datapath of the design is inspected and the information about the inputs of multiplexers

11

associated with each register (which tells about the assignment of storage variables to the registers) and vendor type allocation of

each operation is collected. This information is matched with the designer’s stego-constraints generated through the key-triggered

hash-chaining steganography approach (Sengupta and Rathor, 2020). If both matches, then the presence of stego-constraints of

the genuine owner are verified in the design, thus ownership is awarded to the genuine owner. Fig. 3 depicts the steganography

detection process in detail.

5. Security from an Attacker’s Perspective

A dishonest IP buyer/user (attacker) can claim the ownership of the design, deceiving the genuine owner. If secret information

(stego-mark) of the genuine owner is not embedded into the design, then the attacker can easily realize his/her malicious intent of

claiming IP ownership fraudulently. The embedded stego-mark thwarts an attacker to do so. However an attacker may try to claim

stego-mark (stego-constraints) as his/her own, defeating the purpose of steganography. In order to do so, the attacker is required

to find the secret stego-constraints embedded into the design. The key-triggered hash-chaining based steganography enhances the

attacker’s effort of finding stego-constraints manifold. The attacker needs to find out the valid stego-key and the encoded

bitstreams used to generate the stego-constraints. The attacker’s maximum effort of finding the stego-key (𝑒𝑠𝑘
𝑚) through brute-

force is given as follows:

𝑒𝑠𝑘
𝑚 = 2Max 𝑘𝑒𝑦 𝑠𝑖𝑧𝑒

𝑒𝑠𝑘
𝑚 = 2𝑛×2𝑛

 (4)

Where, maximum stego-key size is obtained using (1).

Further, the total encoded bits used in hash-chaining block to generate stego-constraints are calculated using following equation:

Total encoded bits = 380 × (# of hash units)

 Total encoded bits = 380 × (2k) (5)

Where, 380 is the size of encoded bits fed to each hash unit in the hash-chaining block and 2k is the number of hash units which

are two times of number of encodings (k) chosen by the designer. Hence, the attacker effort (𝑒𝐻
𝑒𝑏) to find out the encoded bits

through brute-force is given as follows:

𝑒𝐻
𝑒𝑏 = 2𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑏𝑖𝑡𝑠

 𝑒𝐻
𝑒𝑏 = 2380×(2k) (6)

12

Where, total encoded bits are calculated using (5).

Hence, attacker’s total effort in determining the stego-constraints embedded into the design is quantified as follows:

Total effort = 𝑒𝑠𝑘
𝑚 × 𝑒𝐻

𝑒𝑏

 Total effort = 2n×2n
× 2380×(2k)

 Total effort = 2(n×2n+(380×2𝑘)) (7)

Inspecting inputs

of muxes

associated to all

registers

RTL datapath of the

DSP core

Scheduling

Encoding of DSP application

into bitstream

Key-triggered

Hash-chaining

Conversion of truncated

bitstream to stego-constraints

DSP application (DFG)

YES
Ownership

awarded to

genuine IP

owner

Extracting designer’s stego-

constraints

Generating designer’s stego-constraints

Stego-

keys

Bitstream truncation

Stego-

constraints

size

Resource

constraints

Encoding

rules

Conversion

rules

Verification

Fig. 3. Detection process of steganography (Sengupta and Rathor, 2020)

Inspecting

vendor type of

FUs

13

It is evident from (7) that an attacker requires a huge effort in order to find out the stego-constraints embedded into the design.

This renders the generated stego-mark using key-triggered hash-chaining steganography approach (Sengupta and Rathor, 2020)

highly robust and secured.

P

P

P

P

P

P

P

P

2 1 3 4

5 6 7 8 9 10 11 12

13 14 15 16

17

18

19

20

21

22

23

 𝐴1
1 𝐴2

1 𝐴1
2 𝐴2

2

 𝐴1
1 𝐴2

1 𝐴1
2 𝐴2

2 𝑀1
1 𝑀2

1 𝑀1
2 𝑀2

2

 𝑀1
1 𝑀2

1 𝑀1
2 𝑀2

2 𝐴1
1

 𝐴1
1

 𝐴1
1

 𝐴1
1

 𝐴1
1

 𝐴1
1

 𝐴1
1

S9 S8

S16

S24

S25

S26

S29

S27

S28

S30

S17

S10

S0 S2 S3 S4 S5 S6 S7
S1

Q1

Q2

Q0

Q3

Q4

Q5

Q7

Q8

Q9

Q6

S18

S11

S19 S12

S20

S13 S14
S15

S21 S22 S23

Fig. 4. Scheduled and resource allocated DFG of FIR filter application

P

P

I

I

I

V

V

V

G

G

G

Y

Y

O

O

O

R

R

R

B

B

B

Y

14

7.4. Design Process of Securing FIR Filter using Encoding and Key-driven Hash-chaining Steganography

Digital FIR (finite impulse response) filters are widely used in electronics applications such as digital communication for de-

noising. Here, a FIR filter core is chosen to illustrate the hash-chaining based steganography approach (Sengupta and Rathor,

2020). The FIR filter application in the form of DFG is fed as input along with module library and resource (FU) constraints of 4

multipliers (M) and 4 adders (A). The steps of generating a stego-embedded FIR filter core using key-triggered hash-chaining

based steganography are as follows:

1. Generating scheduled DFG of FIR application: The DFG of FIR application is scheduled based on designer chosen

resource (FU) constraints of 4 M and 4 A. The scheduled DFG is shown in Fig. 4. As shown in the figure, 23 operations

of the FIR applications are executed through 9 control steps (Q). Operations have been allocated to FUs from two

different vendors (V1 and V2). Note: For a FU instance (𝑀𝑗
𝑖 𝑜𝑟 𝐴𝑗

𝑖), instance number and vendor type are denoted by the

subscript ‘j’ and superscript ‘i’ respectively. Since chosen constraints of multiplier are 4, therefore two instances of

multiplier of vendor V1 and another two instances of multiplier of vendor V2 have been used to execute multiplication

operations in a control step. Similarly, chosen constraints of adder are 4, therefore two instances of adder of vendor V1

and another two instances of adder of vendor V2 have been used to execute addition operations in a control step. Further,

the primary and intermediate inputs and outputs of the design are stored using total 31 storage variables (S0-S30). The

corresponding CIG of the FIR application is shown in Fig. 5, where nodes S0-S30 indicate the storage variables of the

design. Table 3 captures the allocation of storages variables to registers (colours) into different control steps.

2. Generating encoded bitstreams: By applying nine (k=9) encoding rules (Sengupta and Rathor, 2020), the scheduled DFG

of FIR application is encoded into nine unique bitstreams as shown in Table 4. As there are n=23 operations in the FIR

application, the length of each bitstream is 23.

3. Pre-processing and bit padding of encoded bitstreams: The first bitstream generated using encoding rule Z1 is pre-

processed to form 1024 bits using (2). The remaining eight bitstreams (each of size ‘23’) generated from encoding rules

Z2-Z9 are converted to 380 bits by padding designer chosen combination of 357 bits before them. Thus obtained eight

bitstreams of 380-bit each are converted to 1024 bits using (3). Now all nine bitstreams are of length 1024 bits and ready

to be fed to the hash-chaining block.

4. Feeding bitstreams to hash-chaining block: The first bitstream of 1024-bit (corresponding to encoding-Z1) is fed to the

hash unit-1 (HU1). The remaining eight bitstreams (corresponding to encoding-Z2 to Z9) are fed to the regular and key-

triggered hash units. Please note that as 9 encodings are chosen by the designer, therefore total 9×2=18 hash units are

employed in the hash-chaining block. Where, HU1- HU9 are the regular hash units and HU10- HU18 are the key-triggered

15

hash units. All nine bitstream are directly fed to the nine regular hash units (HU1- HU9) respectively. However, the

Fig. 5. CIG of FIR filter hardware accelerator (IP core) before steganography

S24

S26

S25

S3

S1

S0

S2`

S4

S6

S7

S8

S9

S11

S10

S5

S14

S17

S16

S13
S12

S18`

S15

S19

S22

S23

S21

S20

S27 S28

S29

S30

S24

S26

S25

S3

S1

S0

S2`

S4

S6

S7

S8

S9

S11

S10

S5

S14

S17

S16

S13
S12

S18`

S15

S19

S22

S23

S21

S20

S27 S28

S29

S30

Fig. 6. CIG of FIR filter hardware accelerator (IP core) after steganography

16

selection of a specific bitstream (out of 9) fed to a particular key-triggered hash unit is based on a stego-key value of size

⌈log29⌉=4 bits. The overall all stego-key used (in this demonstration) to select the bitstreams fed to the all nine key-

triggered hash units are as follows: “1000-0111-0110-0101-0100-0011-0010-0001-0000”.

5. Generating final hash-bitstream of 512-bit long: Based on the designer chosen stego-key values and the 1024-bit inputs

Table 3. Register allocation of FIR before implanting steganography

Q Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

P S0 S8 S16 S24 S25 S26 S27 S28 S29 S30

I S1 S9 S17 -- -- -- -- -- -- --

V S2 S10 S18 S18 -- -- -- -- -- --

G S3 S11 S19 S19 S19 -- -- -- -- --

Y S4 S4 S12 S20 S20 S20 -- -- -- --

O S5 S5 S13 S21 S21 S21 S21 -- -- --

R S6 S6 S14 S22 S22 S22 S22 S22 -- --

B S7 S7 S15 S23 S23 S23 S23 S23 S23 --

Note, P, I, V, G, Y, O, R and B indicate eight different registers (colours) used to store storage variables S0-S30

Table 4. Encoded bitstreams corresponding to FIR filter core using nine encoding rules

Encodings Encoded bitstream

Z1 11111010101011111010101

Z2 01011010101001010000000

Z3 01011111111101010101010

Z4 10100101010110101111111

Z5 11110101110101110101111

Z6 00001010001010001010000

Z7 00000101010100100101110

Z8 00001010101011011111011

Z9 11111111111111111111111

17

fed to the hash units, the hash-chaining block generates 512-bit long hash-bitstream which is as follows:

“010000110010001000010000000100101100101110101010110010101010010010110011101010011010111100011001

0011001101001111100000100000101011011111101001011001011110111001110111110101010001011010000110001

0100110010001010100001101011110100110100000101111101111101101100101001101101101111110001110110011

1110111100101110100111000110011110101110010101010110100101000001100000011111001001101011010010010

1010010010101000011110101111111000000100000000010110011000001101111111110111000101101001110100100

1111100111010000101000110000”

6. Hash-bitstream truncation: The hash-bitstream is truncated to the designer chosen size of stego-constraints. For the

stego-constraints size (W) of 26, the truncated bitstream is as follows: “01000011001000100001000000”.

7. Conversion of bits to stego-constraints: The truncated bitstream contains 20 zeros and 6 ones. Stego-constraints

corresponding to 20 zeros are as follows (based on conversion rule shown in Table 2):

<S0,S2>, <S0,S4>, <S0,S6>, <S0,S8>, <S0,S10>, <S0,S12>, <S0,S14>, <S0,S16>, <S0,S18>, <S0,S20>, <S0,S22>,

<S0,S24>, < S0,S26>, <S0,S28>, <S0,S30>, <S2,S4>, <S2,S6>, <S2,S8>, <S2,S10>, <S2,S12>

These stego-constraints are embedded into the CIG in the form of additional edges.

Further, stego-constraints corresponding to 6 ones are as follows (based on conversion rule shown in Table 2):

O1-> V1, O2->V2, O3-> V1, O4->V2, O5-> V1, O6->V2

Table 5. Register allocation of FIR AFTER implanting steganography

Q Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

P S0 S9 S17 -- S25 -- S27 -- S29 --

I S1 S8 S16 S24 -- S26 -- S28 -- S30

V S2 S11 S18 S18 -- -- -- -- -- --

G S3 S10 S19 S19 S19 -- -- -- -- --

Y S4 S4 S12 S20 S20 S20 -- -- -- --

O S5 S5 S13 S21 S21 S21 S21 -- -- --

R S6 S6 S14 S22 S22 S22 S22 S22 -- --

B S7 S7 S15 S23 S23 S23 S23 S23 S23 --

18

i.e. odd operations (O1, O3, O5) are assigned to vendor type-1 (V1) and even operations (O2, O4, O6) are assigned to

the vendor type-2 (V2).

8. Embedding stego-constraints during HLS process: The constraint edges (stego-constraints corresponding to bit ‘0’) are

embedded into the CIG one by one. During embedding of an edge as a stego-constraint, the condition that the respective

two nodes should be of different color must be taken care of. If it is not so, then the color of one of the node is modified

P

P

P

P

P

2 1 3 4

5 6 7 8 9 10 11 12

13 14 15 16

17

18

19

20

21

22

23

 𝐴1
1 𝐴1

2 𝐴2
1 𝐴2

2

 𝐴1
1 𝐴1

2 𝐴2
1 𝐴2

2 𝑀1
1 𝑀2

1 𝑀1
2 𝑀2

2

 𝑀1
1 𝑀2

1 𝑀1
2 𝑀2

2 𝐴1
1

 𝐴1
1

 𝐴1
1

 𝐴1
1

 𝐴1
1

 𝐴1
1

 𝐴1
1

S9 S8

S16

S24

S25

S26

S29

S27

S28

S30

S17

S10

S0 S2 S3 S4 S5 S6 S7 S1

Q1

Q2

Q0

Q3

Q4

Q5

Q7

Q8

Q9

Q6

S18

S11

S19 S12

S20

S13 S14
S15

S21 S22 S23

Fig. 7. Scheduled DFG of FIR filter application after embedding steganography

P

I

I

I

V

V

V

G

G

G

I

I

I

I

Y

Y

O

O

O

R

R

R

B

B

B

Y

19

in order to accommodate that edge. For example, before embedding the constraint edge <S0,S8>, both nodes (S0 and S8)

are of same color as shown in Fig. 5. However, embedding the edge <S0,S8> results into change in the color of node S8

from Pink (P) to Indigo (I) as shown in Fig. 6. The Fig. 6 shows the CIG after embedding all constraint edges. The

embedded constraint edges have been drawn as red dotted lines in Fig .6. As shown in the figure, the color of storage

variables/nodes S8, S9, S10, S11, S16, S17, S24, S26, S28 and S30 are modified to embed all the constraint edges. Table

5 captures the register allocation of storage variables into different control steps post embedding stego-constraints. The

storage variables subjected to register re-allocation post embedding constraints have been marked grey in the table.

Further, to embed the constraints corresponding to all 6 ones, reallocation of operations (O1-O6) to the particular vendor

type is performed based on the rule shown in Table 2. The scheduled DFG of FIR application with embedded stego-

constraints (corresponding to both 0s and 1s) is shown in Fig. 7. As shown in the figure, the FUs (corresponding to O1-

O6) highlighted in red color indicate the embedded stego-constraints corresponding to bit ‘1’. Embedding stego-

constraints produces a stego-embedded FIR filter core which is secured with designer’s robust stego-mark.

7.5. Key-triggered Hash-chaining Driven Steganography Tool for Securing Hardware Accelerators

Authors have developed a KHC-Stego tool (Key-triggered Hash-chaining Driven Steganography tool) to simulate and analyse the

functionality of key-triggered hash-chaining based steganography approach (Sengupta and Rathor, 2020) for DSP hardware

Fig. 8. A snapshot of key-triggered hash-chaining driven steganography tool

20

accelerators. This tool provides a friendly graphical interface to designers. A snapshot of the graphical user interface (GUI) of the

tool is shown in Fig. 8. The left portion of the tool shows the panel for providing required inputs to the tool, right portion shows

the panel with output buttons to see the intermediate and final outputs of the key-triggered hash-chaining based steganography

approach. The panel in the middle shows the status of the intermediate steps viz. CDFG scheduling of DSP application, encoding

selection, executing hash-chaining process and insert constraints, as shown in Fig. 8. Initially, these status bars remain red. Upon

applying the inputs, the respective status bar turns green. The KHC-Stego tool accepts the DSP application input in the form

CDFG along with module library and resource constraints. The tool shows output of intermediate steps of key-triggered hash-

chaining based steganography, finally generated stego-constraints, the security metric in terms of probability of coincidence, pre

Fig. 9. Snapshot post entering input DSP application, library and constraints size

21

and post-steganography design cost. Further, it also shows scheduling and registers allocation pre and post-embedding

steganography constraints, onto the output window.

Let’s generate all the intermediate and final output of key-triggered hash-chaining based steganography approach for FIR filter

core using the KHC-Stego tool. We will provide the same inputs and stego-keys used during the demonstration of FIR filter core

discussed in section 7.4. Here, we can match the output generated with the tool and that obtained in the demonstration. First of all,

inputs CDFG of FIR filter core, resource constraints of 4 adder & 4 multipliers and module library, are fed to the tool as shown in

Fig. 9. On clicking on the button “Initial scheduled DFG” on output panel, the scheduled DFG becomes available onto the output

window shown at the bottom of the tool. As the DFG gets scheduled, the respective status bar (“DFG scheduled” shown in Fig. 9)

turns green. Whereas, the remaining status bar are still red as shown in Fig. 9. Further, number of encodings is entered in the tool.

Fig. 10. Snapshot of tool showing different encodings to be chosen

22

The tool pops up a window which shows the definitions of nine different encodings, as shown in Fig. 10. Further the encoding

numbers are entered in the tool as shown in Fig. 11. Upon clicking on the output button “Encoded Bitstream” at output panel, the

nine different encoded bitstreams of scheduled DFG of FIR filter are available onto the output window as shown in Fig. 11.

Further, stego-key value for each key-driven hash block and number of rounds for all eighteen hash blocks in the hash-chain are

entered in the tool as shown in Fig. 12. The final hash output is also shown in Fig. 12 on to the output window. Further, Fig. 13

shows that the constraints size=26 has been fed as input and the final truncated bitstream is made available on to the output

window by clicking on the button “truncated bitstream”. The number of zeros and ones in the truncated bitstream can also be

Fig. 11. Snapshot of tool showing encoded bitstreams of scheduled DFG of FIR filter

23

shown at output window by clicking on the respective buttons on output panel. As shown in all the snapshots of the tool, same

inputs and stego-keys that are used in the demonstration of FIR filter core in section 7.4 have been fed here. The tool produces the

desired outputs that match with the demonstration of FIR filter core in section 7.4. Further, Fig. 14 shows the register allocation

post-embedding stego-constraints corresponding to ‘0’ bits. Here, values under the column headings 1 to 8 show the storage

variable (S) number and the heading of the column show the register number, where Pink, Indigo, Violet, Green, Yellow, Orange,

Red and Black registers have been denoted by the number 1, 2, 3, 4, 5, 6, 7 and 8 respectively. The rows heading (0 to 9) show

the control step numbers. As shown in the figure, this register allocation post-embedding constraints matches with that

demonstrated in section 4.7. Further, Fig. 15 shows the scheduling of CDFG of FIR filter post-embedding key-triggered hash-

chaining based steganography. This scheduled CDFG captures the impact of embedding stego-constraints corresponding to bit 1’

in the form of FU vendor re-allocation. Additionally, design cost pre and post-embedding steganography can be seen at output

Fig. 12. Snapshot of tool post entering encoding numbers, stego-key and rounds of hash

24

window by clicking on the respective buttons on output panel as shown in Fig. 16. Further, the value of probability of coincidence

metric can also be seen at output window of the tool as shown in Fig. 17.

Thus the key-triggered hash-chaining based steganography approach can be simulated and analysed using the KHC-stego tool

developed by the authors. This tool is useful for analysing various kinds of DSP hardware accelerator applications.

7.6. Analysis on Case Studies

The case studies of different DSP applications have been analysed to show the security achieved through key-triggered hash-

chaining steganography approach (Sengupta and Rathor, 2020). Further a security comparison, in terms of key strength, has been

shown with respect to contemporary watermarking and steganography approaches. Furthermore, the impact of key-triggered hash-

chaining steganography approach on design cost has been assessed by comparing it with the baseline design cost (before

steganography). The security and design cost analysis along with comparative assessment are discussed in following sub-sections:

1. Security Analysis (Sengupta and Rathor, 2020)

Fig. 13. Snapshot of tool post entering constraint size

25

The key-triggered hash-chaining steganography approach (Sengupta and Rathor, 2020) targets the security of DSP cores against

false claim of ownership and counterfeiting/cloning threats. The false claim of ownership can be nullified by embedding

significant amount of digital evidence which shows the proof of ownership. The strength of ownership proof is assessed in terms

of probability of coincidence (Pc) which represents the probability of coincidently finding designer’s stego-mark in a non-

steganography embedded design. The Pc metric is evaluated using following formula (Sengupta and Rathor, 2019b):

Pc = (1 −
1

h
)

k1

× (1 −
1

πj=1
m N(Uj)

)
k2

 (8)

Where, h indicates the number of colours/registers in the CIG of DSP hardware accelerator design before steganography and k1

indicates the number of stego-constraints embedded during the register allocation phase (i.e. number of 0s embedded). Further, k2

Fig. 14. Snapshot of tool showing register allocation post embedding constraints

26

indicates the number of stego-constraints embedded during the FU resource allocation phase (i.e. effective number of 1s

embedded), N(Uj) indicates the number of resources of FU type Uj and m indicates the total types of FU resources present in the

DSP hardware accelerator design. Here, k1(number of stego-constraints embedded during register allocation) and k2 (number of

stego-constraints embedded FU allocation phase) indicate the amount of digital evidence hidden within the design. Higher the

value of k1 and k2 (i.e. higher digital evidence), lower is the Pc value which in turn indicates the higher strength of ownership

proof. Table 6 shows the number of stego-constraints k1 and k2 and total constraints size W=k1+k2 for various DSP

applications. Further, Fig. 18 shows probability of coincidence achieved through key-triggered hash-chaining steganography

approach (Sengupta and Rathor, 2020) post embedding stego-constraints (k1) corresponding to bit ‘0’. Fig. 19 shows the final

probability of coincidence achieved post embedding stego-constraints (k1+k2) corresponding to bits ‘0’ and ‘1’. Further, variation

Fig. 15. Snapshot of tool showing scheduling and allocation post embedding constraints

27

in Pc for increasing number of constraints is shown in Fig. 20. As shown in the figure, the Pc value decreases on increasing the

size of stego-constraints (W=k1+k2), indicating higher strength of ownership proof. In addition, counterfeiting can be detected by

inspecting the presence of stego-mark in a counterfeited IP/IC. The counterfeited IP/IC does not contain the authentic stego-mark

of original vendor. Further, cloned IPs/ICs are detected by verifying the presence of authentic stego-mark in the IPs/ICs of

different brands. The cloned IPs/ICs shall contain the authentic stego-mark of original owner, hence detected.

However, if embedded stego-mark or stego-constraints is compromised or leaked to an attacker, then the purpose of embedding

steganography is defeated. Therefore, an embedded stego-mark is required to be highly secured and only the IP owner should be

able to generate it. In order to obtain a highly robust stego-mark, the key-triggered hash-chaining steganography approach

(Sengupta and Rathor, 2020) generates it using designer specified stego-key. Moreover, the encoded bitstreams used in the stego-

constraints generation process also enhance the robustness of the stego-mark. Both the stego-keys and the encoded bitstreams are

only known to the designer. For an attacker, to find the stego-constraints, both the stego-keys and encoded bitstreams need to be

Fig. 16. Snapshot of tool showing design cost pre and post embedding stego-constraints

28

determined. From an attacker’s perspective, the maximum possible stego-key size required to generate the stego-constraints is

Table 6. Stego-constraints k1 and k2 and total constraints size W=k1+k2 for various DSP applications

DSP

applications

of registers

(h) before

steganography

Resource

constraints

Total

constraint

size

(W=k1+k2)

#Constraints

k1

(#0s)

k2

(#1s)

DCT 8 1A, 4M 23 13 10

FIR 8 4A, 4M 26 20 6

JPEG_IDCT 29 12A, 12M 312 203 109

MPEG 14 3A, 7M 37 21 16

JPEG_sample 12 6A, 1M 51 30 21

EWF 7 2A, 1M 52 34 18

Fig. 17. Snapshot of tool showing probability of coincidence (Pc) value post embedding stego-constraints corresponding to bits

‘0’ and ‘1’

29

reported in Table 7. Further, Table 7 also shows the required attacker’s maximum effort to find out the valid key value.

Additionally, an attacker is also required to find out the total encoded bits (in the bitstreams) used during stego-constraints

generation. The attacker’s effort of deriving actual encoded bits through brute force is reported in Table 7. The overall security in

Fig. 18. Probability of coincidence post embedding stego-constraints k1

DSP applications

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

DCT FIR JPEG_IDCT MPEG JPEG_sample EWF

P
ro

b
a

b
il

it
y

 o
f

co
in

ci
d

en
ce

Pc post embedding k1

Fig. 19. Final Probability of coincidence post embedding stego-constraints k1 and k2

DSP applications

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

DCT FIR JPEG_IDCT MPEG JPEG_sample EWF

P
ro

b
a

b
il

it
y

 o
f

co
in

ci
d

en
ce

Pc post embedding k1 and k2

30

terms of attacker’s total effort of finding stego-constraints is also shown in Table 7. As evident from the table, determining stego-

constraints becomes almost infeasible for an attacker because of huge effort required to find out the stego-key value and encoded

bits.

0.00E+00

2.00E-03

4.00E-03

6.00E-03

8.00E-03

1.00E-02

1.20E-02

23 36 55

P
ro

b
a
b

il
it

y
 o

f
co

in
ci

d
en

ce

Total constraints size (k1+k2)

DCT

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

3.50E-02

4.00E-02

4.50E-02

5.00E-02

26 80

P
ro

b
a
b

il
it

y
 o

f
co

in
ci

d
en

ce

Total constraints size (k1+k2)

FIR filter

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

3.00E-04

3.50E-04

4.00E-04

312 426 464

P
ro

b
a
b

il
it

y
 o

f
co

in
ci

d
en

ce

Total constraints size (k1+k2)

JPEG IDCT

0.00E+00

2.00E-02

4.00E-02

6.00E-02

8.00E-02

1.00E-01

1.20E-01

37 75 82

P
ro

b
a
b

il
it

y
 o

f
co

in
ci

d
en

ce

Total constraints size (k1+k2)

MPEG

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

1.40E-03

1.60E-03

1.80E-03

51 103 147

P
ro

b
a
b

il
it

y
 o

f
co

in
ci

d
en

ce

Total constraints size (k1+k2)

JPEG_sample

0.00E+00

5.00E-09

1.00E-08

1.50E-08

2.00E-08

2.50E-08

52 85 114

P
ro

b
a
b

il
it

y
 o

f
co

in
ci

d
en

ce

Total constraints size(k1+k2)

EWF

Fig. 20. Impact of increasing stego-constraints size on probability of coincidence (Pc)

31

Tamper tolerance: The key-triggered hash-chaining steganography approach (Sengupta and Rathor, 2020) is not vulnerable to

tampering in contrast to watermarking based approaches (Sengupta and Bhadauria, 2016; Sengupta and Roy, 2017; Koushanfar et

al., 2005). This is because, unlike watermarking, the steganography is free from signature digits combinations.

Security comparison with contemporary approaches: Watermarking and steganography are the contemporary approaches that

secure an IP core against ownership abuse and counterfeiting/cloning. However, the purpose of watermarking approach fails if the

designer signature gets leaked to an attacker. This is because, the watermarking approaches does not use secret key to generate the

watermarking constraints. Similarly, steganography approach proposed by (Sengupta and Rathor, 2019a) does not employ a secret

key to generate stego-constraints. Though the steganography approach proposed by (Sengupta and Rathor, 2019b) uses stego-key,

however the key size is very small compared to the key-triggered hash-chaining steganography approach (Sengupta and Rathor,

2020). The comparison of key size with respect to (Sengupta and Rathor, 2019a; Sengupta and Rathor, 2019b; Sengupta and

Table 7. Security analysis of key-triggered hash-chaining based steganography in terms of stego-key strength and attacker’s

total effort of finding stego-constraints

DSP applications Maximum key

size using (1)

Attacker’s maximum

effort in terms of

finding valid key

(using (4))

Attacker’s maximum

effort in terms of

finding encoded bits

(using (6))

Attacker ‘s total

effort

(using (7))

DCT 491520 >10
147603

 10
2059

 >10
149662

FIR 192937984 >10
57939334

 10
2059

 >10
57941393

JPEG_IDCT 5.8153×10
35

 >10
1.74×10^35

 10
2059

 >10
1.74×10^35

MPEG 7516192768 >10
2277634172

 10
2059

 >10
2277636231

JPEG_sample 283467841536 >10
85899345920

 10
2059

 >10
85899347979

EWF 584115552256 >10
177004712804

 10
2059

 >10
177004714863

32

Bhadauria, 2016) is shown in Table 8. As shown in the table, the key-size in the watermarking approach (Sengupta and

Bhadauria, 2016) and steganography approach (Sengupta and Rathor, 2019a) is zero because of non-involvement of secret key to

generate the secret constraints. Further, it is evident from the table that the key-triggered hash-chaining based steganography

offers very high security in terms of robustness of the stego-mark (security of stego-constraints). This renders an attacker almost

infeasible to find out the stego-constraints embedded into the design.

2. Design Cost Analysis (Sengupta and Rathor, 2020)

This sub-section discusses the impact of employing key-triggered hash-chaining driven steganography based security on design

cost. Following equation is used to evaluate the design cost (Sengupta and Rathor, 2019b):

Cd(Ui) = ρ1
Ld

Lm
+ ρ2

Ad

Am
 (9)

Where, Cd(Ui) is the design cost of DSP cores for resource constraints Ui, further Ld and Lm are the design latency at specified

resource constraints and maximum design latency respectively, Ad and Am are the design area at specified resource constraints and

maximum area respectively and ρ1, ρ2 are the weights which are fixed at 0.5. Variation in the design cost for increasing size of

stego-constraints is shown in Fig. 21. As shown in the figure, the impact of increasing stego-constraint size on design cost is

Table 8. Key size comparison of key-triggered hash-chaining based steganography with contemporary approaches

DSP applications Maximum key size in bits

key-triggered hash-

chaining steganography

approach

(Sengupta and

Rathor, 2019b)

(Sengupta and Rathor,

2019a; Sengupta and

Bhadauria, 2016)

DCT 491520 610 0

FIR 192937984 625 0

JPEG_IDCT 5.8153×10
35

 785 0

MPEG 7516192768 620 0

JPEG_sample 283467841536 665 0

EWF 584115552256 640 0

33

either zero or nominal.

Design cost comparison with baseline: Design cost comparison with the baseline is shown in Fig. 22 for a particular constraint

size (W). As shown in the figure, the design cost may increase by a marginal value because of possibility of increment in the

number of registers required to embed the stego-constraints. However, no extra register is required for most of the DSP

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

23 36 55

D
es

ig
n

 c
o
st

Total constraint size (k1+k2)

DCT

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

26 80

D
es

ig
n

 c
o
st

Total constraints size (k1+k2)

FIR filter

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

312 426 464

D
es

ig
n

 c
o
st

Total constraints size (k1+k2)

JPEG IDCT

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

37 75 82

D
es

ig
n

 c
o
st

Total constraints size (k1+k2)

MPEG

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

51 103 147

D
es

ig
n

 c
o
st

Total constraints size (k1+k2)

JPEG_sample

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

52 85 114

D
es

ig
n

 c
o
st

Total constraints size(k1+k2)

EWF

Fig. 21. Impact of increasing stego-constraints size on design cost of key-triggered hash-chaining steganography

34

applications. This indicates that the key-triggered hash-chaining steganography approach (Sengupta and Rathor, 2020) achieves

very high security at almost zero overhead.

7.7. Conclusion

This chapter discusses a key-triggered hash-chaining based hardware steganography approach (Sengupta and Rathor, 2020) which

offers very high security against false claim of IP ownership threat. Additionally, the key-triggered hash-chaining steganography

approach is also capable to detect counterfeited/cloned IPs/ICs. The stego-mark generated through the key-triggered hash-

chaining steganography approach is highly robust as it is produced using secret stego-key of very large size; designer selected

encoded bitstreams and number of iterations of round function in each hash unit of the chaining process. The robustness of the

stego-mark has been evaluated in terms of key size, attacker’s total effort of finding stego-constraints and probability of

coincidence. The case studies show that the key-triggered hash-chaining steganography approach provides higher security than

contemporary approaches at trivial design overhead.

At the end of this chapter, a reader gains following concepts:

 Need of security of DSP hardware accelerators

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

DCT FIR JPEG_IDCT MPEG JPEG_sample EWF

Baseline key-triggered hash-chaining based steganography

W=23
W=26

W=312

W=37

W=51

W=52

Fig. 22. Design cost comparison of key-triggered hash-chaining steganography approach with baseline

Note: W indicates the stego-constraints size

35

 Key-triggeredhash-chaining based steganography methodology

 Various encodings of a DSP applications

 Role of encoded bitstreams of a DSP application in key-triggeredhash-chaining based steganography

 Role of hash units in key-triggeredhash-chaining based steganography

 Concept of regular and key-triggeredhash units

 Stego-embedder block in key-triggeredhash-chaining based steganography

 Detection of key-triggeredhash-chaining based steganography

 Security achieved using key-triggeredhash-chaining based steganography from an attcker’s perspective

 Design process of obatining stego-embedded FIR filter core uing key-triggeredhash-chaining based steganography

 Analysis on case studies of various DSP applications, in terms of security and design cost

36

7.8. Questions and Exercise

1. Explain the threat model used in key-triggered hash-chaining based steganography.

2. Explain the role of encoded bitstreams of a DSP application in key-triggered hash-chaining based steganography.

3. Explain role of hash units in key-triggered hash-chaining based steganography.

4. Explain the concept of regular and key-triggered hash units.

5. Explain the function of stego-embedder block in key-triggered hash-chaining based steganography.

6. Explain the function of detection of key-triggered hash-chaining based steganography.

7. What is the significance of parallel switch blocks?

8. How many encoding algorithms can be used in the key-triggered hash-chaining based steganography?

9. What is the output bit size of the bit padding block? How is this size determined?

10. What is the output bit size of the parallel switch blocks?

11. What is the maximum key size of the stego-key block?

12. What is the rule of constructing 1024 bits through pre-processing?

13. Explain the different encoding rules used to encode a DSP application into bitstreams.

14. What is the attacker’s maximum effort of finding the stego-key?

15. Determine the total encoded bits used in hash-chaining block to generate stego-constraints.

16. How to determine an attacker’s total effort in determining the stego-constraints embedded into the design?

17. What is a KHC-Stego tool?

18. How many phases are used for embedding stego-constraints into the design?

19. Compare any hardware watermarking with key-triggered hash-chaining based steganography, in terms of security

achieved and design overhead.

37

References

A. Sengupta, D. Kachave and D. Roy (2019a), ‘Low cost functional obfuscation of reusable IP cores used in CE hardware

through robust locking,’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 38(4), pp. 604-616.

S. M. Plaza, I. L. Markov (2015), ‘Solving the Third-Shift Problem in IC Piracy With Test-Aware Logic Locking,’ IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst.,vol. 34(6), pp. 961-971.

A. Sengupta (2017), ‘Hardware Security of CE Devices [Hardware Matters],’IEEE Consumer Electronics Mag, vol. 6(1), pp.

130-133.

A. Sengupta (2016), ‘Intellectual Property Cores: Protection designs for CE products, ’IEEE Consumer Electronics Mag, vol.

5, no. 1, pp. 83-88.

R. S. Chakraborty and S. Bhunia (2009), ‘HARPOON: An obfuscation-based SoC Design methodology for hardware

protection,’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 28(10), pp. 1493-1502.

A. Sengupta, S. Bhadauria (2016), ‘Exploring Low Cost Optimal Watermark for Reusable IP Cores During High Level

Synthesis,’IEEE Access, vol. 4, pp. 2198-2215,.

M. Yasin, J. J. Rajendran, O. Sinanoglu and R. Karri (2016), ‘On improving the security of logic locking,’ IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol. 35(9), pp. 1411-1424.

J. Zhang (2016), ‘A practical logic obfuscation technique for hardware security,’ IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 24(3), pp. 1193–1197.

B. Colombier and L. Bossuet (2015), ‘Survey of hardware protection of design data for integrated circuits and intellectual

properties,’ IET Computers & Digital Techniques, vol. 8(6), pp. 274-287.

R. D. Newbould, J. D. Carothers, and J. J. Rodriguez (2002), ‘Watermarking ICs for IP protection,’ IET Electron. Letters,

vol. 38(6), pp. 272–274.

A. Sengupta, S. P. Mohanty (2019), ‘IP core and integrated circuit protection using robust watermarking’, Book: 'IP Core

Protection and Hardware-Assisted Security for Consumer Electronics', e-ISBN: 9781785618000, pp. 123-170.

A. Sengupta, D. Roy, S. P. Mohanty (2019b), ‘Low-Overhead Robust RTL Signature for DSP Core Protection: New

Paradigm for Smart CE Design,’ Proc. 37th IEEE International Conference on Consumer Electronics (ICCE), pp. 1-6.

B. Le Gal, L. Bossuet (2012), ‘Automatic low-cost IP watermarking technique based on output mark insertions,’ Design

Autom.Embedded Syst., vol. 16(2), pp. 71-92.

F. Koushanfar et al. (2005), “Behavioral synthesis techniques for intellectual property protection,” ACM Trans. Des. Autom.

Electron. Syst., vol. 10(3), pp. 523-545.

38

A. Sengupta, D. Roy (2017), ‘Antipiracy-Aware IP Chipset Design for CE Devices: A Robust Watermarking Approach

[Hardware Matters],’IEEE Consumer Electronics Mag, vol. 6(2), pp. 118-124.

A. Sengupta, D. Roy, S. P. Mohanty (2018), ‘Triple-Phase Watermarking for Reusable IP Core Protection During

Architecture Synthesis,’IEEE Trans. Comput.-Aided Design Integr. Circuits Syst, vol. 37(4), pp. 742-755.

A. Sengupta, R. Sedaghat, Z. Zeng (2010), ‘A high level synthesis design flow with a novel approach for efficient design

space exploration in case of multi-parametric optimization objective,’ Microelectronics Reliability, vol. 50, Issue: 3,

pp. 424-437.

R. Schneiderman (2010), ‘DSPs evolving in consumer electronics applications, ’IEEE Signal Process. Mag., vol. 27(3), pp.

6–10.

A. Sengupta and M. Rathor (2020), ‘IP Core Steganography using Switch based Key-driven Hash-chaining and Encoding for

Securing DSP kernels used in CE Systems’, xyz.

A. Sengupta and M. Rathor (2019a), ‘IP core steganography for protecting DSP kernels used in CE systems,’ IEEE Trans.

Consum. Electron., vol. 65(4), pp. 506-515.

A. Sengupta and M. Rathor (2019b), ‘Crypto-based dual-phase hardware steganography for securing IP cores,’ Lett. IEEE

Comput. Soc., vol. 2(4), pp. 32-35.

A. Sengupta and M. Rathor (2019c), ‘Security of functionally obfuscated DSP core against removal attack using SHA-512

based key encryption hardware,’ IEEE Access, vol. 7, pp. 4598-4610.

A. Sengupta, E. R. Kumar and N. P. Chandra (2019c), ‘Embedding digital signature using encrypted-hashing for protection

of DSP cores in CE,’ IEEE Trans. Consum. Electron., vol. (3), pp. 398-407.

A. Sengupta (2020), ‘Frontiers in Securing IP Cores - Forensic detective control and obfuscation techniques’, The Institute of

Engineering and Technology (IET), ISBN-10: 1-83953-031-6, ISBN-13: 978-1-83953-031-9.

